JP2001250587A - Inspection method of electrolytic solution for lithium battery - Google Patents

Inspection method of electrolytic solution for lithium battery

Info

Publication number
JP2001250587A
JP2001250587A JP2000062288A JP2000062288A JP2001250587A JP 2001250587 A JP2001250587 A JP 2001250587A JP 2000062288 A JP2000062288 A JP 2000062288A JP 2000062288 A JP2000062288 A JP 2000062288A JP 2001250587 A JP2001250587 A JP 2001250587A
Authority
JP
Japan
Prior art keywords
radical
electrolytic solution
electrolyte
hydrofluoric acid
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000062288A
Other languages
Japanese (ja)
Other versions
JP3358657B2 (en
Inventor
Ryuji Shiozaki
竜二 塩崎
Shuchiku Ko
修竹 黄
Kazuya Okabe
一弥 岡部
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000062288A priority Critical patent/JP3358657B2/en
Publication of JP2001250587A publication Critical patent/JP2001250587A/en
Application granted granted Critical
Publication of JP3358657B2 publication Critical patent/JP3358657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method for quickly and simply determining quality of an electrolytic solution used for a lithium battery by quantifying an amount of hydrofluoric acid contained in the electrolytic solution and the amount of decomposition products contained in a solvent, and to provide the lithium ion battery superior in cycle characteristics. SOLUTION: A radical which is either a 1,1-dyphenyl-2-bicryl hydrazyl or an aroxyl radical is added to the electrolytic solution, and an attenuation quantity of absorption intensity of visible light for a fixed wavelength of the radical is measured. If the total concentration of a radical extinguishing action substance in the electrolytic solution calculated from the attenuation quantity is 1,000 ppm or lower, when converted in terms of hydrofluoric acid, the quality of the electrolytic solution is determined as being satisfactory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池に適
する電解液を判定して選別する方法に関する。
The present invention relates to a method for determining and selecting an electrolyte suitable for a lithium battery.

【0002】[0002]

【従来の技術】近年、携帯電話、小型コンピュータなど
の携帯機器類、電力貯蔵用電源、電気自動車用電源とし
て、リチウム電池が注目されている。
2. Description of the Related Art In recent years, lithium batteries have attracted attention as portable equipment such as mobile phones and small computers, power storage power supplies, and electric vehicle power supplies.

【0003】リチウム電池は、リチウムイオンを吸蔵・
放出可能な正極と負極、セパレータ、非水溶媒にリチウ
ム塩を溶解した電解質より主に構成される。正極には、
LiCoO2、LiNiO2、LiMn24などの層状も
しくはスピネル酸化物が、負極には炭素材料が広く一般
的に使用される。非水溶媒には、エチレンカーボネート
(EC)、プロピレンカーボネート(PC)などのカー
ボネート類の非水溶媒が広く使用される。リチウム塩に
は、フッ素系の塩が広く使用される。電解質は、非水電
解液、高分子電解質、高分子に電解液を含んだゲル電解
質等の形態がある。
[0003] Lithium batteries occlude and store lithium ions.
It mainly consists of a releasable positive electrode and negative electrode, a separator, and an electrolyte in which a lithium salt is dissolved in a non-aqueous solvent. For the positive electrode,
Layered or spinel oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4, and carbon materials are widely and generally used for the negative electrode. As the non-aqueous solvent, non-aqueous solvents such as carbonates such as ethylene carbonate (EC) and propylene carbonate (PC) are widely used. As the lithium salt, a fluorine salt is widely used. The electrolyte may be in the form of a non-aqueous electrolyte, a polymer electrolyte, a gel electrolyte containing a polymer in the electrolyte, or the like.

【0004】フッ素系のリチウム塩を用いた電解液は、
空気中に長時間放置されると、環境から混入する水分に
より、フッ素系リチウム塩と水が反応し、遊離のフッ酸
(HF)が生成する。遊離のフッ酸は、正極活物質、負
極活物質、電解液、電槽缶、集電体等の電池構成部品に
対して腐食作用を示し、電池特性に悪影響を与える。非
水溶媒の分子も、エチレンカーボネートやプロピレンカ
ーボネート等の環状カーボネートが加水分解を受け、ア
ルコール、ジオール類を生成し、これらがフッ素系リチ
ウム塩と反応して遊離のフッ酸を生成する。さらに、発
生したフッ酸は、環状カーボネートやアルコール類、ジ
オール類を分解し、分解生成物が生じる。
An electrolyte using a fluorine-based lithium salt is:
If left in the air for a long time, water mixed from the environment causes the fluorine-based lithium salt to react with water to generate free hydrofluoric acid (HF). Free hydrofluoric acid has a corrosive effect on battery components such as a positive electrode active material, a negative electrode active material, an electrolytic solution, a battery case, and a current collector, and adversely affects battery characteristics. As for the molecules of the non-aqueous solvent, cyclic carbonates such as ethylene carbonate and propylene carbonate are hydrolyzed to produce alcohols and diols, which react with fluorine-based lithium salts to produce free hydrofluoric acid. Furthermore, the generated hydrofluoric acid decomposes cyclic carbonates, alcohols, and diols to generate decomposition products.

【0005】このようなフッ酸、アルコール類、ジオー
ル類及びその他の分解生成物等の不純物を除去する技術
としては、例えば特開平10−270076号には、晶
析や精密蒸留操作などにより、リチウム電池用電解液と
して十分使用できるレベルに精製する方法が示されてい
る。
As a technique for removing impurities such as hydrofluoric acid, alcohols, diols and other decomposition products, for example, JP-A-10-270076 discloses a technique for removing lithium by crystallization or precision distillation. It discloses a method of purifying to a level that can be sufficiently used as a battery electrolyte.

【0006】しかしながら、このように精製された電解
液でも、露点−50℃以上の空気中で保存されると、環
境からの水の混入を避けることができない。特に、夏場
等、気温が上昇した環境下では、上記プロセスによる不
純物の発生が促進される。従って、電解液に含まれる不
純物が、リチウム電池に使用できる程度に低く抑えられ
ているかどうかのチェックは、製造工程中、電解液を用
いる直前に簡易に判定されることが望ましい。
[0006] However, even if the electrolytic solution thus purified is stored in air having a dew point of -50 ° C or higher, it is inevitable to mix water from the environment. In particular, in an environment where the temperature rises, such as in summer, the generation of impurities by the above process is promoted. Therefore, it is desirable that whether or not the impurities contained in the electrolytic solution are kept low enough to be used in a lithium battery is easily determined during the manufacturing process immediately before using the electrolytic solution.

【0007】特開平7−35739号には、金属リチウ
ムからなる負極と正極、セパレータとを電解液に60℃
12時間浸漬し、金属リチウムの変色を比色法によって
検査することによる電解液判定法が提案されている。し
かしながら、この方法は定量性に欠け、また、変色の原
因がフッ酸発生によるものか、溶媒の分解生成物による
ものか、あるいは水分によるものかが判別できないとい
う欠点があった。
Japanese Patent Application Laid-Open No. 7-35739 discloses that a negative electrode, a positive electrode and a separator made of metallic lithium are placed at 60 ° C.
There has been proposed an electrolytic solution determination method by immersing for 12 hours and examining the discoloration of metallic lithium by a colorimetric method. However, this method lacks quantitative properties and has the disadvantage that it cannot be determined whether the discoloration is due to the generation of hydrofluoric acid, the decomposition product of a solvent, or the moisture.

【0008】従って、製造される電池の品質特性を良好
に保つためには、電解液中の不純物を、フッ酸と溶媒の
分解生成物とに分離し、定量的に算出できる事が求めら
れている。特に、フッ酸の濃度のみならず、溶媒の分解
生成物の濃度を規定して管理する事は、サイクル性能に
優れた電池を提供するためには非常に重要である。
Therefore, in order to maintain good quality characteristics of a manufactured battery, it is required that impurities in an electrolytic solution can be separated into hydrofluoric acid and a decomposition product of a solvent and can be quantitatively calculated. I have. In particular, it is very important to regulate and control not only the concentration of hydrofluoric acid but also the concentration of decomposition products of the solvent in order to provide a battery having excellent cycle performance.

【0009】非水電解液中に遊離したフッ酸の分析法と
しては、ヨウ素滴定法が知られているが、この分析は水
系で行われるため、分析装置を乾燥空気雰囲気である製
造工程に持ち込むことができないので、測定試料の運搬
に手間がかかり、簡便性に欠くという欠点があった。ま
た、溶媒の分解生成物を分析する方法としては、ガスク
ロマトグラフィー法が知られているが、測定試料に混在
するフッ酸や高沸点電解液は、ガスクロマトグラフ分析
装置本体に悪影響を及ぼすことから、経済的な使用に耐
えないといった問題があった。
As a method for analyzing hydrofluoric acid liberated in a non-aqueous electrolyte, an iodine titration method is known. However, since this analysis is performed in an aqueous system, the analyzer is brought into a manufacturing process in a dry air atmosphere. However, there is a disadvantage in that it takes time and effort to transport the measurement sample and lacks convenience. As a method for analyzing the decomposition product of the solvent, a gas chromatography method is known, but hydrofluoric acid and a high-boiling electrolyte mixed in the measurement sample have a bad influence on the main body of the gas chromatograph analyzer. However, there is a problem that it cannot withstand economical use.

【0010】[0010]

【発明が解決しようとする課題】リチウム電池への使用
に適する電解液の判別方法に関する上記の問題に鑑み、
電解液中のフッ酸の含有量及び溶媒の分解生成物の含有
量を定量し、リチウム電池に用いる電解液の良否を迅速
かつ簡便に判別する検査方法を提供し、サイクル特性に
優れたリチウムイオン電池を提供することを目的とす
る。
In view of the above-mentioned problems relating to a method for determining an electrolyte suitable for use in a lithium battery,
Lithium ion with excellent cycle characteristics by quantifying the content of hydrofluoric acid in the electrolyte and the content of decomposition products of the solvent, and providing an inspection method for quickly and easily discriminating the quality of the electrolyte used for the lithium battery. It is intended to provide a battery.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、電解液にラジカルを
加え、ラジカルの有する固有波長の可視光吸収強度の減
衰量を計測することで、前記電解液の良否を判定するリ
チウム電池用電解液の検査方法である。また、前記ラジ
カルが1,1−ジフェニル−2−ピクリルヒドラジルま
たはアロキシルラジカルのいずれかであるリチウム電池
用電解液の検査方法である。また、前記減衰量から算出
される電解液中のラジカル消失作用物質の総濃度が、フ
ッ酸換算で1000ppm以下であることをもって良品
と判定するリチウム電池用電解液の検査方法である。ま
た、前記減衰量から算出される電解液中のラジカル消失
作用物質の濃度が、測定開始から10秒未満における定
量値がフッ酸換算で100ppm未満であり、測定開始
後10秒以上10分以下における定量値がフッ酸換算で
900ppm未満であることをもって良品と判定するリ
チウム電池用電解液の検査方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to add a radical to an electrolytic solution and measure the attenuation of visible light absorption intensity at a specific wavelength of the radical. A method for inspecting an electrolyte for a lithium battery, which determines the quality of the electrolyte. Further, the present invention is the method for testing an electrolyte for a lithium battery, wherein the radical is any of 1,1-diphenyl-2-picrylhydrazyl and alloxyl radical. The present invention also provides a method for testing a lithium battery electrolyte, which is determined to be non-defective when the total concentration of the radical-scavenging substance in the electrolyte calculated from the attenuation is 1000 ppm or less in terms of hydrofluoric acid. In addition, the concentration of the radical-scavenging substance in the electrolytic solution calculated from the attenuation amount is less than 100 ppm in terms of hydrofluoric acid in less than 10 seconds from the start of the measurement, and is 10 seconds or more and 10 minutes or less after the start of the measurement. This is an inspection method for a lithium battery electrolyte solution that is determined to be non-defective when the quantitative value is less than 900 ppm in terms of hydrofluoric acid.

【0012】即ち、発明者らは、電解液を長期間放置す
ることにより生じる遊離のフッ酸や溶媒の分解生成物
が、サイクル特性に悪影響を及ぼすことから、これら電
解液中の不純物の定量を迅速かつ簡便に行うための方法
を鋭意検討した。その結果、遊離のフッ酸は、(化1)
で示される1,1−ジフェニル−2−ピクリルヒドラジ
In other words, the present inventors have determined the amount of impurities in these electrolytic solutions because free hydrofluoric acid and decomposition products of the solvent produced by leaving the electrolytic solution for a long period of time adversely affect the cycle characteristics. We studied the method for quick and simple operation. As a result, free hydrofluoric acid becomes
1,1-diphenyl-2-picrylhydrazyl represented by the formula:

【0013】[0013]

【化1】 や、(化2)で示されるアルコキシルラジカルEmbedded image Or an alkoxyl radical represented by (Chemical Formula 2)

【化2】 等のラジカルと極めて鋭敏に反応する一方、溶媒の分解
生成物は、前記1,1−ジフェニル−2−ピクリルヒド
ラジルや、アルコキシルラジカル等のラジカルと緩やか
に反応することを見い出し、本発明に至った。
Embedded image While reacting very sensitively with such radicals, it has been found that the decomposition product of the solvent reacts slowly with radicals such as the aforementioned 1,1-diphenyl-2-picrylhydrazyl and alkoxyl radicals. Reached.

【0014】本発明の検査方法の特徴は、電解液にラジ
カルを加え、ラジカル固有の可視光吸収強度の減衰挙動
を経時的に追跡することにより、極めて鋭敏に反応する
フッ酸と、緩やかに反応する溶媒の分解生成物とを、そ
の反応時間の差によって区切り、それぞれの量を計測で
きることにある。フッ酸も溶媒の分解生成物も、共にラ
ジカルを消失させる作用を持つ物質であるが、フッ酸の
ラジカル消失速度は非常に早く、10秒を要しない。ま
た、溶媒の分解生成物のラジカル消失速度は緩やかであ
り、10秒以上を要するが、10分以内で完了する。
The inspection method of the present invention is characterized in that radicals are added to an electrolytic solution and the decay behavior of the visible light absorption intensity inherent to the radicals is tracked over time, so that the hydrofluoric acid reacts extremely sharply and reacts slowly. And the decomposition product of the solvent to be separated by the difference in the reaction time, and the amount of each can be measured. Both hydrofluoric acid and the decomposition product of the solvent are substances having a function of eliminating radicals, but the radical eliminating speed of hydrofluoric acid is very fast and does not require 10 seconds. The rate of radical disappearance of the decomposition product of the solvent is slow and requires 10 seconds or more, but is completed within 10 minutes.

【0015】このことから、10秒以内で反応するラジ
カル消失作用物質はフッ酸由来のものであり、10秒以
上を要して反応するラジカル消失作用物質は溶媒の分解
生成物由来のものであるというように、分別が可能であ
る。
Thus, the radical-eliminating substance which reacts within 10 seconds is derived from hydrofluoric acid, and the radical-eliminating substance which requires more than 10 seconds to react is derived from the decomposition product of the solvent. So, it is possible to separate.

【0016】[0016]

【発明の実施の形態】本発明の実施形態を以下に例示す
るが、本発明は、これらの実施形態に限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be illustrated below, but the present invention is not limited to these embodiments.

【0017】上記検査方法によって検査される電解液を
用いるに適した電池として、リチウムイオンを吸蔵・放
出可能な正極と負極、セパレータ、フッ素系リチウム塩
を溶解した非水系電解液より主に構成されるリチウム電
池が挙げられる。
A battery suitable for using the electrolyte to be tested by the above-described testing method is mainly composed of a positive electrode and a negative electrode capable of inserting and extracting lithium ions, a separator, and a non-aqueous electrolyte in which a fluorine-based lithium salt is dissolved. Lithium battery.

【0018】前記正極としては、LiCoO2、LiN
iO2、LiMn24等の他、LiCoO2、LiNiO
2、LiMn24のそれぞれCo、Ni、Mnの部位の
一部を他元素で置換した酸化物を使用することができ
る。前記他元素としては、Li、B、V、Al、Ni、
Co、Mg、Cr、Tb等の元素を好適に用いることが
できる。
As the positive electrode, LiCoO 2 , LiN
In addition to iO 2 , LiMn 2 O 4, etc., LiCoO 2 , LiNiO
2 , an oxide in which Co, Ni, and Mn sites of LiMn 2 O 4 are partially substituted with another element can be used. As the other elements, Li, B, V, Al, Ni,
Elements such as Co, Mg, Cr, and Tb can be suitably used.

【0019】負極活物質に用いる炭素材料は、リチウム
を吸蔵、放出可能な炭素材料であればよく、特にX線回
折法より見積もられる面間隔(d002)が0.3354
〜0.3369nmで、C軸方向の結晶の大きさ(Lc)
が20nm以上である炭素粒子が好ましい。
The carbon material used for the negative electrode active material may be any carbon material capable of occluding and releasing lithium. In particular, the plane spacing (d 002 ) estimated by the X-ray diffraction method is 0.3354.
~ 0.3369 nm, crystal size in the C-axis direction (Lc)
Is preferably 20 nm or more.

【0020】前記セパレータには、イオンの透過性が優
れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性から、ポリプロピレンやポリ
エチレン等のオレフィン系のポリマーが好適に用いられ
る。セパレータの孔径は、一般に電池に用いられる範囲
のものであり、例えば0.01〜1μmである。また、
その厚みについても一般に電池に用いられる範囲のもの
であり、例えば5〜40μmである。
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene are preferably used because of their resistance to organic solvents and hydrophobicity. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 1 μm. Also,
The thickness is also in the range generally used for batteries, and is, for example, 5 to 40 μm.

【0021】前記フッ素系リチウム塩には、高いリチウ
ムイオン伝導性を示すLiPF6、LiBF4、LiAs
6、LiOSOcCF3、LiN(SO2CF3) 2、LiN(C
nF2 n+1SO2)(CmF2m+1SO2)(n=1〜2、m=1〜4)等
が使用される。これら含フッ素系リチウム塩は、非水溶
媒中に通常0.1M〜3.0M好ましくは0.5M〜
2.0Mの濃度に溶解して使用する。
The fluorinated lithium salts include LiPF 6 , LiBF 4 , and LiAs exhibiting high lithium ion conductivity.
F 6 , LiOSO c CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (C
n F 2 n + 1 SO 2 ) (C m F 2m + 1 SO 2) (n = 1~2, m = 1~4) and the like are used. These fluorinated lithium salts are generally contained in a non-aqueous solvent in an amount of 0.1M to 3.0M, preferably 0.5M to 3.0M.
Use it after dissolving it to a concentration of 2.0M.

【0022】前記非水溶媒は、高誘電率溶媒と低粘度溶
媒を組み合わせて使用することが好ましい。高誘電率溶
媒としては、例えば、エチレンカーボネート(EC)、
プロフピレンカーボネート(PC)などの環状カーボネ
ート類が好適に挙げられる。これら高誘電率溶媒は単独
で使用してもよく、また2種類以上の組み合わせで使用
してもよい。低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジメチルカーボネート(DMC)などの鎖状カ
ーボネート類、γーブチロラクトンなどのラクトン類が
好適に挙げられる。これら低粘度溶媒は単独で使用して
もよく、また2種類以上で組み合わせて使用してもよ
い。
The non-aqueous solvent is preferably used in combination with a high dielectric constant solvent and a low viscosity solvent. Examples of the high dielectric constant solvent include ethylene carbonate (EC),
Preferable examples include cyclic carbonates such as propylene carbonate (PC). These high dielectric constant solvents may be used alone or in combination of two or more. As the low-viscosity solvent, for example, dimethyl carbonate (DMC), methyl ethyl carbonate (M
Preferred are chain carbonates such as EC) and dimethyl carbonate (DMC), and lactones such as γ-butyrolactone. These low viscosity solvents may be used alone or in combination of two or more.

【0023】(実施例1)十分に精製されたエチレンカ
ーボネートとジエチレンカーボネートを体積比で1対1
に混合し、十分に精製されたLiPF6を1mol/lの濃度
で溶解させた後、露点―60℃の乾燥空気中での放置が
12時間を経過しない電解液を準備した。前記電解液
に、(化2)で示されるアルコキシルラジカルを加え、
10秒迄のラジカル消失作用物質と10秒から10分迄
のラジカル消失作用物質の量を定量した。
(Example 1) Ethylene carbonate and diethylene carbonate which were sufficiently purified were mixed in a volume ratio of 1: 1.
After dissolving sufficiently purified LiPF 6 at a concentration of 1 mol / l, an electrolytic solution was prepared in which the solution was allowed to stand in dry air at a dew point of −60 ° C. for 12 hours. An alkoxyl radical represented by (Chemical Formula 2) is added to the electrolytic solution,
The amount of the radical scavenger for up to 10 seconds and the amount of the radical scavenger for 10 seconds to 10 minutes were quantified.

【0024】分析手法の詳細は、Mukai,K.;Oka,W.;Wata
nabe,K.;Egawa,Y.;Nagaoka,S. Kinetic Study of Free-
Radical-Scavenging Action of Flavonoids in Homogen
eousand Aqueous Trion X-100 Micellar Solutions. J.
Phys. Chem A. 101, 1997,3746-3753.に記載されてい
る方法に主に従った。具体的には、紫外線・可視光吸光
分析装置(Shimadzu UV-2100S)に、雰囲気調整の可能な
セルをセットし、前記セルを窒素またはアルゴン等の不
活性ガス雰囲気とし、サンプル側のセルにはエチレンカ
ーボネートで希釈した電解液を設置し、リファレンス側
のセルにはアルコキシルラジカルのエチレンカーボネー
ト溶液を設置する。前記セルは、25℃±0.5℃の温
度範囲に調整されている。分析装置の検出部には、スト
ップド・フロー・スペクトロメータ(Unisoku Model RS-
450)を付設しておき、λ=580nmのアルコキシルラジ
カルのラジカル種に帰属される吸収ピーク強度を100
〜100000ms、好ましくは100msの時間間隔
で経時的に追跡することにより、その濃度変化と量を算
出した。
Details of the analysis method are described in Mukai, K .; Oka, W .; Wata
nabe, K.; Egawa, Y.; Nagaoka, S. Kinetic Study of Free-
Radical-Scavenging Action of Flavonoids in Homogen
eousand Aqueous Trion X-100 Micellar Solutions. J.
Phys. Chem A. 101, 1997, 3746-3753. Specifically, an ultraviolet / visible light absorption spectrometer (Shimadzu UV-2100S) is set with an atmosphere-adjustable cell, and the cell is set to an inert gas atmosphere such as nitrogen or argon. An electrolytic solution diluted with ethylene carbonate is installed, and an ethylene carbonate solution of an alkoxyl radical is installed in a cell on the reference side. The cell is adjusted to a temperature range of 25 ° C. ± 0.5 ° C. The detector of the analyzer is equipped with a stopped flow spectrometer (Unisoku Model RS-
450), and the absorption peak intensity attributed to the radical species of the alkoxyl radical at λ = 580 nm is 100
By tracking over time at time intervals of 100100,000 ms, preferably 100 ms, the change in concentration and amount were calculated.

【0025】また、フッ酸とアルコキシルラジカルは1
モル対1モルの反応であることから、アルコキシルラジ
カルの減衰モル量からラジカル消失作用物質のモル量を
算出できる。その結果、10秒迄のラジカル消失作用物
質濃度は20ppmであり、10秒から10分迄のラジ
カル消失作用物質濃度は100ppmであった。
The hydrofluoric acid and the alkoxyl radical are 1
Since the reaction is on a mole to 1 mole basis, the molar amount of the radical scavenging substance can be calculated from the attenuated molar amount of the alkoxyl radical. As a result, the concentration of the radical-eliminating agent was 10 ppm for 10 seconds, and 100 ppm for 10 seconds to 10 minutes.

【0026】この電解液を使用して、図3に示すような
直径20mm、厚さ1.6mmの容量20mAhのコイ
ン型リチウム電池を作成した。正極1は、LiCoO2
粉末、アセチレンブラック及びポリテトラフルオロエチ
レン粉末を重量比85:10:5の割合で混合し、トル
エンを加えて十分混練した。これをローラープレスによ
り、厚さ0.8mmのシート状に成形した。次に、これ
を直径16mmの円形に打ち抜き、減圧下200℃で1
5時間乾燥し、正極1を得た。正極1は、正極集電体6
の付いた正極缶4に圧着して用いた。負極活物質とし
て、人造黒鉛(平均粒径6μm、X線回折法による面間
隔(d002)0.337nm、C軸方向の結晶の大きさ
(Lc)55nm)及びポリテトラフルオロエチレン粉末
を重量比95:5で混合し、トルエンを加えて十分混練
した。これをローラープレスにより厚さ0.1mmのシ
ート状に成形した。次に、これを直径16mmの円形に
打ち抜き、減圧下200℃で15時間乾燥して負極2を
得た。負極2は、負極集電体7の付いた負極缶5に圧着
して用いた。セパレータ3には、ポリプロピレン製微多
孔膜を用いた。8は封口材である。
Using this electrolyte, a coin-type lithium battery having a capacity of 20 mAh and a diameter of 20 mm and a thickness of 1.6 mm as shown in FIG. 3 was prepared. The positive electrode 1 is made of LiCoO 2
The powder, acetylene black and polytetrafluoroethylene powder were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.8 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm,
After drying for 5 hours, a positive electrode 1 was obtained. The positive electrode 1 has a positive electrode current collector 6
The positive electrode can 4 was pressed and used. As the negative electrode active material, artificial graphite (average particle size: 6 μm, spacing (d 002 ) by X-ray diffraction method: 0.337 nm, crystal size (Lc) in the C-axis direction (Lc): 55 nm) and polytetrafluoroethylene powder in a weight ratio The mixture was mixed at 95: 5, and toluene was added and kneaded well. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched into a circle having a diameter of 16 mm, and dried at 200 ° C. under reduced pressure for 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by being pressed against a negative electrode can 5 provided with a negative electrode current collector 7. As the separator 3, a polypropylene microporous film was used. 8 is a sealing material.

【0027】(実施例2)十分に精製されたエチレンカ
ーボネートとジエチレンカーボネートを体積比で1対1
に混合し、十分に精製されたLiPF6を1mol/lの濃度
で溶解させた後、露点―60℃の乾燥空気中25℃で7
日間放置した電解液を準備した。
(Example 2) Ethylene carbonate and diethylene carbonate which were sufficiently purified were mixed in a volume ratio of 1: 1.
And dissolved sufficiently purified LiPF 6 at a concentration of 1 mol / l, and then dried at 25 ° C in dry air at a dew point of -60 ° C.
An electrolytic solution left for a day was prepared.

【0028】この電解液に、アルコキシルラジカルを加
え、実施例1と同様の方法で、10秒迄のラジカル消失
作用物質と10秒から10分迄のラジカル消失作用物質
の量をそれぞれ定量した。その結果、10秒迄のラジカ
ル消失作用物質濃度は100ppmであり、10秒から
10分迄のラジカル消失作用物質濃度は200ppmで
あった。
An alkoxyl radical was added to the electrolytic solution, and the amount of the radical scavenger for 10 seconds and the amount of the radical scavenger for 10 seconds to 10 minutes were quantified in the same manner as in Example 1. As a result, the concentration of the radical-eliminating agent was 10 ppm for 10 seconds, and 200 ppm for 10 seconds to 10 minutes.

【0029】電解液に、前記電解液を用いたこと以外は
実施例1と同じ方法でコイン型リチウム電池を作成し
た。
A coin-type lithium battery was prepared in the same manner as in Example 1 except that the above-mentioned electrolyte was used as the electrolyte.

【0030】(実施例3)十分に精製されたエチレンカ
ーボネートとジエチレンカーボネートを体積比で1対1
に混合し、十分に精製されたLiPF6を1mol/lの濃度
で溶解させた後、露点―60℃の乾燥空気中60℃で3
0日間放置した電解液を準備した。
Example 3 A sufficiently purified mixture of ethylene carbonate and diethylene carbonate in a volume ratio of 1: 1
, And dissolved sufficiently purified LiPF 6 at a concentration of 1 mol / l, and then dried at 60 ° C in dry air with a dew point of -60 ° C.
An electrolyte left for 0 days was prepared.

【0031】この電解液に、アルコキシルラジカルを加
え、本発明電池1と同様の方法で10秒迄のラジカル消
失作用物質と10秒から10分迄のラジカル消失作用物
質の量をそれぞれ定量した。その結果、10秒迄のラジ
カル消失作用物質は100ppmであり、10秒から1
0分迄のラジカル消失作用物質の量は800ppmであ
った。
To this electrolyte solution, an alkoxyl radical was added, and the amount of the radical scavenger for 10 seconds and the amount of the radical scavenger for 10 seconds to 10 minutes were quantified in the same manner as in Battery 1 of the present invention. As a result, the radical scavenging substance was 100 ppm by 10 seconds, and from 10 seconds to 1 ppm.
The amount of the radical-scavenging substance up to 0 minutes was 800 ppm.

【0032】電解液に、前記電解液を用いたこと以外は
実施例1と同じ方法でコイン型リチウム電池を作成し
た。
A coin-type lithium battery was prepared in the same manner as in Example 1 except that the above-mentioned electrolyte was used as the electrolyte.

【0033】(実施例4)十分に精製されたエチレンカ
ーボネートとジエチレンカーボネートを体積比で1対1
に混合し、十分に精製されたLiPF6を1mol/lの濃度
で溶解させた後、露点―30℃の乾燥空気中に5時間放
置させることにより、故意に水分を吸収させた後、25
℃で7日間放置した電解液を準備した。
Example 4 A sufficiently purified mixture of ethylene carbonate and diethylene carbonate in a volume ratio of 1: 1
After sufficiently dissolving LiPF 6 at a concentration of 1 mol / l, the mixture was allowed to stand in dry air at a dew point of −30 ° C. for 5 hours to intentionally absorb moisture.
An electrolyte solution left at 7 ° C. for 7 days was prepared.

【0034】この電解液に、アルコキシルラジカルを加
え実施例1と同様の方法で10秒迄のラジカル消失作用
物質と10秒から10分迄のラジカル消失作用物質の量
をそれぞれ定量した。その結果、10秒迄のラジカル消
失作用物質は200ppmであり、10秒から10分迄
のラジカル消失作用物質の量は500ppmであった。
An alkoxyl radical was added to this electrolytic solution, and the amount of the radical scavenger for 10 seconds and the amount of the radical scavenger from 10 seconds to 10 minutes were quantified in the same manner as in Example 1. As a result, the radical-scavenging substance was 200 ppm for 10 seconds and the amount of the radical-scavenging substance was 500 ppm for 10 seconds to 10 minutes.

【0035】電解液に、前記電解液を用いたこと以外は
実施例1と同じ方法でコイン型リチウム電池を作成し
た。
A coin-type lithium battery was prepared in the same manner as in Example 1 except that the above-mentioned electrolyte was used as the electrolyte.

【0036】(比較例1)十分に精製されたエチレンカ
ーボネートとジエチレンカーボネートを体積比で1対1
に混合し、十分に精製されたLiPF6を1mol/lの濃度
で溶解させた後、露点―60℃の乾燥空気中60℃で5
0日間放置した電解液を準備した。
Comparative Example 1 A sufficiently purified ethylene carbonate and diethylene carbonate were mixed in a volume ratio of 1: 1.
, And dissolved sufficiently purified LiPF 6 at a concentration of 1 mol / l, and then dried at 60 ° C in dry air at a dew point of -60 ° C.
An electrolyte left for 0 days was prepared.

【0037】この電解液に、アルコキシルラジカルを加
え、実施例1と同様な方法で10秒迄のラジカル消失作
用物質と10秒から10分迄のラジカル消失作用物質の
量をそれぞれ定量した。その結果、10秒迄のラジカル
消失作用物質は100ppmであり、10秒から10分
迄のラジカル消失作用物質の量は1000ppmであっ
た。
An alkoxyl radical was added to this electrolytic solution, and the amount of the radical scavenger for 10 seconds and the amount of the radical scavenger from 10 seconds to 10 minutes were quantified in the same manner as in Example 1. As a result, the amount of the radical-eliminating substance was 10 ppm from 10 seconds to 10 minutes, and the amount of the radical-eliminating substance was 1000 ppm from 10 seconds to 10 minutes.

【0038】電解液に、前記電解液を用いたこと以外は
実施例1と同じ方法でコイン型リチウム電池を作成し
た。
A coin-type lithium battery was prepared in the same manner as in Example 1 except that the above-mentioned electrolyte was used as the electrolyte.

【0039】(比較例2)十分に精製されたエチレンカ
ーボネートとジエチレンカーボネートを体積比で1対1
に混合し、十分に精製されたLiPF6を1mol/lの濃度
で溶解させた後、露点―60℃の乾燥空気中60℃で3
00日間放置した電解液を準備した。
(Comparative Example 2) Ethylene carbonate and diethylene carbonate, which were sufficiently purified, were mixed in a volume ratio of 1: 1.
, And dissolved sufficiently purified LiPF 6 at a concentration of 1 mol / l, and then dried at 60 ° C in dry air with a dew point of -60 ° C.
An electrolyte left for 00 days was prepared.

【0040】この電解液に、アルコキシルラジカルを加
え、実施例1と同様の方法で、10秒迄のラジカル消失
作用物質と10秒から10分迄のラジカル消失作用物質
の量をそれぞれ定量した。その結果、10秒迄のラジカ
ル消失作用物質濃度は100ppmであり、10秒から
10分迄のラジカル消失作用物質濃度は2000ppm
であった。
An alkoxyl radical was added to this electrolytic solution, and the amount of the radical scavenging substance for 10 seconds and the amount of the radical scavenging substance for 10 seconds to 10 minutes were quantified in the same manner as in Example 1. As a result, the concentration of the radical-scavenging agent for 10 seconds was 100 ppm, and the concentration of the radical-scavenging agent for 10 seconds to 10 minutes was 2000 ppm.
Met.

【0041】電解液に、前記電解液を用いたこと以外は
実施例1と同じ方法でコイン型リチウム電池を作成し
た。
A coin-type lithium battery was prepared in the same manner as in Example 1 except that the above-mentioned electrolyte was used as the electrolyte.

【0042】これら実施例1〜4及び比較例1、2で作
成した電池を用いて、充放電試験を行なった。充電終止
電圧を4.2V、放電終止電圧を3.0Vとし、充放電
電流を共に1mAとした。試験温度は25℃とし、定電
流充放電を行った。充放電サイクル寿命として、放電容
量が初期の80%に低下した時点のサイクル数を計測
し、表1に示した。
Using the batteries prepared in Examples 1 to 4 and Comparative Examples 1 and 2, a charge / discharge test was performed. The charge end voltage was 4.2 V, the discharge end voltage was 3.0 V, and both the charge and discharge currents were 1 mA. The test temperature was 25 ° C., and constant current charging and discharging were performed. As the charge / discharge cycle life, the number of cycles when the discharge capacity was reduced to 80% of the initial value was measured.

【0043】[0043]

【表1】 [Table 1]

【0044】これら本発明電池及び比較電池の試験結果
を比較すると、10秒から10分迄のラジカル消失作用
物質の濃度(a)がフッ酸換算で1000ppm未満で
あり、且つ10秒迄のラジカル消失作用物質の濃度
(b)がフッ酸換算で200ppm未満である場合、高
いサイクル寿命を示す事がわかる。また、(a)+
(b)の濃度が1000ppm以下である場合、高いサ
イクル寿命を示す事がわかる。
When comparing the test results of the battery of the present invention and the comparative battery, the concentration (a) of the radical scavenging substance from 10 seconds to 10 minutes was less than 1000 ppm in terms of hydrofluoric acid, and the radical scavenging substance was 10 seconds. It is understood that when the concentration (b) of the active substance is less than 200 ppm in terms of hydrofluoric acid, a high cycle life is exhibited. Also, (a) +
It can be seen that when the concentration of (b) is 1000 ppm or less, a high cycle life is exhibited.

【0045】なお、十分に精製されたエチレンカーボネ
ート等、種々の非水溶媒をリチウム塩を含まない状態で
各々長期間高温保存した後、実施例1と同様な検査方法
によって検査した場合、ラジカル消失作用物質は認めら
れないことが確認されている。
When various non-aqueous solvents, such as ethylene carbonate, which have been sufficiently purified, are each stored at a high temperature for a long period of time without containing a lithium salt, and then inspected by the same inspection method as in Example 1, the radical disappears. No active substance has been identified.

【0046】上記実施例では、アルコキシルラジカルを
用いたが、1,1−ジフェニル−2−ピクリルヒドラジ
ルを用いて同様な試験を実施したところ、測定される数
値がアルコキシルラジカルを用いた場合と変わらない値
を示すことが確認された。これらのラジカルの中で、
1,1−ジフェニル−2−ピクリルヒドラジルは、固体
状態では空気中でも安定であり、取り扱い性に優れてい
ることから、極めて好適に用いられる。その他、電解液
溶媒中での自己減衰が少ないラジカルをこれらに代えて
用いることもまた、好ましい。
Although an alkoxyl radical was used in the above example, a similar test was conducted using 1,1-diphenyl-2-picrylhydrazyl. It was confirmed that the value showed no change. Among these radicals,
1,1-Diphenyl-2-picrylhydrazyl is very preferably used because it is stable in air in a solid state and has excellent handling properties. In addition, it is also preferable to use a radical having a low self-decay in the electrolyte solvent instead of these.

【0047】また、正・負極活物質としてLiCo
2、人造黒鉛を用いたリチウム二次電池について実施
例を挙げたが、その他の正極材料や負極材料を用いた場
合にも、本発明の効果が確認されている。
As the positive / negative electrode active material, LiCo is used.
Examples have been given of lithium secondary batteries using O 2 and artificial graphite. However, the effects of the present invention have been confirmed when other positive electrode materials and negative electrode materials are used.

【0048】また、実施例にはストップドフロースペク
トロメーターを用いたが、可視吸収を経時的に測定でき
る機能を有する装置であれば良い。さらに、分光光度計
を用いず、目視によっても十分に判定できる。即ち、被
測定対象の電解液に、試薬としてラジカル物質を微量加
えた後、色の変化を目視観察することで、電解液の良否
が判定できるので、製造ラインの現場において作業員が
簡便に行うに適している。そして、本検査工程を製造プ
ロセスに組み込むことで、品質管理工程が簡便になるの
で、サイクル特性の優れた高品質のリチウムイオン電池
を、安価に安定して製造することができる。
Although a stopped flow spectrometer is used in the embodiments, any device having a function of measuring the visible absorption over time may be used. Further, the determination can be made sufficiently visually without using a spectrophotometer. That is, after adding a trace amount of a radical substance as a reagent to the electrolytic solution to be measured, the quality of the electrolytic solution can be determined by visually observing a change in color. Suitable for. Since the quality control step is simplified by incorporating this inspection step into the manufacturing process, a high-quality lithium ion battery having excellent cycle characteristics can be stably manufactured at low cost.

【0049】[0049]

【発明の効果】以上述べたように、本発明は、電解液中
のフッ酸の含有量及び溶媒の分解生成物の含有量を定量
し、リチウム電池に用いる電解液の良否を迅速かつ簡便
に判別する検査方法を提供し、サイクル特性の優れたリ
チウムイオン電池を提供できる。
As described above, the present invention quantifies the content of hydrofluoric acid and the content of decomposition products of a solvent in an electrolytic solution to quickly and easily determine the quality of an electrolytic solution used in a lithium battery. An inspection method for discriminating is provided, and a lithium ion battery having excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る電池の断面図である。FIG. 1 is a sectional view of a battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 Reference Signs List 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can 5 negative electrode can 6 positive electrode current collector 7 negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 油布 宏 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H029 AJ05 AJ07 AJ13 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ28 HJ10 5H030 AA01 AA10 AS03 AS08 AS11 FF11 FF52  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroshi Yufu, 2-3-1, Furube-cho, Takatsuki-shi, Osaka F-term in Yuasa Corporation 5H029 AJ05 AJ07 AJ13 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ28 HJ10 5H030 AA01 AA10 AS03 AS08 AS11 FF11 FF52

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解液にラジカルを加え、ラジカルの有
する固有波長の可視光吸収強度の減衰量を計測すること
で、前記電解液の良否を判定するリチウム電池用電解液
の検査方法。
1. A method for inspecting an electrolyte for a lithium battery, which determines the quality of the electrolyte by adding a radical to the electrolyte and measuring the attenuation of visible light absorption intensity of a specific wavelength of the radical.
【請求項2】 前記ラジカルが1,1−ジフェニル−2
−ピクリルヒドラジルまたはアロキシルラジカルのいず
れかである請求項1記載のリチウム電池用電解液の検査
方法。
2. The method according to claim 1, wherein said radical is 1,1-diphenyl-2.
2. The method for testing an electrolyte for a lithium battery according to claim 1, wherein the method is one of picrylhydrazyl and alloxyl radical.
【請求項3】 前記減衰量から算出される電解液中のラ
ジカル消失作用物質の総濃度が、フッ酸換算で1000
ppm以下であることをもって良品と判定する請求項1
または2のいずれかに記載のリチウム電池用電解液の検
査方法。
3. The total concentration of the radical-scavenging substance in the electrolytic solution calculated from the attenuation amount is 1000 in terms of hydrofluoric acid.
Claim 1 which is judged to be non-defective when it is less than ppm.
Or the method for testing a lithium battery electrolyte according to any one of the above items.
【請求項4】 前記減衰量から算出される電解液中のラ
ジカル消失作用物質の濃度が、測定開始から10秒未満
における定量値がフッ酸換算で200ppm未満であ
り、測定開始後10秒以上10分以下における定量値が
フッ酸換算で1000ppm未満であることをもって良
品と判定する請求項1乃至3のいずれかに記載のリチウ
ム電池用電解液の検査方法。
4. The method according to claim 1, wherein the concentration of the radical-scavenging substance in the electrolytic solution calculated from the attenuation is less than 200 ppm in terms of hydrofluoric acid in less than 10 seconds from the start of the measurement, and 10 seconds or more after the start of the measurement. The method for testing an electrolyte for a lithium battery according to any one of claims 1 to 3, wherein the non-defective product is determined as having a quantitative value of less than 1000 ppm in terms of hydrofluoric acid in minutes or less.
JP2000062288A 2000-03-07 2000-03-07 Inspection method for electrolyte for lithium battery Expired - Fee Related JP3358657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062288A JP3358657B2 (en) 2000-03-07 2000-03-07 Inspection method for electrolyte for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062288A JP3358657B2 (en) 2000-03-07 2000-03-07 Inspection method for electrolyte for lithium battery

Publications (2)

Publication Number Publication Date
JP2001250587A true JP2001250587A (en) 2001-09-14
JP3358657B2 JP3358657B2 (en) 2002-12-24

Family

ID=18582317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062288A Expired - Fee Related JP3358657B2 (en) 2000-03-07 2000-03-07 Inspection method for electrolyte for lithium battery

Country Status (1)

Country Link
JP (1) JP3358657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134598A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Method and apparatus for detecting moisture of solid battery, and method for manufacturing the solid battery
JP2015529827A (en) * 2012-09-14 2015-10-08 ルノー エス.ア.エス. Method for detecting and quantifying hydrofluoric acid in an electrolyte containing lithium hexafluorophosphate LiPF6 for lithium batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192886B (en) * 2010-03-17 2014-11-19 深圳市比克电池有限公司 Method for measuring lithium salt in electrolyte of lithium ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134598A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Method and apparatus for detecting moisture of solid battery, and method for manufacturing the solid battery
JP2015529827A (en) * 2012-09-14 2015-10-08 ルノー エス.ア.エス. Method for detecting and quantifying hydrofluoric acid in an electrolyte containing lithium hexafluorophosphate LiPF6 for lithium batteries

Also Published As

Publication number Publication date
JP3358657B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
Solchenbach et al. Quantification of PF5 and POF3 from side reactions of LiPF6 in Li-ion batteries
Bernhard et al. On-line electrochemical mass spectrometry investigations on the gassing behavior of Li4Ti5O12 electrodes and its origins
Wiemers-Meyer et al. Influence of battery cell components and water on the thermal and chemical stability of LiPF6 based lithium ion battery electrolytes
Qian et al. Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells
Dose et al. Electrolyte reactivity at the charged Ni-rich cathode interface and degradation in Li-ion batteries
Tarnopolskiy et al. Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0. 4Mn1. 6O4 cathodes
Kim et al. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives
Holzapfel et al. Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries
KR101822703B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2002025531A (en) Separator for battery and lithium secondary battery using it
JP2008091326A (en) Nonaqueous electrolyte battery
JP2005078820A (en) Non-aqueous electrolyte secondary battery
KR100397189B1 (en) Lithium-manganese Composite Oxide and Non-aqueous Electrolytic Secondry Battery
Sharabi et al. In situ FTIR spectroscopy study of Li/LiNi0. 8Co0. 15Al0. 05O2 cells with ionic liquid-based electrolytes in overcharge condition
El Khakani et al. Redox shuttles for lithium-ion batteries at concentrations up to 1 M using an electroactive ionic liquid based on 2, 5-di-tert-butyl-1, 4-dimethoxybenzene
KR102034699B1 (en) Quantitative Analysis Device for Measuring Leakage Level of Electrolyte from Battery Cell and Method for Inspection of Battery Cell with the Same
JP2005116306A (en) Nonaqueous electrolyte secondary battery
JP3358657B2 (en) Inspection method for electrolyte for lithium battery
CN103235049B (en) Detection method of lithium hexafluorophosphate solution
JP6403943B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP5626709B2 (en) Non-aqueous electrolyte battery
KR101960600B1 (en) Aqueous secondary battery capable of low-temperature operation using anti-freezing additive
US20190221888A1 (en) Deuterated electrolyte solvents
EP3549192A1 (en) Improving the ion conductivity of an electrolyte based on lithium imidazolate salts
CN108352538A (en) Lithium battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees