JP2001247990A - Method for manufacturing oligosaccharide using polymer-combined saccharide acceptor - Google Patents

Method for manufacturing oligosaccharide using polymer-combined saccharide acceptor

Info

Publication number
JP2001247990A
JP2001247990A JP2000058971A JP2000058971A JP2001247990A JP 2001247990 A JP2001247990 A JP 2001247990A JP 2000058971 A JP2000058971 A JP 2000058971A JP 2000058971 A JP2000058971 A JP 2000058971A JP 2001247990 A JP2001247990 A JP 2001247990A
Authority
JP
Japan
Prior art keywords
polymer
oligosaccharide
reaction
saccharide acceptor
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000058971A
Other languages
Japanese (ja)
Other versions
JP4450471B2 (en
Inventor
Katsumi Ajisaka
勝美 鯵坂
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP2000058971A priority Critical patent/JP4450471B2/en
Publication of JP2001247990A publication Critical patent/JP2001247990A/en
Application granted granted Critical
Publication of JP4450471B2 publication Critical patent/JP4450471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for obtaining the object oligosaccharide from above a polymer without using organic solvent or metallic catalyst. SOLUTION: A polymer-combined saccharide acceptor through an amino group is used to synthesize oligosaccharide, and then the oligosaccharide is brought out by an oxidative electrolytic reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明はオリゴ糖合成法に関
し、更に詳細には糖鎖のポリマー上における合成法に関
する。
[0001] The present invention relates to a method for synthesizing an oligosaccharide, and more particularly to a method for synthesizing a sugar chain on a polymer.

【0002】[0002]

【従来の技術】有機化合物の簡便な合成法として、固相
上やポリマー担体上での反応が盛んに行われている。オ
リゴ糖の合成においても固相反応やポリマー担体上での
反応が取り入れられ、有用なオリゴ糖の合成がなされて
いる。その様な点から、効率よく反応が進行し且つ精製
が容易であることなどを目的にした新たな固相反応及び
ポリマー担体上での反応の開発は重要である(Advanced
ChemTech カタログ)。従来、オリゴ糖合成に用いられ
るポリマー担体として、ポリエチレングリコール誘導体
が知られている(S. Douglas, J. Am. Chem. Soc., 11
7, 2116-2117 (1995))。しかし、従来報告されている
方法では、ポリマー上でのオリゴ糖合成の後、ポリマー
から目的の糖鎖を切り出す際に、大量の有機溶媒や金属
触媒などが必要であった。
2. Description of the Related Art As a simple method for synthesizing an organic compound, a reaction on a solid phase or a polymer carrier is actively performed. In the synthesis of oligosaccharides, a solid phase reaction or a reaction on a polymer carrier is incorporated, and useful oligosaccharides are synthesized. From such a point, it is important to develop a new solid-phase reaction and a reaction on a polymer carrier for the purpose of promoting efficient reaction and easy purification (Advanced
ChemTech Catalog). Conventionally, a polyethylene glycol derivative has been known as a polymer carrier used for oligosaccharide synthesis (S. Douglas, J. Am. Chem. Soc., 11
7, 2116-2117 (1995)). However, according to the method reported so far, a large amount of an organic solvent, a metal catalyst, and the like are required when a target sugar chain is cleaved from the polymer after oligosaccharide synthesis on the polymer.

【0003】しかしながら、オリゴ糖の工業的生産にお
いて、多量の有機溶媒や重金属触媒を用いる製造法は、
使用済みの溶剤あるいは触媒の廃棄の面で近年重大な問
題とされている。
[0003] However, in the industrial production of oligosaccharides, a production method using a large amount of an organic solvent or a heavy metal catalyst has a problem.
In recent years, it has become a serious problem in terms of disposal of used solvents or catalysts.

【0004】そのような観点から、多量の有機溶剤や重
金属触媒を用いないオリゴ糖の製造法の開発が望まれて
いた。
[0004] From such a viewpoint, it has been desired to develop a method for producing an oligosaccharide without using a large amount of an organic solvent or a heavy metal catalyst.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、有機溶媒や金属触媒を用いることなく、ポリマー上
から目的のオリゴ糖を得る方法を開発することである。
Accordingly, an object of the present invention is to develop a method for obtaining a target oligosaccharide from a polymer without using an organic solvent or a metal catalyst.

【0006】[0006]

【課題を解決するための手段】そこで本発明者らは上記
の問題を解決すべく種々検討した結果、アミノ基を介し
て親水性ポリマーを結合した受容体を用いれば、水系の
溶媒(緩衝液)に溶解して酵素反応を効率的に進行させ
ることができるばかりでなく、深瀬らの方法(K. Fukas
e, Tetrahedron Lett. 31, 389-392 (1990))を応用し
た電気分解反応(日本化学会編、新実験化学講座、基本
操作[II]、丸善株式会社、633-638 (1975))により、容
易に生成したオリゴ糖を切り出すことが出来ることを見
いだし、本発明を完成させた。
The inventors of the present invention have conducted various studies to solve the above-mentioned problems. As a result, the use of a receptor having a hydrophilic polymer bonded through an amino group enables the use of an aqueous solvent (buffer solution). ) To allow the enzyme reaction to proceed efficiently, as well as the method of Fukase et al. (K. Fukas
e, Tetrahedron Lett. 31, 389-392 (1990)), an electrolysis reaction (edited by The Chemical Society of Japan, New Laboratory Chemistry Course, Basic Operation [II], Maruzen Co., 633-638 (1975)) The inventors have found that the oligosaccharides easily produced can be cut out, and have completed the present invention.

【0007】[0007]

【発明の実施の形態】糖のパラニトロフェニル誘導体を
還元して得られるパラアミノフェニル誘導体とポリエチ
レングリコール誘導体のような水溶性のポリマーを結合
する。ポリエチレングリコール誘導体としては一般に市
販されている活性化されたPG誘導体が利用できる(日本
油脂株式会社のShearwater Polymers, Inc. Polyethyle
ne Glycol Derivativesカタログ;山田基之ら、現代化
学、12, 62-67 (1995))。この結合様式はアミド結合や
アルキル基を介した結合、または芳香環と直接結合した
様式のいずれでもよい(図1)。得られたポリマー結合
糖誘導体は、通常のポリマーサポートの化学的なグリコ
シル化反応における糖受容体として、もしくは酵素反応
における糖受容体として利用することができる。これら
の反応によって得られたオリゴ糖結合ポリマーからのオ
リゴ糖の切り出しは、酸化的(anodic oxidation)電気
分解反応により効率よくポリマーから切り出すことがで
きる。(図2)
DETAILED DESCRIPTION OF THE INVENTION A para-aminophenyl derivative obtained by reducing a para-nitrophenyl derivative of a sugar is combined with a water-soluble polymer such as a polyethylene glycol derivative. As the polyethylene glycol derivative, an activated PG derivative which is generally commercially available can be used (Shearwater Polymers, Inc. Polyethyle of NOF Corporation)
ne Glycol Derivatives catalog; Motoyuki Yamada et al., Hyundai Kagaku, 12, 62-67 (1995)). This bonding mode may be either an amide bond or a bond via an alkyl group, or a mode directly bonded to an aromatic ring (FIG. 1). The resulting polymer-bound sugar derivative can be utilized as a sugar acceptor in a conventional polymer-supported chemical glycosylation reaction or as a sugar acceptor in an enzymatic reaction. The exclusion of the oligosaccharide from the oligosaccharide-bound polymer obtained by these reactions can be efficiently excised from the polymer by an anodic oxidation electrolysis reaction. (Fig. 2)

【0008】参考例1 パラニトロフェニル-N-アセチルグルコサミニドのニト
ロ基を還元して得られるパラアミノフェニル誘導体とポ
リエチレングリコール誘導体とを、公開特許公報(特許
平7-319022:オリゴ糖誘導体; Bioorg. & Med. Chem.
Let., 7, 255-258 (1997))に従って結合することによ
り、N-アセチルグルコサミン結合ポリマーを得た。得ら
れたN-アセチルグルコサミン結合ポリマー(300mg)を糖
受容体として、ガラクトースから3段階で得られるイミ
デート誘導体(20mg)を糖供与体としてトリフルオロメ
タンスルホン酸を活性化剤としてグリコシル化反応を行
った(R. Schmidt, Angew. Chem. Int. Ed. Engl. 25, 2
12-235, (1986))。得られた反応混合物をメタノール
中、ナトリウムメトキシドにてガラクトース残基を除去
後、YM1膜(アミコン社)を用いた限外ろ過にて反応
残さを濾別した。得られた高分子画分をN-アセチルグル
コサミニダーゼにより処理後、限外ろ過(YM1)にて
Galβ1-6GlcNAc結合ポリマーを精製した。ここで得られ
た化合物の500MHz 1H NMR (溶媒D2O)を測定したと
きの結果を図4に示す。ここで得られた高分子画分を次
の電気分解反応に用いた。(図3) 参考例2 糖受容体としてのN-アセチルグルコサミン結合ポリマー
(100mg)および糖供与体としてのパラニトロフェニル-
β-D-ガラクトシド(3mg)をリン酸カリウムバッファー
(pH6 0.45ml)とジベチルホルマアミド(0.048ml)
混合溶媒に溶かし、β-ガラクトシダーゼ(特開平9-313
177の方法に従って調整)(0.12U)を用いて酵素反応を
行なった。2時間後100℃にて5分間加熱することに
より反応を止めた。反応混合物をYM1膜を用いた限外
ろ過により精製後(収量85mg)、NMRを測定すること
によりGalβ1-3GlcNAc結合ポリマーが収率2%で出来て
いることが確認された。
Reference Example 1 A para-aminophenyl derivative and a polyethylene glycol derivative obtained by reducing the nitro group of para-nitrophenyl-N-acetylglucosaminide were disclosed in Japanese Patent Laid-Open Publication No. 7-319022: Oligosaccharide derivative; . & Med. Chem.
Let., 7, 255-258 (1997)) to obtain an N-acetylglucosamine-binding polymer. A glycosylation reaction was performed using the obtained N-acetylglucosamine-binding polymer (300 mg) as a sugar acceptor, an imidate derivative (20 mg) obtained from galactose in three steps as a sugar donor, and trifluoromethanesulfonic acid as an activator. (R. Schmidt, Angew. Chem. Int. Ed. Engl. 25, 2
12-235, (1986)). After removing the galactose residue from the obtained reaction mixture with sodium methoxide in methanol, the reaction residue was separated by ultrafiltration using a YM1 membrane (Amicon). The obtained polymer fraction is treated with N-acetylglucosaminidase, and then subjected to ultrafiltration (YM1).
Galβ1-6GlcNAc binding polymer was purified. FIG. 4 shows the results of measuring the compound obtained here at 500 MHz 1 H NMR (solvent D 2 O). The polymer fraction obtained here was used for the next electrolysis reaction. (FIG. 3) Reference Example 2 N-acetylglucosamine-binding polymer as a sugar receptor
(100 mg) and paranitrophenyl as a sugar donor
β-D-galactoside (3 mg) was added to potassium phosphate buffer (pH 60.45 ml) and dibetylformamide (0.048 ml)
Dissolve in a mixed solvent and apply β-galactosidase (Japanese Unexamined Patent Publication No. 9-313
(Adjusted according to the method of 177) (0.12 U) to carry out an enzyme reaction. After 2 hours, the reaction was stopped by heating at 100 ° C. for 5 minutes. After the reaction mixture was purified by ultrafiltration using a YM1 membrane (yield 85 mg), NMR measurement confirmed that the Galβ1-3GlcNAc-bound polymer was formed in a yield of 2%.

【0009】[0009]

【実施例】実施例1:参考例1で合成したGalβ1-6GlcN
Ac結合ポリマー100mg(0.0095mmol、ロード率 50
%)、13 mmol/L 硫酸水溶液1.5mLに溶解した溶液に13
mA の電流を2時間通電した。イオン交換樹脂にて中和
後、限外ろ過膜(YM1)にて低分子画分を集め、セプ
パック(C18カートリッジ、ウオーターズ社製)にて精
製した。得られた溶液を凍結乾燥することによりGalβ1
-6GlcNAc 2mg を得た(収率:定量的)。
EXAMPLES Example 1: Galβ1-6GlcN synthesized in Reference Example 1
Ac-bonded polymer 100mg (0.0095mmol, loading rate 50
%), 13 mmol / L sulfuric acid aqueous solution
mA current was applied for 2 hours. After neutralization with an ion exchange resin, low molecular fractions were collected with an ultrafiltration membrane (YM1), and purified with a Seppak (C18 cartridge, manufactured by Waters). The resulting solution was freeze-dried to obtain Galβ1
2 mg of -6GlcNAc was obtained (yield: quantitative).

【0010】[0010]

【発明の効果】本発明の方法によって、糖蛋白質糖鎖を
構成するオリゴ糖を簡便に合成することが可能になっ
た。
According to the method of the present invention, oligosaccharides constituting glycoprotein sugar chains can be easily synthesized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パラアミノフェニル基を介したグリコシルアク
セプターとポリエチレングリコールとの結合方法。
FIG. 1 shows a method for bonding a glycosyl acceptor to polyethylene glycol via a para-aminophenyl group.

【図2】酸化的電気分解反応の概略図。FIG. 2 is a schematic diagram of an oxidative electrolysis reaction.

【図3】N-アセチルグルコサミン結合ポリマーに対する
化学合成手法によるガラクトースの結合反応の反応式。
FIG. 3 is a reaction formula of a galactose binding reaction to an N-acetylglucosamine binding polymer by a chemical synthesis technique.

【図4】Nアセチルヘキソサミニダーゼ(Jack bean由
来)により未反応のアクセプターを消化後限外ろ過にて
精製した後の高分子画分のNMR。
FIG. 4 shows NMR of a high molecular fraction after purifying unreacted acceptors by N-acetylhexosaminidase (derived from Jack bean) by ultrafiltration after digestion.

【図5】限外ろ過精製した後の高分子画分のNMR。FIG. 5 shows NMR of a polymer fraction after ultrafiltration purification.

【図6】限外ろ過にて精製した後の低分子画分のNMR。FIG. 6 shows NMR of a low-molecular-weight fraction after purification by ultrafiltration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリマー上でオリゴ糖を合成し、酸化的電
気分解反応によりポリマーから切り出すことを特徴とす
るオリゴ糖の製造方法。
1. A method for producing an oligosaccharide, comprising synthesizing an oligosaccharide on a polymer and excising the oligosaccharide by an oxidative electrolysis reaction.
JP2000058971A 2000-03-03 2000-03-03 Method for producing oligosaccharide using polymer-bound sugar receptor Expired - Fee Related JP4450471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058971A JP4450471B2 (en) 2000-03-03 2000-03-03 Method for producing oligosaccharide using polymer-bound sugar receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058971A JP4450471B2 (en) 2000-03-03 2000-03-03 Method for producing oligosaccharide using polymer-bound sugar receptor

Publications (2)

Publication Number Publication Date
JP2001247990A true JP2001247990A (en) 2001-09-14
JP4450471B2 JP4450471B2 (en) 2010-04-14

Family

ID=18579486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058971A Expired - Fee Related JP4450471B2 (en) 2000-03-03 2000-03-03 Method for producing oligosaccharide using polymer-bound sugar receptor

Country Status (1)

Country Link
JP (1) JP4450471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104233365A (en) * 2014-10-08 2014-12-24 林海波 Electrochemical reactor for preparing oligosaccharide from marine biology functional sugars and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104233365A (en) * 2014-10-08 2014-12-24 林海波 Electrochemical reactor for preparing oligosaccharide from marine biology functional sugars and preparation method
CN104233365B (en) * 2014-10-08 2017-06-16 林海波 The electrochemical reactor and preparation method of oligosaccharides are prepared from marine organisms functional sugar

Also Published As

Publication number Publication date
JP4450471B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US11959137B2 (en) Synthesis of novel disulfide linker based nucleotides as reversible terminators for DNA sequencing by synthesis
CN109661232B (en) Nucleotide derivatives and methods of use thereof
US8822659B2 (en) Process for the synthesis of unprotected pentasaccharides from a protected pentasaccharide precursor
Kubik et al. Synthesis of α, α-dialkylated amino acids with adenine or thymine residues a new mild and facile hydrolysis of hydantoins
EP1383732B1 (en) Labelling reagents, method for synthesis of said reagents and methods for detecting biological molecules
Bergamin et al. Synthesis of a hybrid fullerene–trimethoxyindole–oligonucleotide conjugate
JPH0470308B2 (en)
WO2008141799A1 (en) Oligophosphoramidates
JPH1112215A (en) Production of vinyl, alkynyl, aryl or heteroaryl aldehyde or ketone
JP2001247990A (en) Method for manufacturing oligosaccharide using polymer-combined saccharide acceptor
Cai et al. Formaldehyde-Mediated Hydride Liberation of Alkylamines for Intermolecular Reactions in Hexafluoroisopropanol
US11639366B2 (en) Conjugation reagents and methods using 1,2-cyclohexanediones
WO2001021617A1 (en) Process for preparing sulfoxide compounds
Cibulka et al. Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media
JP2006193444A (en) Method for producing 4,4'-dicarboxy-2,2'-bipyridine
US12006540B2 (en) Synthesis of novel disulfide linker based nucleotides as reversible terminators for DNA sequencing by synthesis
CN115928114B (en) Synthetic method of aromatic hydrocarbon pyrazole compound
US11999999B2 (en) Synthesis of novel disulfide linker based nucleotides as reversible terminators for DNA sequencing by synthesis
JP3898850B2 (en) Gelling agent comprising sugar derivative having metal coordination ability
US20230416815A1 (en) Method for labeling nucleic acid
KR100440461B1 (en) Process for the preparation of L-ribose using 1,4-lactone
SU1671665A1 (en) Method for preparation of 5,15-di(nitrophenyl)-porphins
EP1244646B1 (en) Dinitrile intermediates for the synthesis of omapatrilat and methods for producing same
SU1265196A1 (en) Method of solid-phase synthesis of desoxyoligonucleotides
CN117658866A (en) Synthesis method of azido amino acid derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100126

R150 Certificate of patent or registration of utility model

Ref document number: 4450471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees