JP2001247880A - Method for operating solar coal steam improving oven - Google Patents
Method for operating solar coal steam improving ovenInfo
- Publication number
- JP2001247880A JP2001247880A JP2000063489A JP2000063489A JP2001247880A JP 2001247880 A JP2001247880 A JP 2001247880A JP 2000063489 A JP2000063489 A JP 2000063489A JP 2000063489 A JP2000063489 A JP 2000063489A JP 2001247880 A JP2001247880 A JP 2001247880A
- Authority
- JP
- Japan
- Prior art keywords
- reforming reaction
- reaction chamber
- solar heating
- chamber
- heating chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、太陽光から得られ
る熱を利用し、石炭等の炭素を主成分とする燃料に水蒸
気を作用させ、水素、一酸化炭素等の可燃性ガスを主成
分とする合成ガスを生成する太陽光利用石炭水蒸気改質
炉の運転方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes heat obtained from sunlight to cause water vapor to act on a carbon-based fuel such as coal so that a combustible gas such as hydrogen or carbon monoxide is used as a main component. The present invention relates to a method for operating a solar steam reforming furnace utilizing sunlight that generates a synthesis gas.
【0002】[0002]
【従来の技術】CO2による地球温暖化を回避するため
に、砂漠地帯で豊富に得られる太陽エネルギーを効率的
に利用できる太陽エネルギーの化学燃料化技術が求めら
れている。この太陽エネルギーの化学燃料化技術は、
(1)太陽エネルギーの高効率化学エネルギー転換を可
能とする、(2)得られた化学エネルギーはグローバル
輸送及び貯蔵を容易にする、(3)プロセス中で硫黄等
の環境汚染物質を除去できる、(4)輸送コストとイン
フラ整備の面で導入の経済的障壁が小さい、等の優れた
特徴を有している。2. Description of the Related Art In order to avoid global warming due to CO 2 , there is a demand for a technology for converting solar energy into a chemical fuel that can efficiently utilize solar energy abundantly obtained in desert areas. This technology for converting solar energy into chemical fuel is
(1) enabling high-efficiency chemical energy conversion of solar energy, (2) the resulting chemical energy facilitates global transport and storage, and (3) removing environmental pollutants such as sulfur in the process. (4) It has excellent features such as small economic barriers to introduction in terms of transportation costs and infrastructure development.
【0003】斯かる技術を確立するために、IEA(国
際エネルギー機構)の中で、オーストラリア、ドイツ、
イスラエル、ロシア、スペイン、スイス、米国等が参加
した国際共同研究として、太陽エネルギーの化学エネル
ギー変換の研究が現在進められている。[0003] In order to establish such a technology, Australia, Germany,
Research on chemical conversion of solar energy is currently under way as an international collaborative research involving Israel, Russia, Spain, Switzerland and the United States.
【0004】この研究の一環として、スイスでは、マグ
ネタイトを2000[℃]付近の高温でウスタイトに分
解する太陽/化学エネルギー変換系の研究が進められ、
2000[℃]付近での反応を実現するために、集光ビ
ームをキャビティの大きい反応炉に導入し、そこにマグ
ネタイト粒子を雲のごとく噴霧する流動床技術が開発・
研究されている。又、アメリカとドイツの共同により、
100[kW]の大口径集光太陽炉を用いて、メタンの
CO2リフォーミングによる研究で太陽/化学エネルギ
ー変換技術が研究されている。As a part of this research, in Switzerland, research on a solar / chemical energy conversion system that decomposes magnetite into wustite at a high temperature of around 2000 ° C. has been promoted.
In order to realize a reaction at around 2000 ° C, a fluidized bed technology was developed in which a focused beam was introduced into a reactor with a large cavity, and magnetite particles were sprayed like a cloud there.
Has been studied. Also, by the United States and Germany jointly,
The solar / chemical energy conversion technology has been studied in a study by reforming methane using CO 2 using a large-diameter concentrating solar furnace of 100 [kW].
【0005】図4は、太陽エネルギーを用いた石炭ガス
化装置用の還元反応炉(以下、太陽光利用還元反応器と
称する)の模式図であり、(A)は粒子を垂直方向に落
下させ、水平方向から太陽光を照射する還元反応炉、
(B)は粒子でベッドを形成させそこに太陽光を照射す
る還元反応炉である。これらは、いずれもASMEレポ
ートに報告されている(“DEVELOPMENT O
F SOLAR COAL GASIFICATION
TECHNOLOGY”,1996.9.01,AS
ME REPORT)。FIG. 4 is a schematic view of a reduction reactor for a coal gasifier using solar energy (hereinafter referred to as a solar reduction reactor). FIG. 4 (A) shows particles dropped vertically. , A reduction reactor that irradiates sunlight from the horizontal direction,
(B) is a reduction reactor for forming a bed with particles and irradiating the bed with sunlight. All of these are reported in the ASME report ("DEVELOPMENT O
F SOLAR COAL GASIFICATION
TECHNOLOGY ", 1996.9.01, AS
ME REPORT).
【0006】図4に示した従来の太陽光利用還元反応器
では、太陽光が当たるのは粒子の1列目或いは1層目の
みであるため、2列目以降には充分に光が当たらず、広
い照射面積が必要となるか、より多くの未反応粒子を循
環させる必要がある問題点があった。In the conventional solar reduction reactor shown in FIG. 4, sunlight is applied only to the first row or the first layer of particles, so that the second and subsequent rows are not sufficiently irradiated with light. There is a problem that a large irradiation area is required or more unreacted particles need to be circulated.
【0007】即ち、太陽光を利用して化石燃料等を金属
酸化物で還元する場合に、酸化・還元反応を充分に促進
させるためには、各々の粒子に効率よく太陽光を照射さ
せる必要があるが、従来の太陽光利用還元反応器では、
各々の粒子自体によって太陽光が遮られてしまいその影
に位置する粒子が反応せず、その結果、全体の粒子を効
率的に反応させるためには大面積を必要としたり粒子循
環を繰り返す必要があり、結果として反応効率が低く反
応器が大型化する問題点があった。That is, when fossil fuels and the like are reduced with metal oxides using sunlight, it is necessary to efficiently irradiate each particle with sunlight in order to sufficiently promote the oxidation and reduction reactions. However, in the conventional solar reduction reactor,
The sunlight is blocked by each particle itself, and the particles located in the shadow do not react.As a result, it is necessary to require a large area or repeat the particle circulation in order to make all the particles react efficiently. As a result, there was a problem that the reaction efficiency was low and the reactor was enlarged.
【0008】この問題点を解決するために、本願出願人
は、先に、石炭と酸化物の混合粒子に光を照射して石炭
の還元反応を起こさせる光化学反応炉と、前記石炭の還
元反応で生じた還元物を水蒸気との反応により酸化物に
戻し同時に水素を発生させる水素発生反応炉と、を備え
た光利用還元反応器を創案し出願した(特開平10−2
79955号)。この発明は、石炭とマグネタイトの混
合粒子に太陽光を照射して石炭の還元反応を起こさせる
太陽熱化学反応炉と、前記石炭の還元反応で生じたウス
タイトを水蒸気との反応によりマグネタイトに戻し同時
に水素を発生させる水素発生反応炉とを備えたものであ
る。[0008] In order to solve this problem, the applicant of the present application has previously disclosed a photochemical reactor for irradiating mixed particles of coal and oxide with light to cause a reduction reaction of coal, and a reduction reaction of the coal. (2) a photoreduction reactor equipped with a hydrogen generation reactor for returning the reduced product produced in the above to oxide by reaction with water vapor and simultaneously generating hydrogen.
No. 79955). The present invention provides a solar thermochemical reactor for irradiating mixed particles of coal and magnetite with sunlight to cause a reduction reaction of the coal, and simultaneously converts wustite generated by the reduction reaction of the coal into magnetite by reacting with steam to produce hydrogen. And a hydrogen generation reactor for generating hydrogen.
【0009】上述した特開平10−279955号の光
利用還元反応器により、粒子に効率よく太陽光を照射で
き、これにより粒子の反応効率を高めて化石燃料等を効
率的に還元することができる。The light-reducing reactor described in Japanese Patent Application Laid-Open No. Hei 10-279955 enables the particles to be efficiently irradiated with sunlight, thereby increasing the reaction efficiency of the particles and efficiently reducing fossil fuels and the like. .
【0010】しかし、特開平10−279955号の光
利用還元反応器は、マグネタイト(Fe3O4)を媒体と
して石炭と水(H2O)を間接的に反応させ、合成ガス
(CO,H2の混合ガス)を製造するため、マグネタイ
トを大量に循環させる必要があり、装置が大型になる問
題点があった。[0010] However, the photoreduction reactor disclosed in Japanese Patent Application Laid-Open No. 10-279955 indirectly reacts coal with water (H 2 O) using magnetite (Fe 3 O 4 ) as a medium to produce synthesis gas (CO, H). 2 ), it was necessary to circulate a large amount of magnetite, and there was a problem that the apparatus became large.
【0011】この問題点を解決するために、本願出願人
は、先に、太陽光利用石炭水蒸気改質炉を創案し出願し
た(特願平11−305213号)。[0011] In order to solve this problem, the present applicant has previously devised and applied for a coal steam reforming furnace utilizing sunlight (Japanese Patent Application No. 11-305213).
【0012】図5は、既に出願されている太陽光利用石
炭水蒸気改質炉を備えたガス化設備の構成図である。こ
の図は、反射タワー方式の集光システムを示しており、
1はヘリオスタット、2はタワーに設けられた反射ミラ
ー、10は太陽光利用石炭水蒸気改質炉である。太陽光
4は、多数のヘリオスタット1で反射し、次いで反射ミ
ラー2で反射して太陽光利用石炭水蒸気改質炉10に向
けて集光され、その内部に下向きに照射されるようにな
っている。この構成により、太陽光利用石炭水蒸気改質
炉10の内部を1200[℃]以上の高温に加熱するこ
とができる。尚、このような集光システムに限定され
ず、例えばフレネルレンズを用いた集光システムであっ
てもよい。FIG. 5 is a block diagram of a gasification facility provided with a solar-utilized coal steam reforming furnace which has already been filed. This figure shows the reflection tower type light collection system,
1 is a heliostat, 2 is a reflection mirror provided in the tower, and 10 is a coal steam reforming furnace using sunlight. The sunlight 4 is reflected by a large number of heliostats 1, then reflected by a reflection mirror 2, condensed toward a solar-utilized coal steam reforming furnace 10, and radiated downward therein. I have. With this configuration, the inside of the solar-heated coal steam reforming furnace 10 can be heated to a high temperature of 1200 [° C.] or more. It is to be noted that the present invention is not limited to such a light collecting system, and for example, a light collecting system using a Fresnel lens may be used.
【0013】図6は前記太陽光利用石炭水蒸気改質炉1
0の全体構成図であり、図7は太陽光利用石炭水蒸気改
質炉10の内部構成図である。図6及び図7に示される
ように、太陽光利用石炭水蒸気改質炉10は、太陽光加
熱室12と改質反応室14とを備え、太陽光加熱室12
と改質反応室14の間を流動化助剤8が循環する。流動
化助剤8としては、例えば流動層燃焼と同様の流動媒体
(珪砂等)を用いる。FIG. 6 shows the solar steam reforming furnace 1 utilizing solar light.
0 is an overall configuration diagram, and FIG. 7 is an internal configuration diagram of a solar-heated coal steam reforming furnace 10. As shown in FIGS. 6 and 7, the solar-powered coal steam reforming furnace 10 includes a solar heating chamber 12 and a reforming reaction chamber 14, and includes a solar heating chamber 12.
The fluidizing aid 8 circulates between the and the reforming reaction chamber 14. As the fluidization aid 8, for example, the same fluid medium (silica sand or the like) as in fluidized bed combustion is used.
【0014】太陽光加熱室12は、複合放物面鏡13
(CPC)を頂部に備える。この複合放物面鏡13は、
図5のヘリオスタット1と反射ミラー2によって集光さ
れた太陽光4を放物面鏡の焦点に集光し、更に炉内へ導
くと共に太陽光4の密度を更に高めるようになってい
る。又、複合放物面鏡13の頂部に、太陽光4を下向き
に通すように上面に気密に設けられた透過窓13a(例
えば石英ガラス)を備え、太陽光4を効率よく下向きに
照射し、且つ熱損失を防いでいる。更に、複合放物面鏡
13の内部はパージガスでパージされ、このパージガス
の下方流れにより、太陽光加熱室12で発生する異物
(タール、ボラタイルマター、粉塵等)による複合放物
面鏡13及び透過窓13aの汚染を防いでいる。又、複
合放物面鏡13の外周部は冷却水で冷却され、複合放物
面鏡13の過熱を防ぎ、その性能低下を防止している。
更に又、太陽光加熱室12内における、複合放物面鏡1
3から太陽光入射部の周囲は、流動層内部まで延びた耐
火物隔壁28で覆ってある。The solar heating chamber 12 includes a composite parabolic mirror 13
(CPC) on top. This composite parabolic mirror 13
The sunlight 4 condensed by the heliostat 1 and the reflection mirror 2 shown in FIG. 5 is condensed at the focal point of the parabolic mirror, further guided into the furnace, and the density of the sunlight 4 is further increased. In addition, a transmission window 13a (for example, quartz glass) is provided on the top of the compound parabolic mirror 13 in an airtight manner on the upper surface so that the sunlight 4 passes downward, and the sunlight 4 is efficiently radiated downward, In addition, heat loss is prevented. Further, the inside of the composite parabolic mirror 13 is purged with a purge gas, and the downward flow of the purge gas causes the composite parabolic mirror 13 and the permeation by foreign substances (tar, volatile matter, dust, etc.) generated in the solar heating chamber 12. The window 13a is prevented from being contaminated. Further, the outer peripheral portion of the compound parabolic mirror 13 is cooled by cooling water to prevent the compound parabolic mirror 13 from overheating and to prevent its performance from deteriorating.
Furthermore, the compound parabolic mirror 1 in the solar heating room 12
3 and the periphery of the sunlight incident portion are covered with a refractory partition 28 extending to the inside of the fluidized bed.
【0015】太陽光加熱室12と改質反応室14の下部
には、互いに仕切られた風箱15a,15bが設けられ
ている。図6に示されるように、改質反応室14を出た
合成ガスは、サイクロン22aと高性能サイクロン又は
セラミックフィルタ等のセパレータ22bを介してガス
精製設備等に供給される。又、合成ガスの一部は、フィ
ルタ24で粉塵を除去した後、ブロワ25により太陽光
加熱室12の風箱15aに供給される。このガスを一般
に「循環ガス」と呼ぶ。循環ガスの主成分は、水素(H
2)と一酸化炭素(CO)である。又、循環ガスに水蒸
気を添加した混合ガスが、改質反応室14の風箱15b
に供給される。Below the solar heating chamber 12 and the reforming reaction chamber 14, there are provided wind boxes 15a and 15b which are partitioned from each other. As shown in FIG. 6, the synthesis gas exiting the reforming reaction chamber 14 is supplied to a gas purification facility or the like via a cyclone 22a and a separator 22b such as a high-performance cyclone or a ceramic filter. A part of the synthesis gas is supplied to the wind box 15 a of the solar heating chamber 12 by the blower 25 after dust is removed by the filter 24. This gas is generally called "circulating gas". The main component of the circulating gas is hydrogen (H
2 ) and carbon monoxide (CO). Further, the mixed gas obtained by adding steam to the circulating gas is supplied to the wind box 15 b of the reforming reaction chamber 14.
Supplied to
【0016】太陽光加熱室12の内部には流動化助剤8
が充填され、風箱15aと太陽光加熱室12との間に
は、図7に示される如く、循環ガスを通す分散板17a
が設けられ、下方から流入する循環ガスにより、内部の
流動化助剤8を流動化させ、穏やかな流動層を形成する
ようになっている。The fluidizing aid 8 is provided inside the solar heating chamber 12.
Is filled between the wind box 15a and the solar heating chamber 12, as shown in FIG.
Is provided, and the circulating gas flowing from below is used to fluidize the internal fluidizing aid 8 to form a gentle fluidized bed.
【0017】同様に、改質反応室14の内部にも流動化
助剤8が充填され、風箱15bと改質反応室14との間
には、水蒸気と循環ガスの混合ガスを通す分散板17b
が設けられ、下方から流入する水蒸気と循環ガスの混合
ガスにより、内部の流動化助剤8を流動化させ、相対的
に激しい流動層を形成するようになっている。Similarly, the inside of the reforming reaction chamber 14 is also filled with the fluidizing aid 8, and a dispersion plate through which a mixed gas of steam and circulating gas is passed is provided between the wind box 15b and the reforming reaction chamber 14. 17b
Is provided to fluidize the internal fluidizing aid 8 with a mixed gas of steam and circulating gas flowing from below, thereby forming a relatively intense fluidized bed.
【0018】尚、図6において、26は流動化助剤ホッ
パ、27は燃料ホッパであり、流動化助剤ホッパ26は
太陽光加熱室12に流動化助剤8を供給し、燃料ホッパ
27は改質反応室14に燃料6を供給するようになって
いる。In FIG. 6, reference numeral 26 denotes a fluidization aid hopper, 27 denotes a fuel hopper, and the fluidization aid hopper 26 supplies the fluidization aid 8 to the solar heating chamber 12; The fuel 6 is supplied to the reforming reaction chamber 14.
【0019】図7に示されるように、太陽光加熱室12
と改質反応室14は、耐火物隔壁16により仕切られて
いる。耐火物隔壁16の上部には、改質反応室14から
オーバーフローにより燃料6と流動化助剤8の混合物を
太陽光加熱室12へ導く上部連通口16aが設けられ、
耐火物隔壁16の下部には、加熱された混合物を太陽光
加熱室12から改質反応室14へ導く下部連通口16b
が設けられている。上述のように、太陽光加熱室12の
流動層は穏やかであり、改質反応室14の流動層は相対
的に激しいため、上部連通口16aから太陽光加熱室1
2に流動化助剤8がオーバーフローし、下部連通口16
bから改質反応室14に流体と同様の圧力差により流動
化助剤8が流入する。従って、太陽光加熱室12の流動
層は、燃料6を含む流動化助剤8を水蒸気を含まない流
動化ガス(循環ガス)で流動化させた下降流動層であ
り、改質反応室14の流動層は、燃料6を含む流動化助
剤8を水蒸気を含む流動化ガスで流動化させた上昇流動
層となり、下降流動層の下部から加熱された流動化助剤
8が上昇流動層に流入し、上昇流動層の上部から下降流
動層に反応後の流動化助剤8が流入して循環する。燃料
6には、主として石炭、コークス等の炭素を主成分とす
る固体燃料を使用するが、廃棄物等についても炭素を主
成分とする可燃物は使用できる。As shown in FIG.
And the reforming reaction chamber 14 are separated by a refractory partition 16. At the upper part of the refractory partition 16, an upper communication port 16 a for guiding a mixture of the fuel 6 and the fluidizing aid 8 from the reforming reaction chamber 14 to the solar heating chamber 12 by overflow is provided.
A lower communication port 16 b for guiding the heated mixture from the solar heating chamber 12 to the reforming reaction chamber 14 is provided below the refractory partition 16.
Is provided. As described above, the fluidized bed of the solar heating chamber 12 is gentle, and the fluidized bed of the reforming reaction chamber 14 is relatively intense.
The fluidization aid 8 overflows to the lower communication port 16.
The fluidization aid 8 flows from b into the reforming reaction chamber 14 with the same pressure difference as the fluid. Accordingly, the fluidized bed of the solar heating chamber 12 is a descending fluidized bed obtained by fluidizing the fluidizing aid 8 containing the fuel 6 with a fluidizing gas (circulating gas) containing no steam. The fluidized bed becomes an ascending fluidized bed obtained by fluidizing the fluidizing aid 8 containing the fuel 6 with the fluidizing gas containing steam, and the heated fluidizing aid 8 flows from the lower part of the descending fluidized bed into the ascending fluidized bed. Then, the fluidized aid 8 after the reaction flows into the descending fluidized bed from above the ascending fluidized bed and circulates. As the fuel 6, a solid fuel mainly composed of carbon such as coal and coke is mainly used, but combustibles mainly composed of carbon can be used for wastes and the like.
【0020】図7に示されるように、燃料6は改質反応
室14に供給され、流動化助剤8は必要に応じて太陽光
加熱室12に供給される。太陽光加熱室12内の流動化
助剤8は、複合放物面鏡13で集光され、その内部に下
向きに照射された太陽光4によって、1000[℃]以
上の高温に加熱される。この場合、太陽光加熱室12内
の流動化助剤8は、未反応の燃料6を含まず、且つ循環
ガスにも水蒸気を含まないため、太陽光加熱室12内で
は、流動化助剤8が単に加熱されるだけで、反応はほと
んど生じない。従って、タール、ボラタイルマター、粉
塵等の発生を最小限に抑え、複合放物面鏡13及び透過
窓13aの汚染を防止できる。As shown in FIG. 7, the fuel 6 is supplied to the reforming reaction chamber 14, and the fluidization aid 8 is supplied to the solar heating chamber 12 as needed. The fluidization aid 8 in the solar heating chamber 12 is condensed by the compound parabolic mirror 13 and heated to a high temperature of 1000 ° C. or more by the sunlight 4 radiated downward into the inside. In this case, the fluidization aid 8 in the solar heating chamber 12 does not include the unreacted fuel 6 and does not include water vapor in the circulating gas. Is merely heated and little reaction occurs. Therefore, the generation of tar, volatile matter, dust and the like can be minimized, and contamination of the compound parabolic mirror 13 and the transmission window 13a can be prevented.
【0021】一方、改質反応室14に供給された燃料6
は、内部で加熱されてタール、ボラタイルマター等を発
生するが、これらは短時間に熱分解してガス化し、生成
ガスと共に排出される。この熱分解で残ったカーボンC
は、太陽光加熱室12に供給されて、流動化助剤8と共
に高温に加熱され、改質反応室14の下部に供給され
る。改質反応室14の流動化ガスには、上述のように水
蒸気が含まれているので、改質反応室14においては、
C+H2O→CO+H2の反応により、水素を含む合成ガ
スが生成される。On the other hand, the fuel 6 supplied to the reforming reaction chamber 14
Is heated inside to generate tar, volatile matter, etc., which are thermally decomposed and gasified in a short time and discharged together with the generated gas. Carbon C remaining from this pyrolysis
Is supplied to the solar heating chamber 12, heated to a high temperature together with the fluidization aid 8, and supplied to the lower part of the reforming reaction chamber. Since the fluidizing gas in the reforming reaction chamber 14 contains steam as described above, in the reforming reaction chamber 14,
By the reaction of C + H 2 O → CO + H 2 , a synthesis gas containing hydrogen is generated.
【0022】上述した流動化助剤8に蓄熱機能に優れた
固体粒子(例えば黒色に近い珪砂)を用いることによ
り、改質反応室14での吸熱反応での温度低下を抑制
し、ガス化反応を促進することができる。By using solid particles (for example, silica sand close to black) having an excellent heat storage function as the fluidizing aid 8 described above, the temperature drop in the endothermic reaction in the reforming reaction chamber 14 is suppressed, and the gasification reaction is performed. Can be promoted.
【0023】又、流動化助剤8に硫黄分を吸収する成分
(例えばCaCO3)を添加し、燃料6のガス化反応の
際に副生する硫黄化合物(H2S)を、改質反応室14
内でH2S+CaO→CaS+H2Oの反応により、硫黄
化合物をCaSの固体で回収し、硫黄分の少ない合成ガ
スを生成することができる。Further, a component (eg, CaCO 3 ) that absorbs sulfur is added to the fluidization aid 8 to convert a sulfur compound (H 2 S) by-produced during the gasification reaction of the fuel 6 into a reforming reaction. Room 14
By the reaction of H 2 S + CaO → CaS + H 2 O, the sulfur compound can be recovered as a solid CaS, and a synthesis gas containing less sulfur can be generated.
【0024】更に、改質反応室14の流動化ガスに酸素
を含むガス(空気、酸素富化空気、純酸素等)を添加
し、改質反応室14で部分酸化反応を行い、ガス化反応
に必要な熱の一部を燃料6の発熱で供給することもでき
る。Further, a gas containing oxygen (air, oxygen-enriched air, pure oxygen, etc.) is added to the fluidizing gas in the reforming reaction chamber 14, and a partial oxidation reaction is performed in the reforming reaction chamber 14. Of the heat required for the fuel 6 can be supplied by the heat generated by the fuel 6.
【0025】又、図6に示されるように、改質反応室1
4から反応後の生成ガスと一緒に飛散する燃料6及び熱
分解で残ったカーボンC、並びに流動化助剤8の混合物
を生成ガスから分離するサイクロン22aと、分離され
た混合物を改質反応室14へ戻す循環配管23とを備
え、サイクロン22aで生成ガスに同伴される微粒子
(燃料6及び熱分解で残ったカーボンC、並びに流動化
助剤8の混合物)を生成ガスから分離し、循環配管23
を介して改質反応室14に戻すことにより、生成ガス中
の微粒子を低減し、且つ改質反応室14での反応効率を
高めるようになっている。Further, as shown in FIG.
4, a cyclone 22a for separating a mixture of the fuel 6 scattered together with the product gas after the reaction and the carbon C remaining after the pyrolysis and the fluidization aid 8 from the product gas, and a separated reaction mixture in the reforming reaction chamber. And a circulation pipe 23 for returning the fuel gas to the fuel gas 14 and separating the fine particles (a mixture of the fuel 6 and the carbon C remaining after the thermal decomposition and the fluidization aid 8) from the generated gas with the cyclone 22a. 23
By returning the gas to the reforming reaction chamber 14 through the, the fine particles in the produced gas are reduced, and the reaction efficiency in the reforming reaction chamber 14 is increased.
【0026】上述したように、太陽光利用石炭水蒸気改
質炉10は、太陽光4を集光し、上部より炉内へ取り込
み、その太陽光4の熱によりカーボンのガス化(即ち水
蒸気改質反応)を行うようになっており、又、マグネタ
イト等の酸化還元反応の媒体となる副原料を使用しない
ようになっている。但し、石炭等の燃料6のガス化反応
を流動層で行うため、流動の安定化と太陽熱の伝熱を促
進するため珪砂等の流動層燃焼等で一般的に使用される
流動化助剤8(ベッド剤)を使用する。As described above, the solar-heated coal steam reforming furnace 10 condenses the sunlight 4, takes it into the furnace from above, and gasifies carbon (ie, steam reforming) by the heat of the sunlight 4. Reaction), and does not use an auxiliary material such as magnetite which serves as a medium for an oxidation-reduction reaction. However, since the gasification reaction of the fuel 6 such as coal is performed in a fluidized bed, a fluidization aid 8 generally used in fluidized bed combustion of silica sand or the like to stabilize the flow and promote heat transfer of solar heat. (Bed material) is used.
【0027】一方、太陽光4を効率よく反応物に照射す
るため、流動層内に仕切りを設け、燃料6と流動化助剤
8の混合物の流れを制御している。太陽光4が入る中央
の加熱ゾーンとしての太陽光加熱室12では燃料6と流
動化助剤8の混合物が下降流となり、太陽光4より効率
よく熱を吸収させることができる。On the other hand, in order to efficiently irradiate the reaction product with the sunlight 4, a partition is provided in the fluidized bed to control the flow of the mixture of the fuel 6 and the fluidization aid 8. In the solar heating chamber 12 as a central heating zone into which the sunlight 4 enters, the mixture of the fuel 6 and the fluidization aid 8 flows downward, so that heat can be absorbed more efficiently than the sunlight 4.
【0028】特開平10−279955号と同様の集光
設備で太陽光利用石炭水蒸気改質炉10へ太陽光4を導
き、集光された太陽光4は太陽光利用石炭水蒸気改質炉
10の頂部より複合放物面鏡13を介して太陽光加熱室
12へ導かれる。太陽光加熱室12では、太陽光4によ
って燃料6と流動化助剤8の混合物が加熱され、燃料6
の水蒸気改質反応に必要な温度(1000[℃]程度以
上)となり、耐火物隔壁16下部の下部連通口16bよ
り改質反応室14へ移動する。改質反応室14へは分散
板17bより水蒸気を含んだ循環ガスが噴射され、石炭
等の燃料6と水蒸気が反応して合成ガスが生成する。未
反応の燃料6と流動化助剤8は流動によって再び加熱ゾ
ーンとしての太陽光加熱室12へ移動し、灰分は合成ガ
スと一緒に炉外へ排出され回収される。The sunlight 4 is guided to the solar-powered coal steam reforming furnace 10 using the same light-collecting equipment as in JP-A-10-279955. From the top, it is guided to the solar heating chamber 12 through the compound parabolic mirror 13. In the solar heating chamber 12, the mixture of the fuel 6 and the fluidization aid 8 is heated by the sunlight 4,
The temperature reaches a temperature (about 1000 ° C. or higher) necessary for the steam reforming reaction of the first material, and moves to the reforming reaction chamber 14 through the lower communication port 16 b below the refractory partition 16. A circulating gas containing water vapor is injected from the dispersion plate 17b into the reforming reaction chamber 14, and the fuel 6 such as coal reacts with the water vapor to generate a synthesis gas. The unreacted fuel 6 and the fluidization aid 8 move again by the flow to the solar heating chamber 12 as a heating zone, and the ash is discharged out of the furnace together with the synthesis gas and collected.
【0029】以下、太陽光利用石炭水蒸気改質炉10を
更に詳細に説明する。Hereinafter, the solar steam-reforming furnace 10 utilizing solar light will be described in more detail.
【0030】(炉の構造)(Structure of furnace)
【0031】太陽光利用石炭水蒸気改質炉10は、耐火
物内張り構造であり、下部に水蒸気や循環ガスを吹き込
むための風箱15a,15bを有する。風箱15aは、
太陽光加熱室12の下部に接続されるように設けられ、
太陽光加熱室12内における流動化助剤8の流動化用の
循環ガスのみを吹き込む部屋であり、又、風箱15b
は、改質反応室14の下部に接続され且つ風箱15aの
外側に位置するように設けられ、改質反応室14内にお
ける流動化助剤8の流動化兼燃料6の改質反応用の水蒸
気と循環ガスの混合ガスを吹き込む部屋である。風箱1
5a,15bとその上の太陽光加熱室12及び改質反応
室14の間には分散板17a,17bを設け、その上側
を燃料6及び流動化助剤8が流動するようになってい
る。分散板17a,17bは、ガスを流動層内に流すが
燃料6や流動化助剤8が風箱15a,15bへ落ちない
ような構造となっている。The solar-heated coal steam reforming furnace 10 has a refractory lining structure, and has wind boxes 15a and 15b for blowing steam and circulating gas at its lower part. The wind box 15a
Provided to be connected to the lower part of the solar heating chamber 12,
This is a room in which only the circulating gas for fluidizing the fluidizing aid 8 in the solar heating chamber 12 is blown, and the wind box 15b
Is provided so as to be connected to the lower part of the reforming reaction chamber 14 and to be located outside the wind box 15 a, for fluidizing the fluidizing aid 8 and reforming the fuel 6 in the reforming reaction chamber 14. This room blows a mixed gas of steam and circulating gas. Wind box 1
Dispersion plates 17a and 17b are provided between 5a and 15b and the solar heating chamber 12 and the reforming reaction chamber 14 above them, and the fuel 6 and the fluidization aid 8 flow above them. The dispersion plates 17a and 17b have a structure in which the gas flows into the fluidized bed but the fuel 6 and the fluidization aid 8 do not fall into the wind boxes 15a and 15b.
【0032】流動層の空塔速度は、太陽光加熱室12で
は小さく、改質反応室14では比較的大きくなるように
し、太陽光加熱室12では、流動化助剤8等が静かに流
動化しながら少しずつ下向きに流れるようになってい
る。又、改質反応室14では、比較的早い空塔速度で燃
料6と流動化助剤8の混合物が水蒸気を含む循環ガスと
接触し、流動化助剤8に吸収された熱を消費しながらガ
ス化(改質反応)が進行するようになっている。The superficial velocity of the fluidized bed is set low in the solar heating chamber 12 and relatively high in the reforming reaction chamber 14. While flowing slowly downwards. Further, in the reforming reaction chamber 14, the mixture of the fuel 6 and the fluidizing aid 8 comes into contact with the circulating gas containing steam at a relatively high superficial velocity while consuming the heat absorbed by the fluidizing aid 8. Gasification (reforming reaction) proceeds.
【0033】(炉内外での燃料6及び流動化助剤8の挙
動)(Behavior of Fuel 6 and Fluidizing Aid 8 Inside and Outside the Furnace)
【0034】燃料6は、改質反応室14へ供給され、こ
こで比較的早い空塔速度で流動化され、反応により微粒
子化した燃料6は、生成ガスに同伴して炉外へ持ち出さ
れ、外部に設けたサイクロン22aで粒径の大きいもの
はここで分離され改質反応室14へ戻される。細かい粒
子は、サイクロン22aでは分離されず、更に下流に設
けられた高性能サイクロン又はセラミックフィルタ等の
セパレータ22bで分離され、灰として回収される。一
段目のサイクロン22aの性能を適当に設定すること
で、灰として回収される微粒子中の未反応炭素分の割合
を調整できる。The fuel 6 is supplied to the reforming reaction chamber 14, where it is fluidized at a relatively high superficial velocity, and the fuel 6 which has been atomized by the reaction is taken out of the furnace with the produced gas. The cyclone 22 a having a large particle diameter provided outside is separated here and returned to the reforming reaction chamber 14. The fine particles are not separated by the cyclone 22a, but are separated by a separator 22b such as a high-performance cyclone or a ceramic filter provided downstream, and collected as ash. By appropriately setting the performance of the first-stage cyclone 22a, the ratio of the unreacted carbon content in the fine particles collected as ash can be adjusted.
【0035】太陽光加熱室12へ燃料6を供給しない理
由は、燃料6が加熱されたときに発生するタールやボラ
タイルマターが複合放物面鏡13の反射面を曇らせ、太
陽光4の反射率が低下することを防止する意味がある。The reason why the fuel 6 is not supplied to the solar heating chamber 12 is that tar or volatile matter generated when the fuel 6 is heated fogs the reflecting surface of the compound parabolic mirror 13 and the reflectance of the solar light 4 Has the meaning of preventing the decrease.
【0036】燃料6を流動化助剤8より細かい粒径とし
て供給し、改質反応室14内において燃料6と流動化助
剤8の混合物を比較的早い空塔速度で流動化させること
により、燃料6の大部分は生成ガスに同伴して炉外へ排
出され、太陽光加熱室12へオーバーフローで流れ込む
のは、主として粒径の大きい流動化助剤8となるため、
ここでの揮発分の発生は抑えられる。By supplying the fuel 6 with a smaller particle size than the fluidization aid 8 and fluidizing the mixture of the fuel 6 and the fluidization aid 8 in the reforming reaction chamber 14 at a relatively high superficial velocity, Most of the fuel 6 is discharged out of the furnace together with the generated gas and flows into the solar heating chamber 12 by overflow because the fluidization aid 8 having a large particle diameter is mainly used.
Here, generation of volatile components is suppressed.
【0037】尚、流動化助剤8、特に脱硫のため加える
CaCO3(炉内では熱分解してCaOとなっている)
も複合放物面鏡13を曇らせる原因となるため、複合放
物面鏡13の保護の観点から複合放物面鏡13へは常時
パージガスを供給し、粉体が内部に侵入するのを防止す
るようになっている。The fluidization aid 8, particularly CaCO 3 added for desulfurization (in the furnace, it is thermally decomposed to CaO)
Since this also causes the compound parabolic mirror 13 to fog, a purge gas is constantly supplied to the compound parabolic mirror 13 from the viewpoint of protection of the compound parabolic mirror 13 to prevent powder from entering the inside. It has become.
【0038】(流動化助剤8)(Fluidizing Aid 8)
【0039】通常、流動層燃焼等では流動化助剤8とし
て珪砂等の不活性無機物を使用するが、特に太陽光4か
ら熱を効率よく吸収する機能を持たせるため、色が黒い
ものが好ましい。In general, in a fluidized bed combustion or the like, an inert inorganic substance such as silica sand is used as the fluidization aid 8, but a black color is preferable in order to have a function of efficiently absorbing heat from the sunlight 4 in particular. .
【0040】上述したように、太陽光利用石炭水蒸気改
質炉10によれば、太陽光4を利用して石炭等の燃料6
を効率的に還元することができ、粒子に効率よく太陽光
4を照射でき、これにより粒子の反応効率を高め、且つ
マグネタイトを大量に循環させずに反応炉をコンパクト
化できる。As described above, according to the coal steam reforming furnace 10 utilizing sunlight, the fuel 6 such as coal is utilized by utilizing the sunlight 4.
Can be efficiently reduced, and the particles can be efficiently irradiated with the sunlight 4, whereby the reaction efficiency of the particles can be increased and the reactor can be made compact without circulating a large amount of magnetite.
【0041】[0041]
【発明が解決しようとする課題】ところで、太陽光4
は、その特性上、利用時間が限られる他、地域や天候に
も左右される。By the way, sunlight 4
Due to its characteristics, usage time is limited, and it also depends on the area and weather.
【0042】最も条件のよい砂漠地帯であっても、朝夕
の太陽光4が弱い時間帯を含め、夜間は利用できない。
通常利用可能な時間は、一日のうち八時間程度である。Even in the desert area with the best conditions, it cannot be used at night, including during the morning and evening when the sunlight 4 is weak.
Normally available time is about eight hours a day.
【0043】このため、前述の如き太陽光利用石炭水蒸
気改質炉10においては、比較的太陽の高度が高い時間
帯以外は運転ができない上に、翌日再起動する際に、膨
大なエネルギーを要し、効率的な運用が困難となる可能
性があった。For this reason, the above-described solar-fired coal steam reforming furnace 10 cannot be operated except during a time period when the altitude of the sun is relatively high, and requires enormous energy when it is restarted the next day. However, efficient operation may be difficult.
【0044】本発明は、斯かる実情に鑑み、翌日再起動
する際に、膨大なエネルギーを必要とせず、効率向上を
図り得る太陽光利用石炭水蒸気改質炉の運転方法を提供
しようとするものである。The present invention has been made in view of the above circumstances, and aims to provide a method of operating a solar-powered coal steam reforming furnace which does not require a huge amount of energy when restarting the next day and can improve efficiency. It is.
【0045】[0045]
【課題を解決するための手段】第一の発明は、炭素を主
成分とする燃料と無機成分からなる流動化助剤とを水蒸
気を含む流動化ガスによって流動させつつ、燃料と水蒸
気を反応させるための改質反応室と、燃料と流動化助剤
の混合物を流動化ガスによって流動化させつつ、複合放
物面鏡によって集光され密度が高められた太陽光を前記
混合物に照射し、該混合物の温度を改質反応に必要な所
定温度まで加熱するための太陽光加熱室と、前記改質反
応室と太陽光加熱室とを仕切ると共に、上部に改質反応
室からオーバーフローにより燃料と流動化助剤の混合物
を太陽光加熱室へ導く上部連通口が設けられ、下部に加
熱された混合物を太陽光加熱室から改質反応室へ導く下
部連通口が設けられた耐火物隔壁と、前記改質反応室と
太陽光加熱室とに個々に流動化ガスを供給できるよう仕
切られた風箱とを備え、可燃性ガスを主成分とする合成
ガスを生成する太陽光利用石炭水蒸気改質炉の運転方法
であって、太陽光が利用できない時間帯に運転を停止す
る際、太陽光加熱室へ供給される流動化ガスを改質反応
室よりも先に停止し、太陽光加熱室内の流動化助剤を移
動できなくし、改質反応室側から耐火物隔壁上部に設け
た上部連通口を通じて太陽光加熱室内へ流動化助剤を流
入せしめ、太陽光加熱室内の流動化助剤層の上に積み重
ねた後、改質反応室へ供給される流動化ガスを停止して
ホットバンキングを行うことにより、複合放物面鏡が存
在する太陽光加熱室中心部とその周囲の部分とを、流動
化助剤の厚い層により仕切ることを特徴とする太陽光利
用石炭水蒸気改質炉の運転方法にかかるものである。According to a first aspect of the present invention, a fuel containing carbon as a main component and a fluidization aid comprising an inorganic component are caused to react with a fuel and a steam while fluidizing the fluid with a fluidizing gas containing a steam. The reforming reaction chamber for, while fluidizing a mixture of fuel and a fluidization aid with a fluidizing gas, irradiates the mixture with concentrated sunlight having a density increased by a composite parabolic mirror, A solar heating chamber for heating the temperature of the mixture to a predetermined temperature required for the reforming reaction, and a partition between the reforming reaction chamber and the solar heating chamber, and a fuel and a fluid flowing by overflowing from the reforming reaction chamber in the upper part. An upper communication port for guiding the mixture of the chemical aid to the solar heating chamber is provided, and a refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber at the lower portion, For reforming reaction chamber and solar heating chamber A wind box partitioned so as to be able to supply fluidized gas, and a method for operating a solar-powered coal steam reforming furnace that generates synthesis gas containing a flammable gas as a main component. When the operation is stopped during a time period when it cannot be performed, the fluidizing gas supplied to the solar heating chamber is stopped before the reforming reaction chamber, and the fluidizing aid in the solar heating chamber cannot be moved, and the reforming reaction is stopped. The fluidizing aid flows into the solar heating chamber from the chamber side through the upper communication port provided above the refractory partition, and is stacked on the fluidizing aid layer in the solar heating chamber and then supplied to the reforming reaction chamber. By performing hot banking while stopping the fluidized gas that is performed, the central part of the solar heating room where the compound parabolic mirror exists and the surrounding area are separated by a thick layer of fluidizing aid. The operation method of the coal steam reforming furnace using sunlight Is shall.
【0046】第二の発明は、炭素を主成分とする燃料と
無機成分からなる流動化助剤とを水蒸気を含む流動化ガ
スによって流動させつつ、燃料と水蒸気を反応させるた
めの改質反応室と、燃料と流動化助剤の混合物を流動化
ガスによって流動化させつつ、複合放物面鏡によって集
光され密度が高められた太陽光を前記混合物に照射し、
該混合物の温度を改質反応に必要な所定温度まで加熱す
るための太陽光加熱室と、前記改質反応室と太陽光加熱
室とを仕切ると共に、上部に改質反応室からオーバーフ
ローにより燃料と流動化助剤の混合物を太陽光加熱室へ
導く上部連通口が設けられ、下部に加熱された混合物を
太陽光加熱室から改質反応室へ導く下部連通口が設けら
れた耐火物隔壁と、前記改質反応室と太陽光加熱室とに
個々に流動化ガスを供給できるよう仕切られた風箱とを
備え、可燃性ガスを主成分とする合成ガスを生成する太
陽光利用石炭水蒸気改質炉の運転方法であって、改質反
応に必要な熱を太陽光のみで賄いきれない場合に、酸素
を含むガスと水蒸気との混合ガスを改質反応室の風箱内
へ供給して流動化ガスに添加し、改質反応室内で燃料を
部分酸化させ、改質反応に必要な熱の一部を賄うことを
特徴とする太陽光利用石炭水蒸気改質炉の運転方法にか
かるものである。The second invention is directed to a reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidizing aid containing an inorganic component with a fluidizing gas containing steam. And, while fluidizing the mixture of fuel and fluidization aid with the fluidizing gas, irradiating the mixture with sunlight whose density has been increased by the condensing composite parabolic mirror,
A solar heating chamber for heating the temperature of the mixture to a predetermined temperature required for the reforming reaction, and a partition between the reforming reaction chamber and the solar heating chamber, and a fuel and an upper part which overflow from the reforming reaction chamber. An upper communication port for guiding the mixture of the fluidization aid to the solar heating chamber is provided, and a refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber at a lower portion, A solar-powered coal steam reformer comprising a wind box partitioned so as to be able to individually supply a fluidizing gas to the reforming reaction chamber and the solar heating chamber, and generating a synthesis gas containing a combustible gas as a main component. A method of operating a furnace in which a mixture gas of oxygen-containing gas and steam is supplied into the wind chamber of the reforming reaction chamber and flows when the heat required for the reforming reaction cannot be covered only by sunlight. Fuel gas, partially oxidize the fuel in the reforming reaction chamber, To cover the part of the heat required for the reaction are those according to the operating method of the solar utilization coal steam reforming furnace according to claim.
【0047】第三の発明は、炭素を主成分とする燃料と
無機成分からなる流動化助剤とを水蒸気を含む流動化ガ
スによって流動させつつ、燃料と水蒸気を反応させるた
めの改質反応室と、燃料と流動化助剤の混合物を流動化
ガスによって流動化させつつ、複合放物面鏡によって集
光され密度が高められた太陽光を前記混合物に照射し、
該混合物の温度を改質反応に必要な所定温度まで加熱す
るための太陽光加熱室と、前記改質反応室と太陽光加熱
室とを仕切ると共に、上部に改質反応室からオーバーフ
ローにより燃料と流動化助剤の混合物を太陽光加熱室へ
導く上部連通口が設けられ、下部に加熱された混合物を
太陽光加熱室から改質反応室へ導く下部連通口が設けら
れた耐火物隔壁と、前記改質反応室と太陽光加熱室とに
個々に流動化ガスを供給できるよう仕切られた風箱とを
備え、可燃性ガスを主成分とする合成ガスを生成する太
陽光利用石炭水蒸気改質炉の運転方法であって、改質反
応に必要な熱を太陽光のみで賄いきれなくなった時点
で、酸素を含むガスと水蒸気との混合ガスを改質反応室
の風箱内へ供給して流動化ガスに添加し、改質反応室内
で燃料を部分酸化させ、改質反応に必要な熱の一部を賄
い、この状態から更に太陽光が完全に利用できなくなっ
た時点で、太陽光加熱室へ供給される流動化ガスを停止
し、太陽光加熱室内の流動化助剤を移動できなくし、改
質反応室側から耐火物隔壁上部に設けた上部連通口を通
じて太陽光加熱室内へ流動化助剤を流入せしめ、太陽光
加熱室内の流動化助剤層の上に積み重ね、複合放物面鏡
が存在する太陽光加熱室中心部とその周囲の部分とを、
流動化助剤の厚い層により仕切った状態で、改質反応室
への流動化ガスの供給を継続することを特徴とする太陽
光利用石炭水蒸気改質炉の運転方法にかかるものであ
る。The third invention is a reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidizing aid containing an inorganic component with a fluidizing gas containing steam. And, while fluidizing the mixture of fuel and fluidization aid with the fluidizing gas, irradiating the mixture with sunlight whose density has been increased by the condensing composite parabolic mirror,
A solar heating chamber for heating the temperature of the mixture to a predetermined temperature required for the reforming reaction, and a partition between the reforming reaction chamber and the solar heating chamber, and a fuel and an upper part which overflow from the reforming reaction chamber. An upper communication port for guiding the mixture of the fluidization aid to the solar heating chamber is provided, and a refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber at a lower portion, A solar-powered coal steam reformer comprising a wind box partitioned so as to be able to individually supply a fluidizing gas to the reforming reaction chamber and the solar heating chamber, and generating a synthesis gas containing a combustible gas as a main component. A method of operating a furnace, in which a mixed gas of oxygen-containing gas and water vapor is supplied into a wind chamber of a reforming reaction chamber when heat required for the reforming reaction cannot be supplied only by sunlight. Fuel is added to the fluidizing gas to partially oxidize the fuel in the reforming reaction chamber. When part of the heat required for the reforming reaction is supplied, and when the sunlight becomes completely unavailable from this state, the fluidizing gas supplied to the solar heating chamber is stopped and the inside of the solar heating chamber is stopped. The fluidization aid cannot be moved, and the fluidization aid flows into the solar heating chamber from the reforming reaction chamber through the upper communication port provided at the upper part of the refractory partition. Stacked on top, the center of the solar heating room where the compound parabolic mirror exists and the surrounding area,
The present invention relates to a method of operating a solar-heated coal steam reforming furnace, characterized in that supply of a fluidizing gas to a reforming reaction chamber is continued in a state where the gas is separated by a thick layer of a fluidization aid.
【0048】第四の発明は、炭素を主成分とする燃料と
無機成分からなる流動化助剤とを水蒸気を含む流動化ガ
スによって流動させつつ、燃料と水蒸気を反応させるた
めの改質反応室と、燃料と流動化助剤の混合物を流動化
ガスによって流動化させつつ、複合放物面鏡によって集
光され密度が高められた太陽光を前記混合物に照射し、
該混合物の温度を改質反応に必要な所定温度まで加熱す
るための太陽光加熱室と、前記改質反応室と太陽光加熱
室とを仕切ると共に、上部に改質反応室からオーバーフ
ローにより燃料と流動化助剤の混合物を太陽光加熱室へ
導く上部連通口が設けられ、下部に加熱された混合物を
太陽光加熱室から改質反応室へ導く下部連通口が設けら
れた耐火物隔壁と、前記改質反応室と太陽光加熱室とに
個々に流動化ガスを供給できるよう仕切られた風箱とを
備え、可燃性ガスを主成分とする合成ガスを生成する太
陽光利用石炭水蒸気改質炉の運転方法であって、改質反
応に必要な熱を太陽光のみで賄いきれない場合に、酸素
を含むガスと水蒸気との混合ガスを改質反応室内の流動
層へ直接供給し、改質反応室内で燃料を部分酸化させ、
改質反応に必要な熱の一部を賄うことを特徴とする太陽
光利用石炭水蒸気改質炉の運転方法にかかるものであ
る。A fourth aspect of the present invention is a reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidizing aid containing an inorganic component with a fluidizing gas containing steam. And, while fluidizing the mixture of fuel and fluidization aid with the fluidizing gas, irradiating the mixture with sunlight whose density has been increased by the condensing composite parabolic mirror,
A solar heating chamber for heating the temperature of the mixture to a predetermined temperature required for the reforming reaction, and a partition between the reforming reaction chamber and the solar heating chamber, and a fuel and an upper part which overflow from the reforming reaction chamber. An upper communication port for guiding the mixture of the fluidization aid to the solar heating chamber is provided, and a refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber at a lower portion, A solar-powered coal steam reformer comprising a wind box partitioned so as to be able to individually supply a fluidizing gas to the reforming reaction chamber and the solar heating chamber, and generating a synthesis gas containing a combustible gas as a main component. When the heat required for the reforming reaction cannot be provided solely by sunlight, a mixed gas of oxygen-containing gas and steam is directly supplied to the fluidized bed in the reforming reaction chamber to improve the reforming operation. Partial oxidation of the fuel in the reaction chamber,
The present invention relates to a method for operating a solar steam reforming furnace utilizing sunlight, which partially supplies heat required for a reforming reaction.
【0049】第五の発明は、炭素を主成分とする燃料と
無機成分からなる流動化助剤とを水蒸気を含む流動化ガ
スによって流動させつつ、燃料と水蒸気を反応させるた
めの改質反応室と、燃料と流動化助剤の混合物を流動化
ガスによって流動化させつつ、複合放物面鏡によって集
光され密度が高められた太陽光を前記混合物に照射し、
該混合物の温度を改質反応に必要な所定温度まで加熱す
るための太陽光加熱室と、前記改質反応室と太陽光加熱
室とを仕切ると共に、上部に改質反応室からオーバーフ
ローにより燃料と流動化助剤の混合物を太陽光加熱室へ
導く上部連通口が設けられ、下部に加熱された混合物を
太陽光加熱室から改質反応室へ導く下部連通口が設けら
れた耐火物隔壁と、前記改質反応室と太陽光加熱室とに
個々に流動化ガスを供給できるよう仕切られた風箱とを
備え、可燃性ガスを主成分とする合成ガスを生成する太
陽光利用石炭水蒸気改質炉の運転方法であって、改質反
応に必要な熱を太陽光のみで賄いきれなくなった時点
で、酸素を含むガスと水蒸気との混合ガスを改質反応室
内の流動層へ直接供給し、改質反応室内で燃料を部分酸
化させ、改質反応に必要な熱の一部を賄い、この状態か
ら更に太陽光が完全に利用できなくなった時点で、太陽
光加熱室へ供給される流動化ガスを停止し、太陽光加熱
室内の流動化助剤を移動できなくし、改質反応室側から
耐火物隔壁上部に設けた上部連通口を通じて太陽光加熱
室内へ流動化助剤を流入せしめ、太陽光加熱室内の流動
化助剤層の上に積み重ね、複合放物面鏡が存在する太陽
光加熱室中心部とその周囲の部分とを、流動化助剤の厚
い層により仕切った状態で、改質反応室への流動化ガス
の供給を継続することを特徴とする太陽光利用石炭水蒸
気改質炉の運転方法にかかるものである。According to a fifth aspect of the present invention, there is provided a reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidizing aid containing an inorganic component with a fluidizing gas containing steam. And, while fluidizing the mixture of fuel and fluidization aid with the fluidizing gas, irradiating the mixture with sunlight whose density has been increased by the condensing composite parabolic mirror,
A solar heating chamber for heating the temperature of the mixture to a predetermined temperature required for the reforming reaction, and a partition between the reforming reaction chamber and the solar heating chamber, and a fuel and an upper part which overflow from the reforming reaction chamber. An upper communication port for guiding the mixture of the fluidization aid to the solar heating chamber is provided, and a refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber at a lower portion, A solar-powered coal steam reformer comprising a wind box partitioned so as to be able to individually supply a fluidizing gas to the reforming reaction chamber and the solar heating chamber, and generating a synthesis gas containing a combustible gas as a main component. A method of operating the furnace, wherein when the heat required for the reforming reaction cannot be provided by only sunlight, a mixed gas of a gas containing oxygen and steam is directly supplied to a fluidized bed in the reforming reaction chamber, Partial oxidation of fuel in the reforming reaction chamber When part of the required heat is covered, and when the sunlight is no longer completely available from this state, the fluidizing gas supplied to the solar heating chamber is stopped, and the fluidizing aid in the solar heating chamber is removed. It is impossible to move, the fluidization aid flows into the solar heating chamber from the reforming reaction chamber side through the upper communication port provided above the refractory partition, and is stacked on the fluidization aid layer in the solar heating chamber, The supply of fluidizing gas to the reforming reaction chamber should be continued with the central part of the solar heating chamber where the parabolic mirror exists and the surrounding area separated by a thick layer of fluidizing aid. The present invention relates to a method for operating a solar steam coal reforming furnace utilizing solar light.
【0050】上記手段によれば、以下のような作用が得
られる。According to the above means, the following effects can be obtained.
【0051】第一の発明の如く、太陽光が利用できない
時間帯に運転を停止する際、太陽光加熱室へ供給される
流動化ガスを改質反応室よりも先に停止し、太陽光加熱
室内の流動化助剤を移動できなくし、改質反応室側から
耐火物隔壁上部に設けた上部連通口を通じて太陽光加熱
室内へ流動化助剤を流入せしめ、太陽光加熱室内の流動
化助剤層の上に積み重ねた後、改質反応室へ供給される
流動化ガスを停止してホットバンキングを行うことによ
り、複合放物面鏡が存在する太陽光加熱室中心部とその
周囲の部分とを、流動化助剤の厚い層により仕切るよう
にすると、流動化助剤自身が保温材となり、流動層表面
から熱が奪われにくくなり、熱の放散が抑制され、この
結果、翌日再起動する際に、膨大なエネルギーを消費し
なくて済み、効率的な運用が可能となる。As in the first aspect, when the operation is stopped during a time period when sunlight is not available, the fluidizing gas supplied to the solar heating chamber is stopped before the reforming reaction chamber, and the solar heating is stopped. The fluidization aid in the room cannot be moved, and the fluidization aid flows into the solar heating chamber from the reforming reaction chamber through the upper communication port provided in the upper part of the refractory partition. After stacking on the layer, the fluidizing gas supplied to the reforming reaction chamber is stopped and hot banking is performed, so that the center of the solar heating chamber where the compound parabolic mirror exists and the surrounding area Is separated by a thick layer of the fluidization aid, the fluidization aid itself becomes a heat insulator, heat is hardly deprived from the surface of the fluidized bed, heat dissipation is suppressed, and as a result, the system is restarted the next day Saves energy and saves energy Do operation becomes possible.
【0052】第二の発明の如く、改質反応に必要な熱を
太陽光のみで賄いきれない場合に、酸素を含むガスと水
蒸気との混合ガスを改質反応室の風箱内へ供給して流動
化ガスに添加し、改質反応室内で燃料を部分酸化させ、
改質反応に必要な熱の一部を賄うようにすると、太陽光
を利用できない夜間等においても、太陽光利用石炭水蒸
気改質炉の運転を停止させずに継続することが可能とな
る。As in the second invention, when the heat required for the reforming reaction cannot be supplied only by sunlight, a mixed gas of a gas containing oxygen and steam is supplied into the wind box of the reforming reaction chamber. To the fluidizing gas to partially oxidize the fuel in the reforming reaction chamber,
If a part of the heat required for the reforming reaction is provided, it becomes possible to continue the operation of the solar-heated coal steam reforming furnace without stopping even at night when sunlight cannot be used.
【0053】第三の発明の如く、改質反応に必要な熱を
太陽光のみで賄いきれなくなった時点で、酸素を含むガ
スと水蒸気との混合ガスを改質反応室の風箱内へ供給し
て流動化ガスに添加し、改質反応室内で燃料を部分酸化
させ、改質反応に必要な熱の一部を賄い、この状態から
更に太陽光が完全に利用できなくなった時点で、太陽光
加熱室へ供給される流動化ガスを停止し、太陽光加熱室
内の流動化助剤を移動できなくし、改質反応室側から耐
火物隔壁上部に設けた上部連通口を通じて太陽光加熱室
内へ流動化助剤を流入せしめ、太陽光加熱室内の流動化
助剤層の上に積み重ね、複合放物面鏡が存在する太陽光
加熱室中心部とその周囲の部分とを、流動化助剤の厚い
層により仕切った状態で、改質反応室への流動化ガスの
供給を継続するようにすると、改質反応室内での燃料の
部分酸化により、改質反応室内の温度低下が防止される
と共に、流動化助剤自身が保温材となって複合放物面鏡
による冷却が抑制され、改質反応室での熱損失が最小限
に抑えられ、熱効率向上に寄与することが可能となる。As in the third invention, when the heat required for the reforming reaction cannot be provided by only sunlight, a mixed gas of a gas containing oxygen and steam is supplied into the wind box of the reforming reaction chamber. And add it to the fluidizing gas to partially oxidize the fuel in the reforming reaction chamber to cover some of the heat required for the reforming reaction. The fluidizing gas supplied to the light heating chamber is stopped, the fluidization aid in the solar heating chamber cannot be moved, and the reforming reaction chamber enters the solar heating chamber through the upper communication port provided above the refractory partition. The fluidization aid is allowed to flow, and the fluidization aid is stacked on the fluidization aid layer in the solar heating chamber, and the center of the solar heating chamber where the compound parabolic mirror is located and the surrounding area are mixed with the fluidizing aid. Continue to supply fluidizing gas to the reforming reaction chamber with the partition by the thick layer. In this case, the partial oxidation of the fuel in the reforming reaction chamber prevents the temperature in the reforming reaction chamber from dropping, and the fluidizing aid itself serves as a heat insulating material to suppress cooling by the composite parabolic mirror. Heat loss in the reforming reaction chamber is minimized, and it is possible to contribute to improvement in thermal efficiency.
【0054】第四の発明の如く、改質反応に必要な熱を
太陽光のみで賄いきれない場合に、酸素を含むガスと水
蒸気との混合ガスを改質反応室内の流動層へ直接供給
し、改質反応室内で燃料を部分酸化させ、改質反応に必
要な熱の一部を賄うようにすると、太陽光を利用できな
い夜間等においても、太陽光利用石炭水蒸気改質炉の運
転を停止させずに継続することが可能となる。As in the fourth invention, when the heat required for the reforming reaction cannot be provided only by sunlight, a mixed gas of a gas containing oxygen and steam is directly supplied to the fluidized bed in the reforming reaction chamber. If the fuel is partially oxidized in the reforming reaction chamber to supply part of the heat required for the reforming reaction, the operation of the solar steam reforming furnace using sunlight is stopped even at night when sunlight cannot be used It is possible to continue without doing so.
【0055】第五の発明の如く、改質反応に必要な熱を
太陽光のみで賄いきれなくなった時点で、酸素を含むガ
スと水蒸気との混合ガスを改質反応室内の流動層へ直接
供給し、改質反応室内で燃料を部分酸化させ、改質反応
に必要な熱の一部を賄い、この状態から更に太陽光が完
全に利用できなくなった時点で、太陽光加熱室へ供給さ
れる流動化ガスを停止し、太陽光加熱室内の流動化助剤
を移動できなくし、改質反応室側から耐火物隔壁上部に
設けた上部連通口を通じて太陽光加熱室内へ流動化助剤
を流入せしめ、太陽光加熱室内の流動化助剤層の上に積
み重ね、複合放物面鏡が存在する太陽光加熱室中心部と
その周囲の部分とを、流動化助剤の厚い層により仕切っ
た状態で、改質反応室への流動化ガスの供給を継続する
ようにすると、改質反応室内での燃料の部分酸化によ
り、改質反応室内の温度低下が防止されると共に、流動
化助剤自身が保温材となって複合放物面鏡による冷却が
抑制され、改質反応室での熱損失が最小限に抑えられ、
熱効率向上に寄与することが可能となる。As in the fifth invention, when the heat required for the reforming reaction cannot be supplied only by sunlight, the mixed gas of the gas containing oxygen and the steam is directly supplied to the fluidized bed in the reforming reaction chamber. Then, the fuel is partially oxidized in the reforming reaction chamber to supply a part of the heat necessary for the reforming reaction, and when the sunlight becomes completely unavailable from this state, the fuel is supplied to the solar heating chamber. The fluidizing gas is stopped, the fluidizing aid in the solar heating chamber cannot be moved, and the fluidizing aid flows into the solar heating chamber from the reforming reaction chamber through the upper communication port provided above the refractory partition. , Stacked on the fluidization aid layer in the solar heating chamber, with the central part of the solar heating chamber where the compound parabolic mirror exists and its surrounding part separated by a thick layer of the fluidization aid. If the supply of fluidizing gas to the reforming reaction chamber is continued, The partial oxidation of fuel in the reaction chamber prevents the temperature in the reforming reaction chamber from dropping, and the fluidization aid itself acts as a heat insulator to suppress cooling by the compound parabolic mirror. Heat loss is minimized,
It is possible to contribute to improvement in thermal efficiency.
【0056】[0056]
【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0057】図1は本発明を実施する形態の一例であっ
て、図中、図5〜図7と同一の符号を付した部分は同一
物を表わしており、基本的な構成は図5〜図7に示す従
来のものと同様であるが、本図示例の特徴とするところ
は、図1に示す如く、太陽光4が利用できない時間帯に
運転を停止する際、太陽光加熱室12へ供給される流動
化ガスを改質反応室14よりも先に停止し、太陽光加熱
室12内の流動化助剤8を移動できなくし、改質反応室
14側から耐火物隔壁16上部に設けた上部連通口16
aを通じて太陽光加熱室12内へ流動化助剤8を流入せ
しめ、太陽光加熱室12内の流動化助剤層の上に積み重
ねた後、改質反応室14へ供給される流動化ガスを停止
してホットバンキングを行うことにより、複合放物面鏡
13が存在する太陽光加熱室12中心部とその周囲の部
分とを、流動化助剤8の厚い層により仕切るようにした
点にある。FIG. 1 is an example of an embodiment of the present invention, in which parts denoted by the same reference numerals as those in FIGS. 5 to 7 represent the same parts, and the basic configuration is shown in FIGS. 7 is the same as the conventional one shown in FIG. 7, but the feature of this example is that, as shown in FIG. The supplied fluidizing gas is stopped before the reforming reaction chamber 14, and the fluidization aid 8 in the solar heating chamber 12 cannot be moved, and is provided above the refractory partition 16 from the reforming reaction chamber 14 side. Upper communication port 16
a, the fluidization aid 8 is caused to flow into the solar heating chamber 12 and stacked on the fluidization aid layer in the solar heating chamber 12, and then the fluidizing gas supplied to the reforming reaction chamber 14 is removed. By stopping and performing hot banking, the central part of the solar heating chamber 12 in which the compound parabolic mirror 13 is present and its peripheral part are separated by a thick layer of the fluidization aid 8. .
【0058】本発明の対象となる図1に示す太陽光利用
石炭水蒸気改質炉10では、太陽光加熱室12の上に水
冷構造を有する複合放物面鏡13が存在しており、該複
合放物面鏡13は精密加工された金属構造物であり、冷
却水を停止した場合、流動層からの熱により熱膨張が起
こり、加工面に歪みが生じる恐れがあるため、冷却水を
停止することは不可能であり、このため、太陽光4が利
用できない時間帯に運転を停止する際、仮に、太陽光加
熱室12へ供給される流動化ガスと、改質反応室14へ
供給される流動化ガスとを同時に停止してしまうと、流
動層の上の空間では、この温度差による自然対流が発生
し、流動層表面から熱が奪われることとなる。In a solar-heated coal steam reforming furnace 10 shown in FIG. 1 which is an object of the present invention, a composite parabolic mirror 13 having a water-cooled structure exists above a solar heating chamber 12. The parabolic mirror 13 is a precision-machined metal structure, and when cooling water is stopped, heat from the fluidized bed causes thermal expansion, which may cause distortion on the processing surface. Therefore, when the operation is stopped during a time period when the sunlight 4 is not available, the fluidizing gas supplied to the solar heating chamber 12 and the fluidizing gas supplied to the reforming reaction chamber 14 are temporarily supplied. If the fluidized gas is stopped at the same time, natural convection occurs due to this temperature difference in the space above the fluidized bed, and heat is taken from the fluidized bed surface.
【0059】しかしながら、前述の如く、太陽光4が利
用できない時間帯に運転を停止する際、太陽光加熱室1
2へ供給される流動化ガスを改質反応室14よりも先に
停止し、太陽光加熱室12内の流動化助剤8を移動でき
なくし、改質反応室14側から耐火物隔壁16上部に設
けた上部連通口16aを通じて太陽光加熱室12内へ流
動化助剤8を流入せしめ、太陽光加熱室12内の流動化
助剤層の上に積み重ねた後、改質反応室14へ供給され
る流動化ガスを停止してホットバンキングを行うことに
より、複合放物面鏡13が存在する太陽光加熱室12中
心部とその周囲の部分とを、流動化助剤8の厚い層によ
り仕切るようにすると、流動化助剤8自身が保温材とな
り、流動層表面から熱が奪われにくくなり、熱の放散が
抑制される。However, as described above, when the operation is stopped during a time when the sunlight 4 cannot be used, the solar heating room 1
The fluidizing gas supplied to the fuel cell 2 is stopped before the reforming reaction chamber 14, the fluidizing aid 8 in the solar heating chamber 12 cannot be moved, and the upper part of the refractory partition 16 from the reforming reaction chamber 14 side. The fluidization aid 8 is caused to flow into the solar heating chamber 12 through the upper communication port 16a provided in the solar heating chamber 12, and is stacked on the fluidization aid layer in the solar heating chamber 12, and then supplied to the reforming reaction chamber 14. By performing the hot banking while stopping the fluidized gas to be supplied, the central part of the solar heating chamber 12 in which the compound parabolic mirror 13 is present and its surrounding part are separated by a thick layer of the fluidizing aid 8. By doing so, the fluidization aid 8 itself serves as a heat insulating material, making it difficult for heat to be removed from the surface of the fluidized bed, thereby suppressing heat dissipation.
【0060】尚、太陽光加熱室12と改質反応室14の
間には耐火物隔壁16が設けられているため、複合放物
面鏡13による冷却効果は改質反応室14には及ばな
い。又、太陽光加熱室12についても、複合放物面鏡1
3から太陽光入射部の周囲を流動層内部まで延びた耐火
物隔壁28で覆っているため、該耐火物隔壁28の外側
の部分については、熱放散が抑制される構造になってい
る。Since the refractory partition 16 is provided between the solar heating chamber 12 and the reforming reaction chamber 14, the cooling effect of the compound parabolic mirror 13 does not reach the reforming reaction chamber 14. . The solar heating chamber 12 is also provided with the composite parabolic mirror 1.
Since the periphery of the sunlight incident portion from 3 is covered with the refractory partition 28 extending to the inside of the fluidized bed, the portion outside the refractory partition 28 has a structure in which heat dissipation is suppressed.
【0061】この結果、翌日再起動する際に、膨大なエ
ネルギーを消費しなくて済み、効率的な運用が可能とな
る。As a result, when restarting the next day, enormous energy is not required, and efficient operation is possible.
【0062】こうして、翌日再起動する際に、膨大なエ
ネルギーを必要とせず、効率向上を図り得る。Thus, when restarting the next day, enormous energy is not required, and efficiency can be improved.
【0063】図2は本発明を実施する形態の他の例であ
って、図中、図5〜図7と同一の符号を付した部分は同
一物を表わしており、改質反応室14の風箱15b内
に、酸素を含むガス(空気、酸素富化空気、純酸素等)
と水蒸気との混合ガスを供給するためのドーナツ状の混
合ガス供給ノズル29を配設し、改質反応に必要な熱を
太陽光4のみで賄いきれない場合に、酸素を含むガスと
水蒸気との混合ガスを改質反応室14の風箱15b内へ
供給して流動化ガスに添加し、改質反応室14内で燃料
6を部分酸化させ、改質反応に必要な熱の一部を賄うよ
うにしたものである。FIG. 2 shows another example of the embodiment of the present invention. In the figure, the portions denoted by the same reference numerals as those in FIGS. Gas containing oxygen (air, oxygen-enriched air, pure oxygen, etc.) in the wind box 15b
A donut-shaped mixed gas supply nozzle 29 for supplying a mixed gas of water and steam is provided, and when the heat required for the reforming reaction cannot be covered only by the sunlight 4, the gas containing oxygen and the steam Is supplied into the wind box 15b of the reforming reaction chamber 14 and is added to the fluidizing gas to partially oxidize the fuel 6 in the reforming reaction chamber 14 and to remove a part of the heat required for the reforming reaction. It is intended to cover.
【0064】太陽が西に傾き、太陽光利用石炭水蒸気改
質炉10内に入射する熱量が減少することにより、改質
反応室14内の温度が徐々に低下し、改質反応に必要な
熱を太陽光4のみで賄いきれなくなるが、このように、
改質反応に必要な熱を太陽光4のみで賄いきれない場合
に、酸素を含むガスと水蒸気との混合ガスを改質反応室
14の風箱15b内へ供給して流動化ガスに添加し、改
質反応室14内で燃料6を部分酸化させ、改質反応に必
要な熱の一部を賄うようにすると、太陽光4を利用でき
ない夜間等においても、太陽光利用石炭水蒸気改質炉1
0の運転を停止させずに継続することが可能となる。As the sun tilts to the west and the amount of heat incident on the solar-fired coal steam reforming furnace 10 decreases, the temperature in the reforming reaction chamber 14 gradually decreases, and the heat required for the reforming reaction is reduced. Can no longer be covered by only sunlight 4, but in this way,
When the heat required for the reforming reaction cannot be covered by only the sunlight 4, a mixed gas of a gas containing oxygen and water vapor is supplied into the wind box 15 b of the reforming reaction chamber 14 and added to the fluidizing gas. When the fuel 6 is partially oxidized in the reforming reaction chamber 14 so as to cover a part of the heat required for the reforming reaction, even at night when the solar light 4 cannot be used, the coal steam reforming furnace using solar light can be used. 1
0 can be continued without stopping.
【0065】尚、図2に示す太陽光利用石炭水蒸気改質
炉10のように、流動化ガスの全部又は一部に可燃性ガ
ス、例えば改質反応によって生成したガスの一部をブロ
ワ25(図6参照)で循環させて使用する場合、太陽光
利用石炭水蒸気改質炉10上流において酸素を含むガス
を混合することは、発火する虞があり好ましくないが、
本図示例のように酸素を含むガスと水蒸気との混合ガス
を改質反応室14の風箱15b内へ供給して流動化ガス
に添加するのであれば、全く問題はない。As in the case of the coal steam reforming furnace 10 utilizing sunlight shown in FIG. 2, a flammable gas, for example, a part of a gas generated by the reforming reaction is used as the blower 25 ( In the case of circulating and using the mixture in FIG. 6, mixing oxygen-containing gas upstream of the solar-utilized coal steam reforming furnace 10 is not preferable because it may cause ignition.
If a mixed gas of a gas containing oxygen and water vapor is supplied into the wind box 15b of the reforming reaction chamber 14 and added to the fluidizing gas as in the illustrated example, there is no problem at all.
【0066】一方、改質反応に必要な熱を太陽光4のみ
で賄いきれなくなった時点で、酸素を含むガスと水蒸気
との混合ガスを改質反応室14の風箱15b内へ供給し
て流動化ガスに添加し、改質反応室14内で燃料6を部
分酸化させ、改質反応に必要な熱の一部を賄い、この状
態から更に太陽光4が完全に利用できなくなった時点
で、太陽光加熱室12へ供給される流動化ガスを停止
し、太陽光加熱室12内の流動化助剤8を移動できなく
し、改質反応室14側から耐火物隔壁16上部に設けた
上部連通口16aを通じて太陽光加熱室12内へ流動化
助剤8を流入せしめ、太陽光加熱室12内の流動化助剤
層の上に積み重ね、複合放物面鏡13が存在する太陽光
加熱室12中心部とその周囲の部分とを、流動化助剤8
の厚い層により仕切った状態で、改質反応室14への流
動化ガスの供給を継続する運転を行うこともできる。On the other hand, when the heat required for the reforming reaction cannot be supplied only by the sunlight 4, a mixed gas of a gas containing oxygen and steam is supplied into the wind box 15 b of the reforming reaction chamber 14. The fuel 6 is added to the fluidizing gas to partially oxidize the fuel 6 in the reforming reaction chamber 14 to cover a part of the heat required for the reforming reaction. When the sunlight 4 becomes completely unavailable from this state, Then, the fluidizing gas supplied to the solar heating chamber 12 is stopped, the fluidizing aid 8 in the solar heating chamber 12 cannot be moved, and the upper portion provided above the refractory partition 16 from the reforming reaction chamber 14 side. The fluidizing aid 8 is caused to flow into the solar heating chamber 12 through the communication port 16a, and is stacked on the fluidizing aid layer in the solar heating chamber 12, and the solar heating chamber in which the compound parabolic mirror 13 exists. 12 The central part and its surrounding part are
The operation of continuing the supply of the fluidizing gas to the reforming reaction chamber 14 can be performed in a state of being partitioned by the thick layer.
【0067】このような運転を行えば、改質反応室14
内での燃料6の部分酸化により、改質反応室14内の温
度低下が防止されると共に、流動化助剤8自身が保温材
となって複合放物面鏡13による冷却が抑制され、改質
反応室14での熱損失が最小限に抑えられ、熱効率向上
に寄与することが可能となる。By performing such an operation, the reforming reaction chamber 14
Due to the partial oxidation of the fuel 6 inside, the temperature inside the reforming reaction chamber 14 is prevented from being lowered, and the fluidizing aid 8 itself serves as a heat insulator, whereby the cooling by the composite parabolic mirror 13 is suppressed, and The heat loss in the quality reaction chamber 14 is minimized, and it is possible to contribute to an improvement in thermal efficiency.
【0068】又、太陽光4からの熱が回復していく段階
では、太陽光加熱室12への流動化ガスの供給を再開す
ると共に、太陽光4の強度が、部分酸化なしで改質反応
が継続できるようになるまで、改質反応室14と必要に
応じて太陽光加熱室12に酸素を含むガスを供給し、温
度調整を行うようにすればよい。At the stage where the heat from the sunlight 4 recovers, the supply of the fluidizing gas to the solar heating chamber 12 is resumed, and the intensity of the sunlight 4 is reduced without the partial oxidation. Until can be continued, a gas containing oxygen may be supplied to the reforming reaction chamber 14 and, if necessary, the solar heating chamber 12 to adjust the temperature.
【0069】図3は本発明を実施する形態の更に他の例
であって、図中、図5〜図7と同一の符号を付した部分
は同一物を表わしており、改質反応室14内底部に、酸
素を含むガス(空気、酸素富化空気、純酸素等)と水蒸
気との混合ガスを供給するための混合ガス供給ノズル3
0を配設し、改質反応に必要な熱を太陽光4のみで賄い
きれない場合に、酸素を含むガスと水蒸気との混合ガス
を改質反応室14内の流動層へ直接供給し、改質反応室
14内で燃料6を部分酸化させ、改質反応に必要な熱の
一部を賄うようにしたものである。FIG. 3 shows still another example of the embodiment of the present invention. In the figure, the parts denoted by the same reference numerals as those in FIGS. A mixed gas supply nozzle 3 for supplying a mixed gas of oxygen-containing gas (air, oxygen-enriched air, pure oxygen, etc.) and steam to the inner bottom.
0, and when the heat required for the reforming reaction cannot be covered only by the sunlight 4, a mixed gas of a gas containing oxygen and steam is directly supplied to the fluidized bed in the reforming reaction chamber 14, The fuel 6 is partially oxidized in the reforming reaction chamber 14 so as to cover a part of heat required for the reforming reaction.
【0070】太陽が西に傾き、太陽光利用石炭水蒸気改
質炉10内に入射する熱量が減少することにより、改質
反応室14内の温度が徐々に低下し、改質反応に必要な
熱を太陽光4のみで賄いきれなくなるが、このように、
改質反応に必要な熱を太陽光4のみで賄いきれない場合
に、酸素を含むガスと水蒸気との混合ガスを改質反応室
14内の流動層へ直接供給し、改質反応室14内で燃料
6を部分酸化させ、改質反応に必要な熱の一部を賄うよ
うにすると、太陽光4を利用できない夜間等において
も、太陽光利用石炭水蒸気改質炉10の運転を停止させ
ずに継続することが可能となる。As the sun tilts to the west and the amount of heat incident on the solar steam reforming furnace 10 utilizing sunlight decreases, the temperature in the reforming reaction chamber 14 gradually decreases, and the heat required for the reforming reaction is reduced. Can no longer be covered by only sunlight 4, but in this way,
When the heat required for the reforming reaction cannot be covered by only the sunlight 4, a mixed gas of a gas containing oxygen and water vapor is directly supplied to the fluidized bed in the reforming reaction chamber 14, When the fuel 6 is partially oxidized to cover a part of the heat required for the reforming reaction, the operation of the solar-heat-based coal steam reforming furnace 10 is not stopped even at night when the sunlight 4 cannot be used. Can be continued.
【0071】尚、図3に示す太陽光利用石炭水蒸気改質
炉10のように、流動化ガスの全部又は一部に可燃性ガ
ス、例えば改質反応によって生成したガスの一部をブロ
ワ25(図6参照)で循環させて使用する場合、太陽光
利用石炭水蒸気改質炉10上流において酸素を含むガス
を混合することは、発火する虞があり好ましくないが、
本図示例のように酸素を含むガスと水蒸気との混合ガス
を改質反応室14内の流動層へ直接供給して流動化ガス
に添加するのであれば、全く問題はない。As in the case of the solar-powered coal steam reforming furnace 10 shown in FIG. 3, a flammable gas, for example, a part of a gas generated by the reforming reaction is used as a blower 25 ( In the case of circulating and using the mixture in FIG. 6, mixing oxygen-containing gas upstream of the solar-utilized coal steam reforming furnace 10 is not preferable because it may cause ignition.
There is no problem if the mixed gas of the gas containing oxygen and the water vapor is directly supplied to the fluidized bed in the reforming reaction chamber 14 and added to the fluidized gas as in the illustrated example.
【0072】一方、改質反応に必要な熱を太陽光4のみ
で賄いきれなくなった時点で、酸素を含むガスと水蒸気
との混合ガスを改質反応室14内の流動層へ直接供給
し、改質反応室14内で燃料6を部分酸化させ、改質反
応に必要な熱の一部を賄い、この状態から更に太陽光4
が完全に利用できなくなった時点で、太陽光加熱室12
へ供給される流動化ガスを停止し、太陽光加熱室12内
の流動化助剤8を移動できなくし、改質反応室14側か
ら耐火物隔壁16上部に設けた上部連通口16aを通じ
て太陽光加熱室12内へ流動化助剤8を流入せしめ、太
陽光加熱室12内の流動化助剤層の上に積み重ね、複合
放物面鏡13が存在する太陽光加熱室12中心部とその
周囲の部分とを、流動化助剤8の厚い層により仕切った
状態で、改質反応室14への流動化ガスの供給を継続す
る運転を行うこともできる。On the other hand, when the heat required for the reforming reaction cannot be supplied only by the sunlight 4, the mixed gas of the gas containing oxygen and the steam is directly supplied to the fluidized bed in the reforming reaction chamber 14. The fuel 6 is partially oxidized in the reforming reaction chamber 14 to cover part of the heat required for the reforming reaction.
At the time when the solar heating room 12 becomes completely unavailable.
The fluidizing gas supplied to the solar heating chamber 12 is stopped so that the fluidizing aid 8 in the solar heating chamber 12 cannot be moved, and the sunlight is supplied from the reforming reaction chamber 14 through the upper communication port 16 a provided above the refractory partition 16. The fluidizing aid 8 is allowed to flow into the heating chamber 12, and is stacked on the fluidizing aid layer in the solar heating chamber 12, and the center of the solar heating chamber 12 where the compound parabolic mirror 13 exists and its surroundings The operation of continuing the supply of the fluidizing gas to the reforming reaction chamber 14 can be performed in a state where the portion is separated by the thick layer of the fluidization aid 8.
【0073】このような運転を行えば、図2の例の場合
と同様、改質反応室14内での燃料6の部分酸化によ
り、改質反応室14内の温度低下が防止されると共に、
流動化助剤8自身が保温材となって複合放物面鏡13に
よる冷却が抑制され、改質反応室14での熱損失が最小
限に抑えられ、熱効率向上に寄与することが可能とな
る。By performing such an operation, the temperature in the reforming reaction chamber 14 is prevented from being lowered by the partial oxidation of the fuel 6 in the reforming reaction chamber 14 as in the case of the example of FIG.
The fluidization aid 8 itself serves as a heat insulator, whereby cooling by the composite parabolic mirror 13 is suppressed, heat loss in the reforming reaction chamber 14 is minimized, and it is possible to contribute to improvement in thermal efficiency. .
【0074】又、太陽光4からの熱が回復していく段階
では、図2の例の場合と同様、太陽光加熱室12への流
動化ガスの供給を再開すると共に、太陽光4の強度が、
部分酸化なしで改質反応が継続できるようになるまで、
改質反応室14と必要に応じて太陽光加熱室12に酸素
を含むガスを供給し、温度調整を行うようにすればよ
い。At the stage where the heat from the sunlight 4 recovers, the supply of the fluidizing gas to the sunlight heating chamber 12 is resumed and the intensity of the sunlight 4 is increased, as in the example of FIG. But,
Until the reforming reaction can continue without partial oxidation,
A gas containing oxygen may be supplied to the reforming reaction chamber 14 and, if necessary, the solar heating chamber 12 to adjust the temperature.
【0075】尚、本発明の太陽光利用石炭水蒸気改質炉
の運転方法は、上述の図示例にのみ限定されるものでは
なく、本発明の要旨を逸脱しない範囲内において種々変
更を加え得ることは勿論である。The method of operating the solar steam reforming furnace using solar light according to the present invention is not limited to the above illustrated example, and various changes can be made without departing from the gist of the present invention. Of course.
【0076】[0076]
【発明の効果】以上、説明したように本発明の請求項1
記載の太陽光利用石炭水蒸気改質炉の運転方法によれ
ば、翌日再起動する際に、膨大なエネルギーを必要とせ
ず、効率向上を図り得るという優れた効果を奏し得、
又、本発明の請求項2〜5記載の太陽光利用石炭水蒸気
改質炉の運転方法によれば、運転を停止させずに継続で
き、再起動時に必要となっていたエネルギーを節約し
得、効率向上を図り得るという優れた効果を奏し得る。As described above, the first aspect of the present invention is as described above.
According to the operating method of the solar-powered coal steam reforming furnace described, when restarting the next day, it does not require enormous energy, and can achieve an excellent effect of improving efficiency,
According to the method for operating a solar-utilized coal steam reforming furnace according to claims 2 to 5 of the present invention, the operation can be continued without being stopped, and the energy required at the time of restart can be saved, An excellent effect of improving efficiency can be achieved.
【図1】本発明を実施する形態の一例の構成図である。FIG. 1 is a configuration diagram of an example of an embodiment of the present invention.
【図2】本発明を実施する形態の他の例の構成図であ
る。FIG. 2 is a configuration diagram of another example of an embodiment of the present invention.
【図3】本発明を実施する形態の更に他の例の構成図で
ある。FIG. 3 is a configuration diagram of still another example of an embodiment of the present invention.
【図4】従来の太陽光利用還元反応器の構成図である。FIG. 4 is a configuration diagram of a conventional solar reduction reactor.
【図5】太陽光利用石炭水蒸気改質炉を備えたガス化設
備の全体概要構成図である。FIG. 5 is an overall schematic configuration diagram of a gasification facility provided with a solar-powered coal steam reforming furnace.
【図6】太陽光利用石炭水蒸気改質炉の全体構成図であ
る。FIG. 6 is an overall configuration diagram of a solar-heated coal steam reforming furnace.
【図7】太陽光利用石炭水蒸気改質炉の内部構成図であ
る。FIG. 7 is an internal configuration diagram of a solar-heated coal steam reforming furnace.
4 太陽光 6 燃料 8 流動化助剤 10 太陽光利用石炭水蒸気改質炉 12 太陽光加熱室 13 複合放物面鏡 14 改質反応室 15a 風箱 15b 風箱 16 耐火物隔壁 16a 上部連通口 16b 下部連通口 REFERENCE SIGNS LIST 4 solar light 6 fuel 8 fluidization aid 10 solar-heated coal steam reforming furnace 12 solar heating chamber 13 compound parabolic mirror 14 reforming reaction chamber 15a wind box 15b wind box 16 refractory partition 16a upper communication port 16b Lower communication port
Claims (5)
なる流動化助剤とを水蒸気を含む流動化ガスによって流
動させつつ、燃料と水蒸気を反応させるための改質反応
室と、 燃料と流動化助剤の混合物を流動化ガスによって流動化
させつつ、複合放物面鏡によって集光され密度が高めら
れた太陽光を前記混合物に照射し、該混合物の温度を改
質反応に必要な所定温度まで加熱するための太陽光加熱
室と、 前記改質反応室と太陽光加熱室とを仕切ると共に、上部
に改質反応室からオーバーフローにより燃料と流動化助
剤の混合物を太陽光加熱室へ導く上部連通口が設けら
れ、下部に加熱された混合物を太陽光加熱室から改質反
応室へ導く下部連通口が設けられた耐火物隔壁と、 前記改質反応室と太陽光加熱室とに個々に流動化ガスを
供給できるよう仕切られた風箱とを備え、可燃性ガスを
主成分とする合成ガスを生成する太陽光利用石炭水蒸気
改質炉の運転方法であって、 太陽光が利用できない時間帯に運転を停止する際、太陽
光加熱室へ供給される流動化ガスを改質反応室よりも先
に停止し、太陽光加熱室内の流動化助剤を移動できなく
し、改質反応室側から耐火物隔壁上部に設けた上部連通
口を通じて太陽光加熱室内へ流動化助剤を流入せしめ、
太陽光加熱室内の流動化助剤層の上に積み重ねた後、改
質反応室へ供給される流動化ガスを停止してホットバン
キングを行うことにより、複合放物面鏡が存在する太陽
光加熱室中心部とその周囲の部分とを、流動化助剤の厚
い層により仕切ることを特徴とする太陽光利用石炭水蒸
気改質炉の運転方法。1. A reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidization aid comprising an inorganic component with a fluidizing gas containing steam. While the mixture of the fluidization aid is fluidized by the fluidizing gas, the mixture is irradiated with sunlight whose density has been increased by condensing by the compound parabolic mirror, and the temperature of the mixture is required for the reforming reaction. A solar heating chamber for heating to a predetermined temperature, and a partition between the reforming reaction chamber and the solar heating chamber, and a mixture of the fuel and the fluidization aid flowing from the reforming reaction chamber to the upper part of the solar heating chamber. An upper communication port is provided for leading the mixture to the refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber, and the reforming reaction chamber and the solar heating chamber. Fluidizing gas can be individually supplied to A method of operating a solar-powered coal steam reforming furnace that includes a partitioned wind box and generates a synthetic gas containing flammable gas as a main component, wherein the operation is stopped during a time when sunlight is not available At this time, the fluidizing gas supplied to the solar heating chamber is stopped before the reforming reaction chamber, and the fluidizing aid in the solar heating chamber cannot be moved. The fluidization aid flows into the solar heating chamber through the upper communication port provided,
After stacking on the fluidization aid layer in the solar heating chamber, by stopping the fluidizing gas supplied to the reforming reaction chamber and performing hot banking, the solar heating in which the compound parabolic mirror exists A method for operating a solar-heated coal steam reforming furnace, comprising separating a central portion of a chamber and a peripheral portion thereof with a thick layer of a fluidization aid.
なる流動化助剤とを水蒸気を含む流動化ガスによって流
動させつつ、燃料と水蒸気を反応させるための改質反応
室と、 燃料と流動化助剤の混合物を流動化ガスによって流動化
させつつ、複合放物面鏡によって集光され密度が高めら
れた太陽光を前記混合物に照射し、該混合物の温度を改
質反応に必要な所定温度まで加熱するための太陽光加熱
室と、 前記改質反応室と太陽光加熱室とを仕切ると共に、上部
に改質反応室からオーバーフローにより燃料と流動化助
剤の混合物を太陽光加熱室へ導く上部連通口が設けら
れ、下部に加熱された混合物を太陽光加熱室から改質反
応室へ導く下部連通口が設けられた耐火物隔壁と、 前記改質反応室と太陽光加熱室とに個々に流動化ガスを
供給できるよう仕切られた風箱とを備え、可燃性ガスを
主成分とする合成ガスを生成する太陽光利用石炭水蒸気
改質炉の運転方法であって、 改質反応に必要な熱を太陽光のみで賄いきれない場合
に、酸素を含むガスと水蒸気との混合ガスを改質反応室
の風箱内へ供給して流動化ガスに添加し、改質反応室内
で燃料を部分酸化させ、改質反応に必要な熱の一部を賄
うことを特徴とする太陽光利用石炭水蒸気改質炉の運転
方法。2. A reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidization aid comprising an inorganic component with a fluidizing gas containing steam. While the mixture of the fluidization aid is fluidized by the fluidizing gas, the mixture is irradiated with sunlight whose density has been increased by condensing by the compound parabolic mirror, and the temperature of the mixture is required for the reforming reaction. A solar heating chamber for heating to a predetermined temperature, and a partition between the reforming reaction chamber and the solar heating chamber, and a mixture of the fuel and the fluidization aid flowing from the reforming reaction chamber to the upper part of the solar heating chamber. An upper communication port is provided for leading the mixture to the refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber, and the reforming reaction chamber and the solar heating chamber. Fluidizing gas can be individually supplied to An operating method of a solar steam reforming furnace utilizing sunlight, which generates a synthesis gas containing a flammable gas as a main component, comprising: If the gas cannot be supplied, a mixed gas of oxygen-containing gas and water vapor is supplied into the wind chamber of the reforming reaction chamber and added to the fluidizing gas, and the fuel is partially oxidized in the reforming reaction chamber to perform the reforming reaction. A method for operating a solar-powered coal steam reforming furnace, which provides a part of the heat required for the process.
なる流動化助剤とを水蒸気を含む流動化ガスによって流
動させつつ、燃料と水蒸気を反応させるための改質反応
室と、 燃料と流動化助剤の混合物を流動化ガスによって流動化
させつつ、複合放物面鏡によって集光され密度が高めら
れた太陽光を前記混合物に照射し、該混合物の温度を改
質反応に必要な所定温度まで加熱するための太陽光加熱
室と、 前記改質反応室と太陽光加熱室とを仕切ると共に、上部
に改質反応室からオーバーフローにより燃料と流動化助
剤の混合物を太陽光加熱室へ導く上部連通口が設けら
れ、下部に加熱された混合物を太陽光加熱室から改質反
応室へ導く下部連通口が設けられた耐火物隔壁と、 前記改質反応室と太陽光加熱室とに個々に流動化ガスを
供給できるよう仕切られた風箱とを備え、可燃性ガスを
主成分とする合成ガスを生成する太陽光利用石炭水蒸気
改質炉の運転方法であって、 改質反応に必要な熱を太陽光のみで賄いきれなくなった
時点で、酸素を含むガスと水蒸気との混合ガスを改質反
応室の風箱内へ供給して流動化ガスに添加し、改質反応
室内で燃料を部分酸化させ、改質反応に必要な熱の一部
を賄い、 この状態から更に太陽光が完全に利用できなくなった時
点で、太陽光加熱室へ供給される流動化ガスを停止し、
太陽光加熱室内の流動化助剤を移動できなくし、改質反
応室側から耐火物隔壁上部に設けた上部連通口を通じて
太陽光加熱室内へ流動化助剤を流入せしめ、太陽光加熱
室内の流動化助剤層の上に積み重ね、複合放物面鏡が存
在する太陽光加熱室中心部とその周囲の部分とを、流動
化助剤の厚い層により仕切った状態で、改質反応室への
流動化ガスの供給を継続することを特徴とする太陽光利
用石炭水蒸気改質炉の運転方法。3. A reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidization aid comprising an inorganic component with a fluidizing gas containing steam. While the mixture of the fluidization aid is fluidized by the fluidizing gas, the mixture is irradiated with sunlight whose density has been increased by condensing by the compound parabolic mirror, and the temperature of the mixture is required for the reforming reaction. A solar heating chamber for heating to a predetermined temperature, and a partition between the reforming reaction chamber and the solar heating chamber, and a mixture of the fuel and the fluidization aid flowing from the reforming reaction chamber to the upper part of the solar heating chamber. An upper communication port is provided for leading the mixture to the refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber, and the reforming reaction chamber and the solar heating chamber. Fluidizing gas can be individually supplied to An operating method of a solar steam reforming furnace utilizing sunlight, which generates a synthesis gas containing a flammable gas as a main component, comprising: When it is no longer feasible, a mixed gas of oxygen-containing gas and water vapor is supplied into the wind chamber of the reforming reaction chamber and added to the fluidizing gas, and the fuel is partially oxidized in the reforming reaction chamber to reform. Supplies part of the heat necessary for the reaction, and when the sunlight becomes completely unavailable from this state, the fluidizing gas supplied to the solar heating chamber is stopped,
The fluidization aid in the solar heating chamber cannot be moved, and the fluidizing aid flows into the solar heating chamber from the reforming reaction chamber through the upper communication port provided in the upper part of the refractory partition. Stacked on the layer of the fluidization aid, the central part of the solar heating chamber where the compound parabolic mirror is located and the surrounding area are separated by a thick layer of the fluidization aid, A method for operating a solar steam reforming furnace utilizing solar light, characterized by continuing supply of a fluidizing gas.
なる流動化助剤とを水蒸気を含む流動化ガスによって流
動させつつ、燃料と水蒸気を反応させるための改質反応
室と、 燃料と流動化助剤の混合物を流動化ガスによって流動化
させつつ、複合放物面鏡によって集光され密度が高めら
れた太陽光を前記混合物に照射し、該混合物の温度を改
質反応に必要な所定温度まで加熱するための太陽光加熱
室と、 前記改質反応室と太陽光加熱室とを仕切ると共に、上部
に改質反応室からオーバーフローにより燃料と流動化助
剤の混合物を太陽光加熱室へ導く上部連通口が設けら
れ、下部に加熱された混合物を太陽光加熱室から改質反
応室へ導く下部連通口が設けられた耐火物隔壁と、 前記改質反応室と太陽光加熱室とに個々に流動化ガスを
供給できるよう仕切られた風箱とを備え、可燃性ガスを
主成分とする合成ガスを生成する太陽光利用石炭水蒸気
改質炉の運転方法であって、 改質反応に必要な熱を太陽光のみで賄いきれない場合
に、酸素を含むガスと水蒸気との混合ガスを改質反応室
内の流動層へ直接供給し、改質反応室内で燃料を部分酸
化させ、改質反応に必要な熱の一部を賄うことを特徴と
する太陽光利用石炭水蒸気改質炉の運転方法。4. A reforming reaction chamber for reacting fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidization aid comprising an inorganic component with a fluidizing gas containing steam. While the mixture of the fluidization aid is fluidized by the fluidizing gas, the mixture is irradiated with sunlight whose density has been increased by condensing by the compound parabolic mirror, and the temperature of the mixture is required for the reforming reaction. A solar heating chamber for heating to a predetermined temperature, and a partition between the reforming reaction chamber and the solar heating chamber, and a mixture of the fuel and the fluidization aid flowing from the reforming reaction chamber to the upper part of the solar heating chamber. An upper communication port is provided for leading the mixture to the refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber, and the reforming reaction chamber and the solar heating chamber. Fluidizing gas can be individually supplied to An operating method of a solar steam reforming furnace utilizing sunlight, which generates a synthesis gas containing a flammable gas as a main component, comprising: If the gas cannot be supplied, a mixed gas of oxygen-containing gas and steam is directly supplied to the fluidized bed in the reforming reaction chamber to partially oxidize the fuel in the reforming reaction chamber, and a part of the heat required for the reforming reaction A method for operating a solar steam reforming furnace utilizing sunlight, characterized in that the steam is reformed.
なる流動化助剤とを水蒸気を含む流動化ガスによって流
動させつつ、燃料と水蒸気を反応させるための改質反応
室と、 燃料と流動化助剤の混合物を流動化ガスによって流動化
させつつ、複合放物面鏡によって集光され密度が高めら
れた太陽光を前記混合物に照射し、該混合物の温度を改
質反応に必要な所定温度まで加熱するための太陽光加熱
室と、 前記改質反応室と太陽光加熱室とを仕切ると共に、上部
に改質反応室からオーバーフローにより燃料と流動化助
剤の混合物を太陽光加熱室へ導く上部連通口が設けら
れ、下部に加熱された混合物を太陽光加熱室から改質反
応室へ導く下部連通口が設けられた耐火物隔壁と、 前記改質反応室と太陽光加熱室とに個々に流動化ガスを
供給できるよう仕切られた風箱とを備え、可燃性ガスを
主成分とする合成ガスを生成する太陽光利用石炭水蒸気
改質炉の運転方法であって、 改質反応に必要な熱を太陽光のみで賄いきれなくなった
時点で、酸素を含むガスと水蒸気との混合ガスを改質反
応室内の流動層へ直接供給し、改質反応室内で燃料を部
分酸化させ、改質反応に必要な熱の一部を賄い、 この状態から更に太陽光が完全に利用できなくなった時
点で、太陽光加熱室へ供給される流動化ガスを停止し、
太陽光加熱室内の流動化助剤を移動できなくし、改質反
応室側から耐火物隔壁上部に設けた上部連通口を通じて
太陽光加熱室内へ流動化助剤を流入せしめ、太陽光加熱
室内の流動化助剤層の上に積み重ね、複合放物面鏡が存
在する太陽光加熱室中心部とその周囲の部分とを、流動
化助剤の厚い層により仕切った状態で、改質反応室への
流動化ガスの供給を継続することを特徴とする太陽光利
用石炭水蒸気改質炉の運転方法。5. A reforming reaction chamber for reacting a fuel with steam while fluidizing a fuel containing carbon as a main component and a fluidization aid comprising an inorganic component with a fluidizing gas containing steam. While the mixture of the fluidization aid is fluidized by the fluidizing gas, the mixture is irradiated with sunlight whose density has been increased by condensing by the compound parabolic mirror, and the temperature of the mixture is required for the reforming reaction. A solar heating chamber for heating to a predetermined temperature, and a partition between the reforming reaction chamber and the solar heating chamber, and a mixture of the fuel and the fluidization aid flowing from the reforming reaction chamber to the upper part of the solar heating chamber. An upper communication port is provided for leading the mixture to the refractory partition provided with a lower communication port for guiding the heated mixture from the solar heating chamber to the reforming reaction chamber, and the reforming reaction chamber and the solar heating chamber. Fluidizing gas can be individually supplied to An operating method of a solar steam reforming furnace utilizing sunlight, which generates a synthesis gas containing a flammable gas as a main component, comprising: At the point where the fuel cannot be supplied, a mixed gas of oxygen-containing gas and steam is directly supplied to the fluidized bed in the reforming reaction chamber to partially oxidize the fuel in the reforming reaction chamber, thereby reducing the heat required for the reforming reaction. When the sunlight becomes completely unavailable from this state, the fluidizing gas supplied to the solar heating chamber is stopped,
The fluidization aid in the solar heating chamber cannot be moved, and the fluidizing aid flows into the solar heating chamber from the reforming reaction chamber through the upper communication port provided in the upper part of the refractory partition. Stacked on the layer of the fluidization aid, the central part of the solar heating chamber where the compound parabolic mirror is located and the surrounding area are separated by a thick layer of the fluidization aid, A method for operating a solar steam reforming furnace utilizing solar light, characterized by continuing supply of a fluidizing gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000063489A JP2001247880A (en) | 2000-03-08 | 2000-03-08 | Method for operating solar coal steam improving oven |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000063489A JP2001247880A (en) | 2000-03-08 | 2000-03-08 | Method for operating solar coal steam improving oven |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001247880A true JP2001247880A (en) | 2001-09-14 |
Family
ID=18583344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000063489A Pending JP2001247880A (en) | 2000-03-08 | 2000-03-08 | Method for operating solar coal steam improving oven |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001247880A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013543576A (en) * | 2010-10-15 | 2013-12-05 | マガルディ インダストリエ ソシエタ ア レスポンサビリタ リミタータ | Apparatus, plant and method with high level energy efficiency for storing and using solar derived thermal energy |
CN104498092A (en) * | 2014-12-12 | 2015-04-08 | 浙江大学 | Dual-cavity type solar driven carbonaceous material reaction method and apparatus |
CN109550469A (en) * | 2018-12-14 | 2019-04-02 | 华南理工大学 | A kind of bicavate thermochemical method energy storage reaction unit and method |
-
2000
- 2000-03-08 JP JP2000063489A patent/JP2001247880A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013543576A (en) * | 2010-10-15 | 2013-12-05 | マガルディ インダストリエ ソシエタ ア レスポンサビリタ リミタータ | Apparatus, plant and method with high level energy efficiency for storing and using solar derived thermal energy |
KR101914800B1 (en) | 2010-10-15 | 2018-11-02 | 마갈디 인더스트리에 에스.알.엘. | Device, plant and method with high level of energy efficiency for storing and use of thermal energy of solar origin |
CN104498092A (en) * | 2014-12-12 | 2015-04-08 | 浙江大学 | Dual-cavity type solar driven carbonaceous material reaction method and apparatus |
CN109550469A (en) * | 2018-12-14 | 2019-04-02 | 华南理工大学 | A kind of bicavate thermochemical method energy storage reaction unit and method |
CN109550469B (en) * | 2018-12-14 | 2023-09-29 | 华南理工大学 | Double-cavity thermochemical energy storage reaction device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2270849C2 (en) | System producing electric power with the help of gasification of combustibles | |
US7033570B2 (en) | Solar-thermal fluid-wall reaction processing | |
CA2025654C (en) | Method of and apparatus for utilizing and recovering co2 combustion exhaust gas | |
RU2633565C1 (en) | Method and device for conjugated pyrolysis of biomass under pressure | |
CA2721101C (en) | Process for using a facility for combusting carbonaceous materials | |
EP1207132A1 (en) | Process and apparatus for production of hydrogen by gasification of combustible material and method for electric power generation using fuel cell and electric power generation system using fuel cell | |
US20060207177A1 (en) | Hot solids gasifier with co2 removal and hydrogen production | |
US3533739A (en) | Combustion of sulfur-bearing carbonaceous fuel | |
US20100104901A1 (en) | Gasification equipment | |
JP4150937B2 (en) | Coal gasifier and coal gasification method | |
JP4324828B2 (en) | Solar gasifier | |
CN109355108A (en) | A kind of Photospot solar gasified bio-matter system of synthesis gas preparation and metal smelt | |
US20140209447A1 (en) | Gasification-pyrolysis dual reactor device | |
JP2002012877A (en) | Method for gasifying fuel and solar gasifying furnace | |
JP2001247880A (en) | Method for operating solar coal steam improving oven | |
JP2019203078A (en) | Gasification gas manufacturing apparatus and manufacturing method of gasification gas | |
JPH10279955A (en) | Reducing reactor utilizing solar light | |
JP2002069462A (en) | Method and apparatus for producing raw materials using solar energy | |
JPH11126628A (en) | Fuel cell power generating device fitted with carbon deposition preventing device | |
JP5682364B2 (en) | Reactor | |
CN112322362B (en) | Method and device for negative utilization of biomass carbon by using molten salt | |
ES2955373B2 (en) | DUAL FLUIDIZED BED MODULE FOR GASIFICATION OF BIOMASS AND WASTE WITH SOLAR ENERGY AND ASSOCIATED INSTALLATION AND OPERATION METHOD | |
CN115261079B (en) | Circulating fluidization device and method for preparing synthesis gas | |
JPH11263988A (en) | Combustion system | |
CN210752585U (en) | Solar thermochemical reaction combined power generation system |