JP2001247498A - Organic compound and element using the same - Google Patents

Organic compound and element using the same

Info

Publication number
JP2001247498A
JP2001247498A JP2000304121A JP2000304121A JP2001247498A JP 2001247498 A JP2001247498 A JP 2001247498A JP 2000304121 A JP2000304121 A JP 2000304121A JP 2000304121 A JP2000304121 A JP 2000304121A JP 2001247498 A JP2001247498 A JP 2001247498A
Authority
JP
Japan
Prior art keywords
organic
organic compound
compound
layer
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000304121A
Other languages
Japanese (ja)
Other versions
JP3716732B2 (en
Inventor
Tomohiko Mori
朋彦 森
Hisayoshi Fujikawa
久喜 藤川
Atsushi Miura
篤志 三浦
Seiji Tokito
静士 時任
Yasunori Taga
康訓 多賀
Yoichi Sakamoto
洋一 阪元
Toshiyasu Suzuki
敏泰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000304121A priority Critical patent/JP3716732B2/en
Publication of JP2001247498A publication Critical patent/JP2001247498A/en
Application granted granted Critical
Publication of JP3716732B2 publication Critical patent/JP3716732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE

Abstract

PROBLEM TO BE SOLVED: To obtain an organic compound having high chemical and thermal stabilities and functions of carrier-transporting property, and the like. SOLUTION: This organic compound has a skeleton in which three or more aromatic rings are bonded to each other at mutual arbitrary positions and is composed of only >=18 carbon atoms and F. Specifically, the organic compound has a structure represented by the formula C6nF4n+2 or the following formula (1) or (2) or is a compound composed of only C and F, in which a polyacene ring including naphthalene ring is directly bonded. The compound exhibits transporting properties of electron and positive hole and can be used as an electron transporting layer, or the like, of an EL element and can be used as a positive hole-blocking layer when positive hole-blocking function is exhibited and can improve the element life when the compound is used as a protective film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、新規な有機化合
物、特に、有機電界発光素子(以下、有機EL素子とい
う)の発光材料やその他機能素子材料等として有用な有
機化合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel organic compound, and more particularly, to an organic compound useful as a luminescent material of an organic electroluminescent device (hereinafter, referred to as an organic EL device) and other functional device materials.

【0002】[0002]

【従来の技術】現在、機能性有機膜としては、C6
6(ベンゼン環)やC−H結合を主体とした構造の化合
物が一般的に用いられている。また、CとH元素の他
に、酸素(O)、窒素(N)、硫黄(S)等の元素を用
い、多様な機能性の有機膜が形成されている。これらの
有機材料、有機薄膜は、電気絶縁膜、非線形光学材料、
有機EL素子の正孔輸送層、電子輸送層など、光デバイ
スや電子デバイス等の機能素子に用いられている。
2. Description of the Related Art At present, C 6 H is used as a functional organic film.
6 (benzene ring) and compounds having a structure mainly composed of C—H bonds are generally used. In addition, various functional organic films are formed using elements such as oxygen (O), nitrogen (N), and sulfur (S) in addition to the C and H elements. These organic materials and organic thin films are electrically insulating films, nonlinear optical materials,
It is used for functional elements such as optical devices and electronic devices such as a hole transport layer and an electron transport layer of an organic EL element.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来用い
られてきた機能性有機材料のC−H結合は、結合エネル
ギーがやや小さいため、紫外光照射や高電界が印加され
ることによって、C−H結合が切断され、材料の劣化が
進むという欠点がある。
The C—H bond of the conventionally used functional organic material as described above has a slightly small binding energy. Therefore, the C—H bond is exposed to ultraviolet light or a high electric field to be applied. There is a disadvantage that the -H bond is broken and the material deteriorates.

【0004】一方、C−F結合を主体とした材料として
ポリテトラフルオロエチレン(商標名「テフロン」)な
どの高分子材料は、耐熱性や化学的な安定性に優れてい
るが、バンドギャップが大きい絶縁体であるため、用途
が限定されている。特に、キャリア輸送性、発光性等の
機能が要求される有機EL素子等のような機能素子にお
いて、要求される機能性有機材料として使用することは
できなかった。
On the other hand, polymer materials such as polytetrafluoroethylene (trade name “Teflon”) as a material mainly composed of C—F bonds are excellent in heat resistance and chemical stability, but have a band gap. The large insulator limits its use. In particular, in a functional element such as an organic EL element that requires functions such as a carrier transport property and a light emitting property, it cannot be used as a required functional organic material.

【0005】本発明は、上記課題を解決するためになさ
れ、熱的、化学的な安定性を保ちつつ様々な機能を備え
た新規な有機化合物を提供することを目的とする。ま
た、他の目的は、上記新規有機化合物を用いた有機EL
素子などの機能素子を提供することである。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a novel organic compound having various functions while maintaining thermal and chemical stability. Another object is to provide an organic EL using the above novel organic compound.
It is to provide a functional element such as an element.

【0006】[0006]

【課題を解決するための手段】本発明に係る新規有機化
合物は、3個以上の芳香族環が互いの任意位置で結合し
た骨格を有し、炭素原子Cの数が18以上で炭素原子C
とフッ素原子Fのみから構成される。
The novel organic compound according to the present invention has a skeleton in which three or more aromatic rings are bonded to each other at any position, and has 18 or more carbon atoms and carbon atoms of at least 18 carbon atoms.
And only fluorine atoms F.

【0007】本発明の他の特徴は、上記有機化合物が、
組成式C6n4n+2で表される化合物であることである。
Another feature of the present invention is that the organic compound is
That is, it is a compound represented by a composition formula C 6n F 4n + 2 .

【0008】本発明の更に別の特徴は、上記有機化合物
が、下記化学式(1)又は化学式(2)
Another feature of the present invention is that the organic compound is represented by the following chemical formula (1) or (2):

【化3】 Embedded image

【化4】 に示す構造で表される化合物であることである。Embedded image Is a compound represented by the following structure:

【0009】本発明の他の特徴に係る有機化合物は、ナ
フタレン環以上のポリアセン環が任意の位置で直接結合
し、全ての水素がフッ素で置換されている。
In an organic compound according to another feature of the present invention, a polyacene ring of a naphthalene ring or higher is directly bonded at an arbitrary position, and all hydrogen atoms are substituted with fluorine.

【0010】他の特徴は、上記有機化合物が、組成式C
10n6n+2又はC14n8n+2又はC18 n10n+2又はC22n
12n+2のいずれかで表される化合物であることであ
る。
Another feature is that the organic compound is represented by the following formula C:
10n F 6n + 2 or C 14n F 8n + 2 or C 18 n F 10n + 2 or C 22n
F 12n + 2 .

【0011】本発明の更に別の特徴は、有機薄膜を有す
る機能素子において、この有機薄膜が上記有機化合物を
含むことである。
Still another feature of the present invention is that, in a functional device having an organic thin film, the organic thin film contains the above organic compound.

【0012】また更に別の特徴は、電極間に、少なくと
も1層の有機化合物層が形成された有機電界発光素子に
おいて、前記有機化合物層が、上記有機化合物を含む事
である。
Still another feature is that, in an organic electroluminescent device having at least one organic compound layer formed between electrodes, the organic compound layer contains the organic compound.

【0013】上記本発明の有機化合物は、C−H結合を
持たない芳香族環、例えばC66(フルオロベンゼン)
が、いくつか結合し(少なくとも3個)、或いはC10
8(フルオロナフタレン)以上のアセン環が幾つか結合
し、CとFのみから構成される。このようなC−CとC
−Fのみから構成される化合物は、熱力学的な安定性が
増し、ガラス転移温度や融点が上がる。従って、C−F
結合を有する有機膜を用いたデバイスは、その耐久性や
寿命を向上させることが可能となる。
The organic compound of the present invention is an aromatic ring having no C—H bond, for example, C 6 F 6 (fluorobenzene).
Bind several (at least 3) or C 10 F
8 (Fluoronaphthalene) More than one acene ring is bonded, and is composed of C and F only. Such CC and C
A compound composed of only -F has increased thermodynamic stability and an increased glass transition temperature and melting point. Therefore, CF
A device using an organic film having a bond can have improved durability and lifetime.

【0014】更に、本発明の有機化合物は、芳香族環が
複数結合して構成されているので分子中にπ共役系が広
がった構造を備えており、キャリア輸送性等の優れた特
性を発揮する。また、本発明の有機化合物は、電子物性
的にみるとFの電気陰性度がHに比べても非常に大きい
ため、芳香族環(例えばベンゼン環、ナフタレン環又は
それ以上のアセン環)からF側に電子が引き抜かれ、C
−H化合物に比べて陰極からの電子の注入が容易にな
る。
Further, the organic compound of the present invention has a structure in which a plurality of aromatic rings are bonded to each other, and thus has a structure in which a π-conjugated system is spread in a molecule, and exhibits excellent properties such as carrier transportability. I do. In addition, the organic compound of the present invention has an electronegativity of F which is much larger than that of H from the viewpoint of electronic properties, so that an aromatic ring (for example, a benzene ring, a naphthalene ring or a higher acene ring) can be used to convert F Electrons are pulled out to the side, C
Electrons can be easily injected from the cathode as compared with the -H compound.

【0015】このようなキャリア(電子や正孔)輸送性
は、上述のようにFの高い電気陰性度に起因して芳香族
環(例えばベンゼン環)からF側に電子が引き寄せら
れ、分子のLUMO(lowest unoccupied molecular or
bital)、HOMO(highest occupied molecular orbi
tal)準位が低下し、電子の有機化合物層内への注入が
容易になるためと考えられる。また、更に、分子中に共
役系が広がっているため、層内に注入された電子や正孔
の移動度が大きく、電子や正孔を効率よく運ぶことがで
きるためであると考えられる。
[0015] Such carrier (electron and hole) transport properties are such that electrons are attracted from the aromatic ring (for example, a benzene ring) to the F side due to the high electronegativity of F as described above, and LUMO (lowest unoccupied molecular or
bital), HOMO (highest occupied molecular orbi)
tal) It is considered that the level is lowered, so that injection of electrons into the organic compound layer becomes easy. Further, it is considered that, because the conjugated system is spread in the molecule, the mobility of the electrons and holes injected into the layer is large, and the electrons and holes can be efficiently transported.

【0016】従って、上記本発明の有機化合物は有機E
L素子等の機能素子の機能材料として用いることがで
き、また、この有機化合物の使用により素子抵抗を低減
して、素子の動作電圧を低下させることが可能となる。
例えば、有機EL素子の有機層、例えば電子輸送層に本
発明の有機化合物を用いた場合、C−H系有機化合物か
らなる電子輸送層に比べ電子注入特性が向上するととも
に、移動度が大きいため、有機EL素子の駆動電圧が低
下する。
Therefore, the organic compound of the present invention is an organic compound
It can be used as a functional material of a functional element such as an L element, and the use of this organic compound can reduce the element resistance and lower the operating voltage of the element.
For example, when the organic compound of the present invention is used for an organic layer of an organic EL device, for example, an electron transport layer, the electron injection characteristics are improved and the mobility is large as compared with an electron transport layer made of a CH organic compound. As a result, the driving voltage of the organic EL element decreases.

【0017】本発明の別の特徴は、陽極と陰極との間に
有機化合物層が形成された有機電界発光素子において、
前記有機化合物層のうち、前記陰極と有機発光層との間
には、上記有機化合物を含む正孔遮蔽層を備えることで
ある。
Another feature of the present invention is an organic electroluminescent device in which an organic compound layer is formed between an anode and a cathode.
In the organic compound layer, a hole blocking layer containing the organic compound is provided between the cathode and the organic light emitting layer.

【0018】本発明の有機化合物は、上述のように安定
な化合物でありHOMOレベルが低い。よって、例えば
有機EL素子において本発明の有機化合物を含む層は、
一般的な正孔輸送層や発光層に比べてHOMOレベルが
低いため、正孔をブロックすることができる。このた
め、このような正孔ブロッキング層として用いると、正
孔を有機発光層に閉じこめることが可能となり素子の発
光効率の向上を実現できる。
The organic compound of the present invention is a stable compound as described above and has a low HOMO level. Therefore, for example, in an organic EL device, the layer containing the organic compound of the present invention is:
Since the HOMO level is lower than that of a general hole transport layer or light emitting layer, holes can be blocked. Therefore, when used as such a hole blocking layer, holes can be confined in the organic light emitting layer, and the luminous efficiency of the device can be improved.

【0019】なお、素子の電極に対する本発明のC−F
化合物の障壁高さが小さくなるように電極材料を選択す
れば、本発明のC−F化合物層への正孔注入が可能とな
り、注入された正孔の移動度は上述のように充分に大き
いので、有機EL素子などの正孔輸送層として用いるこ
とも可能である。
The C-F of the present invention for the electrodes of the device
If the electrode material is selected so that the barrier height of the compound becomes small, holes can be injected into the CF compound layer of the present invention, and the mobility of the injected holes is sufficiently large as described above. Therefore, it can be used as a hole transport layer of an organic EL device or the like.

【0020】本発明の他の特徴は、電極間に有機化合物
層を備える有機電界発光素子であって、該素子を覆う保
護膜として上記有機化合物を用いたことである。
Another feature of the present invention is an organic electroluminescent device having an organic compound layer between electrodes, wherein the organic compound is used as a protective film covering the device.

【0021】C−H系化合物を用いたデバイス保護膜に
比べ、本発明のC−F化合物は、分子同士の相互作用が
低く、表面エネルギーが低下するので、良好な撥水性の
特性を示す。このためデバイス等への水分の侵入を防止
する保護膜としての高い効果が現れる。例えば現在有機
EL素子において水分がその素子寿命に非常に深刻な影
響を及ぼすことが知られているが、このような耐水性の
低い素子などの保護膜として上述のような本発明のC−
F化合物を用いることで、その化合物の高い撥水性が素
子中に侵入する水分量を減らすことができ、デバイスの
耐久性・寿命を改善することができる。
Compared with a device protective film using a C—H compound, the C—F compound of the present invention exhibits a good water-repellent property because the interaction between molecules is low and the surface energy is reduced. For this reason, a high effect as a protective film for preventing intrusion of moisture into a device or the like appears. For example, at present, it is known that water has a very serious effect on the life of an organic EL device.
By using the F compound, the high water repellency of the compound can reduce the amount of water penetrating into the element, and can improve the durability and life of the device.

【0022】[0022]

【発明の実施の形態】以下、図面を用いてこの発明の好
適な実施の形態(以下実施形態という)について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention (hereinafter, referred to as embodiments) will be described below with reference to the drawings.

【0023】[実施形態1]本実施形態の有機化合物
は、3個以上の芳香族環が互いの任意位置で結合した骨
格を有し、炭素原子Cの数が18以上で炭素原子Cとフ
ッ素原子Fのみから構成される。
[Embodiment 1] The organic compound of the present embodiment has a skeleton in which three or more aromatic rings are bonded to each other at arbitrary positions, has 18 or more carbon atoms C, and has carbon atoms C and fluorine It is composed of only atoms F.

【0024】この化合物の一例としては、下記化学式An example of this compound is represented by the following chemical formula

【化5】 Embedded image

【化6】 に示すような組成式がC6n4n+2で表される有機化合物
A,B,C,D,E,F,Zが挙げられる。これらいず
れの有機化合物も過フッ化芳香族環を3個以上有し、共
役系の発達した構造を備える。
Embedded image And organic compounds A, B, C, D, E, F, and Z represented by the composition formula C 6n F 4n + 2 . Each of these organic compounds has three or more perfluorinated aromatic rings and has a structure in which a conjugated system has been developed.

【0025】また、本実施形態の有機化合物の他の例と
しては、下記化学式
Further, as another example of the organic compound of the present embodiment, the following chemical formula

【化7】 Embedded image

【化8】 に示す構造の化合物G、Hが挙げられる。Embedded image Compounds G and H having the structures shown below.

【0026】上記化合物の内、例えば化合物B、化合物
C、化合物E、化合物G、化合物Hなどは、特に、それ
らのパラ位に他の過フッ化芳香族環が結合して共役系が
広く発達した分子構造を備えている。
Of the above compounds, for example, compound B, compound C, compound E, compound G, compound H and the like, particularly, a conjugated system has been widely developed because other perfluorinated aromatic rings are bonded to their para positions. It has a molecular structure.

【0027】本実施形態の有機化合物の他の例は、ナフ
タレン環以上のポリアセン環が任意の位置で直接結合
し、全ての水素がフッ素で置換されている有機化合物で
ある。この化合物の一例としては、組成式C10n6n+2
又はC14n8n+2又はC18n10n +2又はC22n12n+2
いずれかで表される化合物が挙げられる。より具体的に
は、下記に示すような構造の化合物I、J、K、L、M
が挙げられる。
Another example of the organic compound of the present embodiment is an organic compound in which a polyacene ring equal to or more than a naphthalene ring is directly bonded at an arbitrary position, and all hydrogens are substituted with fluorine. As an example of this compound, a composition formula C 10n F 6n + 2
Or a compound represented by any of C 14n F 8n + 2, C 18n F 10n +2 or C 22n F 12n + 2 . More specifically, compounds I, J, K, L, M having the structures shown below
Is mentioned.

【0028】[0028]

【化9】 これら本実施形態の有機化合物は、撥水性を備えると共
に熱力学的な安定性が高く、そのガラス転移温度や融点
が高い。また、芳香族環が複数結合して構成されている
ので分子中にπ共役系が広がった構造を備えており、キ
ャリア輸送性等において優れた特性を発揮する。特に、
これらの有機化合物では、Fの電気陰性度がHに比べて
非常に大きいため芳香族環(例えばベンゼン環、ナフタ
レン環又はそれ以上のアセン環)からF側に電子が引き
抜かれ、分子のLUMO、HOMOレベルが低く、C−
H化合物に比べてキャリア、特に電子移動性に優れる。
Embedded image These organic compounds of the present embodiment have water repellency, high thermodynamic stability, and high glass transition temperatures and melting points. In addition, since a plurality of aromatic rings are bonded to each other, the molecule has a structure in which a π-conjugated system is spread in a molecule, and exhibits excellent characteristics such as carrier transportability. In particular,
In these organic compounds, since the electronegativity of F is much higher than that of H, electrons are extracted from the aromatic ring (for example, a benzene ring, a naphthalene ring or a higher acene ring) to the F side, and the LUMO, Low HOMO level, C-
Carriers, especially electron mobility, are superior to H compounds.

【0029】[実施形態2]本実施形態2では、上記実
施形態1において例示した3個以上の芳香族環が任意位
置で結合した骨格を有し炭素原子数が18以上、かつ炭
素原子Cとフッ素原子Fのみから構成される有機化合物
(フッ化化合物)を光デバイスや電子デバイスの有機薄
膜の材料として用いる。
[Embodiment 2] In Embodiment 2, a skeleton in which three or more aromatic rings exemplified in Embodiment 1 are bonded at arbitrary positions, the number of carbon atoms of which is 18 or more, and the carbon atom C An organic compound (fluorinated compound) composed only of fluorine atoms F is used as a material for an organic thin film of an optical device or an electronic device.

【0030】これらのデバイスの具体例として、以下に
おいて、電極間に少なくとも1層の有機化合物層が形成
されている有機EL素子を例に挙げて説明する。
Hereinafter, as specific examples of these devices, an organic EL element in which at least one organic compound layer is formed between electrodes will be described.

【0031】図1に実施形態2に係る有機EL素子の概
略構造を示す。有機EL素子は、透明基板10上に第1
電極12と、電界の印加により発光する有機化合物層2
0と第2電極16とが順に積層されて構成されている。
FIG. 1 shows a schematic structure of an organic EL device according to the second embodiment. The organic EL element is formed on a transparent substrate 10 by a first
Electrode 12 and organic compound layer 2 that emits light when an electric field is applied
0 and the second electrode 16 are sequentially laminated.

【0032】透明基板10としては、ガラス基板、透明
セラミックス基板、ダイヤモンド基板等を用いることが
できる。第1電極12としては、高い光透過性および導
電性を有する透明電極が用いられ、例えば、ITO(In
dium Tin Oxide)、SnO2、In2 3 、ポリアニリ
ン等の薄膜材料を用いることができる。
As the transparent substrate 10, a glass substrate, a transparent ceramics substrate, a diamond substrate or the like can be used. As the first electrode 12, a transparent electrode having high light transmittance and conductivity is used. For example, ITO (In
For example, a thin film material such as dium tin oxide, SnO 2 , In 2 O 3 , or polyaniline can be used.

【0033】有機EL素子において、有機化合物層20
は、電界の印加により発光する部位であり、例えば発光
層の単層構造、正孔輸送層と発光層の2層構造、正孔輸
送層と発光層と電子輸送層の3層構造などから構成され
る。単層、多層どちらで構成される場合もあり、有機化
合物層20の厚みは、例えば数十から数百nmである。
本実施形態2では、有機化合物層20は、陽極−陰極間
に正孔輸送層22、発光層24、電子輸送層26の3層
が形成された構成を採用しており、この内の電子輸送層
26の材料として上記実施形態1にて説明したフッ化化
合物(C−F化合物)を用いている。
In the organic EL device, the organic compound layer 20
Is a site that emits light when an electric field is applied, and includes, for example, a single-layer structure of a light-emitting layer, a two-layer structure of a hole transport layer and a light-emitting layer, and a three-layer structure of a hole transport layer, a light-emitting layer, and an electron transport layer. Is done. The organic compound layer 20 may have a thickness of, for example, several tens to several hundreds nm.
In the second embodiment, the organic compound layer 20 has a configuration in which a hole transport layer 22, a light emitting layer 24, and an electron transport layer 26 are formed between an anode and a cathode. As the material of the layer 26, the fluorinated compound (CF compound) described in the first embodiment is used.

【0034】有機化合物層14の上に形成されている第
2電極16としては、例えばMg、Ag、Mg−Ag合
金、Al−Li合金、LiF/Al等の金属電極が用い
られている。
As the second electrode 16 formed on the organic compound layer 14, for example, a metal electrode such as Mg, Ag, an Mg-Ag alloy, an Al-Li alloy, or LiF / Al is used.

【0035】3層構造の有機化合物層20において、正
孔輸送層22としては例えばトリフェニルアミン4量体
(TPTE)が使用可能である。また、発光層24とし
ては例えばキノリノールアルミ錯体(Alq3)が使用
可能である。なおこれら正孔輸送層22及び発光層24
には、上記例に限らず、現在知られている正孔輸送機能
分子、発光機能分子を用いることができる。
In the organic compound layer 20 having a three-layer structure, for example, triphenylamine tetramer (TPTE) can be used as the hole transport layer 22. For the light emitting layer 24, for example, a quinolinol aluminum complex (Alq 3 ) can be used. The hole transport layer 22 and the light emitting layer 24
The present invention is not limited to the above examples, and currently known hole transporting functional molecules and luminescent functional molecules can be used.

【0036】正孔輸送層材料としては、例えば、以下の
ような材料を用いることができる。芳香族第3級アミ
ン、ヒドラゾン、カルバゾール、または、それらの誘導
体。芳香族第3級アミンは、例えば、N,N’−ビス
(3−メチルフェニル)−N,N’−ジフェニル−
(1,1’−ビフェニル)−4,4’−ジアミン(TP
D)、N,N’−ジ(1−ナフチル)−N,N’−ジフ
ェニル−[1,1’−ビフェニル]−4,4’−ジアミ
ン(α−NPD)などのトリフェニルアミンやその多量
体、または、分子内にスピロセンターを有するものや、
トリアリールアミンなどの、いわゆるπ電子系スターバ
ースト分子であってもよい。
As the material of the hole transport layer, for example, the following materials can be used. Aromatic tertiary amines, hydrazones, carbazoles, or derivatives thereof. The aromatic tertiary amine is, for example, N, N'-bis (3-methylphenyl) -N, N'-diphenyl-
(1,1′-biphenyl) -4,4′-diamine (TP
D), triphenylamine such as N, N'-di (1-naphthyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (α-NPD) and a large amount thereof Body or having a spiro center in the molecule,
It may be a so-called π-electron star burst molecule such as triarylamine.

【0037】発光層材料としては、例えば、以下のよう
な材料を用いることができる。薄膜状態において高い蛍
光量子収量を与える材料、例えば、オキサチアゾール、
フェナントレン、トリアゾール、キナクリドン、ルブレ
ン、クマリンもしくはそれらの誘導体、あるいは、8−
ヒドロキシキノリンなどのキノン誘導体とアルミニウ
ム、亜鉛、ペリリウムなどとの金属錯体の単独または組
み合わせ。
As the light emitting layer material, for example, the following materials can be used. Materials that give high fluorescence quantum yields in thin film state, such as oxathiazole,
Phenanthrene, triazole, quinacridone, rubrene, coumarin or derivatives thereof, or 8-
A single or combination of a metal complex of a quinone derivative such as hydroxyquinoline with aluminum, zinc, perylium or the like.

【0038】また、電子輸送層26としては、上述のよ
うに実施形態1のC−F化合物を用いる。
As the electron transport layer 26, the CF compound of the first embodiment is used as described above.

【0039】以上のような構成の有機EL素子におい
て、第1電極12を陽極として、第2電極16を陰極と
して用い、陽極から注入される正孔を正孔輸送層が発光
層に輸送し、陰極から注入される電子を上述のフッ化化
合物からなる電子輸送層が高効率に輸送することで有機
化合物層20に正孔及び電子が注入され、発光層24の
層内で正孔と電子が再結合し、発光材料が励起されて蛍
光が得られる。
In the organic EL device having the above structure, the first electrode 12 is used as an anode, the second electrode 16 is used as a cathode, and holes injected from the anode are transported to the light emitting layer by the hole transport layer. Holes and electrons are injected into the organic compound layer 20 by highly efficiently transporting electrons injected from the cathode by the above-described electron transporting layer made of the fluorinated compound, and holes and electrons are generated in the light emitting layer 24. Recombination excites the light emitting material to obtain fluorescence.

【0040】ここで、従来より電子輸送機能分子として
も知られているAlq3と電子輸送層26として用いた
上記実施形態1に示すC−F化合物とを比較すると、A
lq 3のLUMO準位を表す還元電位は、−2.38V
であるのに対して、C−F化合物は、−2.17〜−
2.49Vである。電子輸送層26を構成する有機膜の
LUMO準位は、それが低いほど、例えばAlを用いた
陰極から電子が注入されやすいことを表す。従って、本
発明のC−F化合物からなる電子輸送層26には、Al
電極から容易に電子を注入することができ、C−F化合
物を電子輸送層26として用いることで有機EL素子の
立ち上がり電圧(発光閾値電圧)を低くすることが容易
となる。
Here, conventionally, as an electron transport function molecule,
Alq also knownThreeAnd used as the electron transport layer 26
When compared with the CF compound shown in Embodiment 1 above, A
lq ThreeThe reduction potential representing the LUMO level of -2.38 V
Whereas the CF compound is -2.17 to-
2.49V. Of the organic film constituting the electron transport layer 26
The lower the LUMO level, the lower the
This indicates that electrons are easily injected from the cathode. Therefore, the book
The electron transport layer 26 made of the CF compound of the present invention has Al
Electrons can be easily injected from the electrode, and the CF compound
By using the material as the electron transport layer 26, the
Easy to lower rise voltage (light emission threshold voltage)
Becomes

【0041】特に、上記実施形態1のフッ化化合物の
内、フルオロベンゼン環が互いのパラ位で結合して共役
系が長く延びた構造の化合物、例えば化合物E、化合物
H、化合物Gなどが高い電子移動度を示すため、これら
は有機EL素子の電子輸送層の材料として優れている。
In particular, among the fluorinated compounds of the first embodiment, compounds having a structure in which the fluorobenzene ring is bonded to each other at the para position to extend the conjugated system, such as compound E, compound H, and compound G, are high. Since they exhibit electron mobility, they are excellent as materials for the electron transport layer of the organic EL device.

【0042】また、実施形態1の化合物のなかで、例え
ば組成式C10n6n+2、C14n8n+2、C18n10n+2、C
22n12n+2で表されるナフタレン環以上のポリアセンが
任意位置で直接結合したフッ化化合物も優れている。例
えば上述の化合物I、J、K、L、Mなどは、熱的・化
学的安定性を保ちながらも、π共役系が非常に長く、高
い電子移動度を示し、有機EL素子の電子輸送材料とし
て優れている。
Among the compounds of Embodiment 1, for example, the composition formulas C 10n F 6n + 2 , C 14n F 8n + 2 , C 18n F 10n + 2 ,
22n F 12n + 2 in polyacene than naphthalene ring represented is superior fluorinated compound bound directly at any position. For example, the compounds I, J, K, L and M described above have a very long π-conjugated system and high electron mobility while maintaining thermal and chemical stability, and exhibit an electron transporting material for an organic EL device. As excellent.

【0043】また、本発明に係るC−F化合物は、C−
F結合エネルギーがC−H結合より大きく熱的な安定性
に優れる。このため有機EL素子の劣化の重要な要因と
して知られる素子駆動中の素子温度上昇に対し、本発明
に係るC−F化合物を用いた電子輸送層は優れた耐熱
性、即ち優れた膜安定性を示し、素子の輝度半減寿命の
延長に大きく寄与する。
The CF compound according to the present invention comprises
The F bond energy is larger than the C—H bond and has excellent thermal stability. For this reason, the electron transport layer using the CF compound according to the present invention has excellent heat resistance, that is, excellent film stability, against an increase in element temperature during element driving, which is known as an important factor of deterioration of the organic EL element. And greatly contributes to prolonging the half life of luminance of the device.

【0044】[実施形態3]上記実施形態2では、本発
明のC−F化合物を有機EL素子の電子輸送層材料とし
て用いているが、実施形態3においては、電極(陰極)
と有機発光層との間に設けて正孔遮蔽層として用いる。
図2は、本実施形態3に係る有機EL素子の概略構成を
示す。基板10の上に第1電極12、有機化合物層2
0、第2電極16が形成され、有機化合物層20は、正
孔輸送層22、発光層24及び電子輸送層28から構成
されている。更に、陰極となる第2電極16と、発光層
24との間、より具体的には電子輸送(Alq3)層2
8と発光(Alq3)層24との間に実施形態1におい
て説明したC−F化合物を用いた正孔遮蔽層30を形成
している。
[Third Embodiment] In the second embodiment, the CF compound of the present invention is used as a material for an electron transport layer of an organic EL device. In the third embodiment, an electrode (cathode) is used.
And used as a hole-blocking layer.
FIG. 2 shows a schematic configuration of the organic EL element according to the third embodiment. First electrode 12, organic compound layer 2 on substrate 10
0, the second electrode 16 is formed, and the organic compound layer 20 includes a hole transport layer 22, a light emitting layer 24, and an electron transport layer 28. Further, between the second electrode 16 serving as a cathode and the light emitting layer 24, more specifically, the electron transport (Alq 3 ) layer 2
The hole blocking layer 30 using the CF compound described in the first embodiment is formed between the light emitting layer 8 and the light emitting (Alq 3 ) layer 24.

【0045】有機EL素子は、上述のように陰極と陽極
から発光層に電子と正孔を注入し発光層で再結合させて
発光を得る。このような有機EL素子において発光効率
を向上させるためには、発光層内で効率的に電子と正孔
とが再結合する必要がある。現在、発光材料として多用
されているアルミキノリノール錯体(Alq3)は、電
子輸送機能を兼用する発光材料として知られている。そ
して、このAlq3内は、電子を主として輸送するが、
正孔も輸送する。従って、電子輸送層兼用の発光層とし
てAlq3層を形成した場合、陽極から正孔輸送層をへ
て発光層(Alq3層)に正孔が注入されても、発光層
内で全て電子と再結合せずに陰極まで輸送されてしまう
正孔が存在し、発光効率の低下につながる。
As described above, the organic EL element emits light by injecting electrons and holes from the cathode and anode into the light emitting layer and recombining them in the light emitting layer. In order to improve the luminous efficiency in such an organic EL device, it is necessary to efficiently recombine electrons and holes in the luminescent layer. At present, an aluminum quinolinol complex (Alq 3 ), which is frequently used as a light emitting material, is known as a light emitting material that also has an electron transport function. In this Alq 3 , electrons are mainly transported,
It also transports holes. Therefore, when the Alq 3 layer is formed as the light-emitting layer also serving as the electron transport layer, even when holes are injected from the anode to the hole transport layer into the light-emitting layer (Alq 3 layer), all electrons and electrons are present in the light-emitting layer. There are holes that are transported to the cathode without recombination, leading to a decrease in luminous efficiency.

【0046】図3は、本実施形態3のように、陰極と発
光層との間に正孔遮蔽層30として上述のC−F化合物
(CxFy)を形成した場合の正孔遮蔽効果を示してい
る。陽極から注入される正孔は、有機化合物層のHOM
Oレベルを伝導して発光層であるAlq3層へ到達す
る。陽極と正孔輸送層(TPTE層)、正孔輸送層と発
光層の間では、層間でのHOMOレベルのギャップが小
さいため発光層に向かって陽極から正孔が注入される。
しかし、図3のように、実施形態1で説明した本発明の
C−F化合物はそのHOMOレベルが特に低いので、発
光層とこのC−F化合物層との間の障壁を正孔が通るこ
とができない。このため、C−F化合物層は正孔のブロ
ック層として機能する。一方、このC−F化合物は共役
系が発達しており、LUMOレベルも低いので電子を通
し易く、正孔遮蔽層として機能すると共に電子輸送機能
を発揮する。よって、陰極と発光層との間に形成された
電子輸送機能兼用の正孔遮蔽層であるC−F化合物層の
存在によって発光層に電子と正孔を効率的に閉じ込め発
光させることが可能となる。
FIG. 3 shows the hole blocking effect when the above-mentioned CF compound (CxFy) is formed as the hole blocking layer 30 between the cathode and the light emitting layer as in the third embodiment. I have. The holes injected from the anode are the HOM of the organic compound layer.
The O level is conducted to reach the Alq 3 layer, which is the light emitting layer. Since the gap between the HOMO level between the anode and the hole transport layer (TPTE layer) and between the hole transport layer and the light emitting layer is small, holes are injected from the anode toward the light emitting layer.
However, as shown in FIG. 3, since the CF compound of the present invention described in Embodiment 1 has a particularly low HOMO level, holes pass through the barrier between the light emitting layer and the CF compound layer. Can not. Therefore, the CF compound layer functions as a hole blocking layer. On the other hand, since the CF compound has developed a conjugated system and has a low LUMO level, it easily allows electrons to pass therethrough, and functions as a hole blocking layer and exhibits an electron transporting function. Therefore, it is possible to efficiently confine electrons and holes in the light emitting layer and emit light by the presence of the CF compound layer, which is a hole blocking layer also serving as an electron transport function, formed between the cathode and the light emitting layer. Become.

【0047】この正孔遮蔽層としては、十分な正孔遮蔽
性つまり十分にHOMOレベルが低いことが先ず要求さ
れる。このような条件は、上述の化合物A〜M及び化合
物Zのいずれも満たす。また、陰極と発光層との間に配
置されるので素子を発光させるためには電子輸送機能が
高いことも要求される。上述の実施形態2のように電子
輸送性は、互いのパラ位に芳香族環が長くつながってい
る構造が有利であり、正孔遮蔽層としても化合物Bより
は化合物C、化合物Cよりは化合物Eが優れており、化
合物G、H等ではより良い特性を実現することが容易と
なる。
The hole blocking layer is first required to have a sufficient hole blocking property, that is, a sufficiently low HOMO level. Such a condition satisfies all of the above-mentioned compounds A to M and compound Z. In addition, since the device is disposed between the cathode and the light emitting layer, the device needs to have a high electron transport function in order to emit light. As in the above-described Embodiment 2, the electron-transporting property is advantageously a structure in which aromatic rings are long connected to each other at the para-position, and the hole-blocking layer is a compound C rather than the compound B and a compound more than the compound C. E is excellent, and compounds G, H, and the like can easily realize better properties.

【0048】[実施形態4]本実施形態4では、上述の
実施形態1において説明したようなC−F化合物を素子
の保護膜として用いる。特に、素子の低い耐水性が問題
となっている有機EL素子では、素子を覆う保護膜の材
料として本発明のC−F化合物を用いることで素子寿命
を飛躍的に延ばすことを可能としている。
[Embodiment 4] In Embodiment 4, a CF compound as described in Embodiment 1 is used as a protective film of an element. In particular, in the case of an organic EL device in which low water resistance of the device is a problem, the use of the CF compound of the present invention as a material for a protective film covering the device can greatly extend the life of the device.

【0049】図4(a)は有機EL素子の保護膜として
上述のC−F化合物を用いた場合の構成例を示してい
る。なお、図4(b)は、一般的な有機EL素子保護の
ための構成を示している。
FIG. 4A shows an example of a structure in which the above-mentioned CF compound is used as a protective film of an organic EL device. FIG. 4B shows a configuration for protecting a general organic EL element.

【0050】第1電極12と第2電極16の間に有機化
合物層20が形成され、本実施形態4では、少なくとも
有機化合物層20が外気に曝されないよう、有機化合物
層20上に第2電極16を形成した後、基板10の上に
形成された素子のほぼ全面を覆うようにC−F化合物か
らなる保護膜40を形成している。本発明に係るC−F
有機化合物は蒸着によって素子上に形成できるため、素
子製造が非常に簡単となる。一方、一般的には有機EL
素子を外気から遮断するために、図4(b)に示すよう
に、素子形成後、乾燥窒素(N2)雰囲気で、基板10
(実際には第1電極12)に素子を覆う筐体を接着して
封止している。
An organic compound layer 20 is formed between the first electrode 12 and the second electrode 16. In the fourth embodiment, the second electrode is formed on the organic compound layer 20 so that at least the organic compound layer 20 is not exposed to the outside air. After the formation of 16, a protective film 40 made of a CF compound is formed so as to cover almost the entire surface of the element formed on the substrate 10. CF according to the present invention
Since the organic compound can be formed on the device by vapor deposition, device manufacture becomes very simple. On the other hand, in general, organic EL
As shown in FIG. 4 (b), after the device is formed, the substrate 10 is placed in a dry nitrogen (N 2 ) atmosphere to shield the device from the outside air.
A housing that covers the element is bonded to (actually, the first electrode 12) and sealed.

【0051】本発明のC−F有機化合物は、優れた撥水
性を示す緻密な膜を形成することができるため、有機E
L素子を覆うようにこのC−F化合物を用いて保護膜を
形成するだけで、図4(b)のように有機EL素子を封
止したのと同等の効果を得ることができる。また、有機
化合物であるこのC−F化合物は、蒸着方法によって成
膜できるため、特別な封止筐体などを取り付けなくても
素子を保護することが可能となる。このため、有機EL
素子の薄型化、小型化の点でも非常に有効であり、また
簡易なプロセスにて素子を製造することが可能となる。
The CF organic compound of the present invention can form a dense film exhibiting excellent water repellency.
Only by forming a protective film using this CF compound so as to cover the L element, an effect equivalent to that obtained by sealing the organic EL element as shown in FIG. 4B can be obtained. Further, since the CF compound which is an organic compound can be formed into a film by an evaporation method, the element can be protected without attaching a special sealing housing or the like. Therefore, organic EL
It is also very effective in reducing the thickness and size of the device, and the device can be manufactured by a simple process.

【0052】なお、有機EL素子の有機化合物層20の
材料としても上記実施形態2及び3のように本発明のC
−F化合物を用い、保護膜としてもC−F化合物を用い
ることが可能であり、有機化合物層と保護膜を共通の製
造装置で作製することも可能となる。保護膜の材料とし
ては、実施形態1において説明したC−F化合物のいず
れも使用することができるが、化合物E、H、Gより
も、ねじれや分岐の構造を持った化合物Aや、化合物D
などがより優れている。
The material of the organic compound layer 20 of the organic EL device is the same as that of the second and third embodiments.
It is possible to use a -F compound and a CF compound as the protective film, and it is also possible to produce the organic compound layer and the protective film with a common manufacturing apparatus. As the material of the protective film, any of the CF compounds described in Embodiment 1 can be used. However, Compound A or Compound D having a twisted or branched structure is more preferable than Compounds E, H, and G.
Etc. are better.

【0053】なお、以上実施形態2−4においては、実
施形態1に示すC−F化合物のみに限らず、1個又は2
個の芳香族環を有し炭素とフッ素のみからなるC−F化
合物も利用しうる。
In the embodiment 2-4, not only the CF compound shown in the embodiment 1 but also one or two
A CF compound having only one carbon and fluorine having two aromatic rings may be used.

【0054】[0054]

【実施例】以下に本発明の実施例についてそれぞれ説明
する。
Embodiments of the present invention will be described below.

【0055】[実施例1]実施例1として、本発明に係
るC−F化合物の合成例について合計10個のフルオロ
ベンゼンが結合した構造の化合物A(C6042)を例
に、下記反応式
Example 1 In Example 1, a compound A (C 60 F 42 ) having a structure in which a total of 10 fluorobenzenes were bonded as an example of the synthesis of a CF compound according to the present invention was used as an example. formula

【化10】 を参照して以下説明する。Embedded image This will be described below with reference to FIG.

【0056】(i)化合物1(1,3,5-trifluoro-2,4,6-
tris(2,4,6-trifluorophenyl)benzene)の合成 アルゴン気流下、マグネシウム(2.91g,120m
mol)と1−ブロモ−2,4,6−トリフルオロベン
ゼン[1-bromo-2,4,6-trifluorobenzene](25.3
g,120mmol)からTHF(120ml)中で調
整したGrignard試薬に無水臭化銅(34.4g,240
mmol)を加え、室温で一時間攪拌した後、ジオキサ
ン(30ml)を加えさらに一時間攪拌した。この懸濁
液に1,35−トリブロモ−2,4,6−トリフルオロ
ベンゼン[1,3,5-tribromo-2,4,6-trifluorobenzene]
(9.22g,25.0mmol)のトルエン(200
ml)溶液を加え、80℃で4日間攪拌した。反応混合
物をろ過し、溶媒を減圧留去した後、残渣をトルエンに
溶解した。このトルエン溶液を3M塩酸で洗浄、さらに
飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した
後、トルエンを減圧留去した。得られた反応混合物をエ
タノール/水から再結晶して目的とする化合物1:1,
3,5−トリフルオロ−2,4,6−トリス(2,4,
6−トリフルオロフェニル)ベンゼン[1,3,5-trifluor
o-2,4,6-tris(2,4,6-trifluorophenyl)benzene](7.
61g,58%)を得た。さらにろ液を減圧下濃縮し、
残渣をシリカゲルカラムクロマトグラフィー(ヘキサ
ン)により分離精製することにより化合物1(1.40
g,11%)を得た。
(I) Compound 1 (1,3,5-trifluoro-2,4,6-
Synthesis of tris (2,4,6-trifluorophenyl) benzene) Magnesium (2.91 g, 120 m) under an argon stream
mol) and 1-bromo-2,4,6-trifluorobenzene [1-bromo-2,4,6-trifluorobenzene] (25.3)
g, 120 mmol) and Grignard reagent prepared in THF (120 ml) was added to anhydrous copper bromide (34.4 g, 240 mmol).
mmol), and the mixture was stirred at room temperature for 1 hour, and then dioxane (30 ml) was added and the mixture was further stirred for 1 hour. To this suspension, 1,35-tribromo-2,4,6-trifluorobenzene [1,3,5-tribromo-2,4,6-trifluorobenzene]
(9.22 g, 25.0 mmol) in toluene (200
ml) solution and stirred at 80 ° C. for 4 days. After the reaction mixture was filtered and the solvent was distilled off under reduced pressure, the residue was dissolved in toluene. The toluene solution was washed with 3M hydrochloric acid, further washed with saturated saline, dried over anhydrous magnesium sulfate, and toluene was distilled off under reduced pressure. The obtained reaction mixture was recrystallized from ethanol / water to obtain the desired compound 1: 1,
3,5-trifluoro-2,4,6-tris (2,4
6-trifluorophenyl) benzene [1,3,5-trifluor
o-2,4,6-tris (2,4,6-trifluorophenyl) benzene] (7.
61 g, 58%). The filtrate is further concentrated under reduced pressure,
The residue was separated and purified by silica gel column chromatography (hexane) to give compound 1 (1.40).
g, 11%).

【0057】この化合物1の融点を測定したところ、M
p.=157℃−158℃であり、重クロロホルム中で
19F−核磁器共鳴スペクトル(19F−NMR(470.
4MHz,CDCl3))を測定すると,化学シフトδ
が,56.50−56.58(m,3F)、56.28
−56.37(m,3F)、54.96−55.06
(m,6F)の位置に観察された。また、重クロロホル
ム中で1H−核磁器共鳴スペクトル(1H−NMR(50
0MHz,CDCl3))では、δが、6.80−6.
86(m,6H)の位置に観察された。質量分析(EI
MS(m/z,relative intensit
y))の結果、522(M+,100%)、261(M+
−2C623,33.5%)のピークが観察された。
これらの分析より、化合物1は、C24612であると
確認できた。
When the melting point of Compound 1 was measured,
p. = 157 ° C-158 ° C in chloroform-d
19 F-nuclear porcelain resonance spectrum ( 19 F-NMR (470.
4 MHz, CDCl 3 )), the chemical shift δ
Is 56.50-56.58 (m, 3F), 56.28
-56.37 (m, 3F), 54.96-55.06
It was observed at the position (m, 6F). Further, 1 H-nuclear porcelain resonance spectrum ( 1 H-NMR (50 H
0 MHz, CDCl 3 )), δ is 6.80-6.
86 (m, 6H). Mass spectrometry (EI
MS (m / z, relative intensity)
y)), 522 (M + , 100%), 261 (M +
-2C 6 H 2 F 3, the peak of 33.5%) was observed.
From these analyses, it was confirmed that Compound 1 was C 24 H 6 F 12 .

【0058】(ii)化合物2(1,3,5-trifluoro-2,4,
6-tris(3,5-dibromo-2,4,6-trifluorophenyl)benzene)
の合成 上記化合物1(5.60g,12.4mmol)と還元
鉄の混合物に臭素を室温で滴下し、60℃で3日間攪拌
した。この反応混合物にチオ硫酸ナトリウム水溶液を加
え、ジクロロメタンで抽出した。有機層を飽和食塩水で
洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下濃
縮した。得られた反応混合物をヘキサンから再結晶し、
目的とする化合物2:1,3,5−トリフルオロ−2,
4,6−トリス(3,5−ジブロモ−2,4,6−トリ
フルオロフェニル)ベンゼン[1,3,5-trifluoro-2,4,6-
tris(3,5-dibromo-2,4,6-trifluorophenyl)benzene]
(9.71g,79%)を得た。
(Ii) Compound 2 (1,3,5-trifluoro-2,4,
6-tris (3,5-dibromo-2,4,6-trifluorophenyl) benzene)
Bromine was added dropwise to a mixture of the above compound 1 (5.60 g, 12.4 mmol) and reduced iron at room temperature, and the mixture was stirred at 60 ° C. for 3 days. An aqueous solution of sodium thiosulfate was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was washed with saturated saline, dried over anhydrous magnesium sulfate, and then concentrated under reduced pressure. The resulting reaction mixture was recrystallized from hexane,
Target compound 2: 1,3,5-trifluoro-2,
4,6-tris (3,5-dibromo-2,4,6-trifluorophenyl) benzene [1,3,5-trifluoro-2,4,6-
tris (3,5-dibromo-2,4,6-trifluorophenyl) benzene]
(9.71 g, 79%).

【0059】この化合物2の融点を測定したところM
p:269℃−270℃であり、重クロロホルム中で19
F−核磁器共鳴スペクトル(19F−NMR(470.4
MHz,CDCl3))を測定すると、化学シフトδ
が、70.35(s,3F),60.61(s,6
F)、59.04(s,3F)の位置に観察された。質
量分析(EIMS(m/z,relative int
ensity))の結果では、989(M+,3.4
%)、991(M++2,30.1%)、993(M+
4,56.9%)、995(M++6,100%)、9
97(M++8,54.8%)、999(M++10,3
8.2%)のピークが観察された。これらの分析より、
化合物2は、C24Br612であると確認できた。
When the melting point of Compound 2 was measured, M
p: 269 ° C.-270 ° C., 19
F-nuclear porcelain resonance spectrum ( 19 F-NMR (470.4
MHz, CDCl 3 )), the chemical shift δ
Are 70.35 (s, 3F), 60.61 (s, 6
F), 59.04 (s, 3F). Mass spectrometry (EIMS (m / z, relative int
efficiency)), 989 (M + , 3.4)
%), 991 (M + +2,30.1 %), 993 (M + +
4,56.9%), 995 (M ++ 6,100%), 9
97 (M + + 5,54.8%), 999 (M + +10,3
8.2%) was observed. From these analyses,
Compound 2 was confirmed to be C 24 Br 6 F 12 .

【0060】(iii)化合物A(1,3,5-trifluoro-2,
4,6-tris(3,5-bis(pentafluorophenyl)-2,4,6-trifluor
ophenyl)benzene)の合成 アルゴン気流下、マグネシウム(0.292g,12.
0mmol)とブロモペンタフルオロベンゼン[bromop
entafluorobenzene](2.97g,12.0mmo
l)とからTHF(30ml)中で調整したGrign
ard試薬に、無水臭化銅(3.44g,24.0mm
ol)を加え、室温で一時間攪拌した後、ジオキサン
(15ml)を加えさらに一時間攪拌した。この懸濁液
に化合物2(0.996g,1.00mmol)のトル
エン(30ml)溶液を加え、80℃で24時間攪拌し
た。反応混合物をろ過し、溶媒を減圧留去し、残渣をト
ルエンに溶解した。このトルエン溶液を3M塩酸で洗
浄、さらに飽和食塩水で洗浄し、無水硫酸マグネシウム
で乾燥した後、トルエンを減圧留去した。得られた反応
混合物をシリカゲルカラムクロマトグラフィ(ヘキサン
/トルエン=20/1)で分離精製することにより目的
とする化合物A:1,3,5−トリフルオロ−2,4,
6−トリス(3,5−ビス(ペンタフルオロフェニル)
−2,4,6−トリフルオロフェニル)ベンゼン(1.
29g,85%)を得た。
(Iii) Compound A (1,3,5-trifluoro-2,
4,6-tris (3,5-bis (pentafluorophenyl) -2,4,6-trifluor
Synthesis of magnesium (0.292 g, 12.
0 mmol) and bromopentafluorobenzene [bromop
entafluorobenzene] (2.97 g, 12.0 mmo
l) Grign adjusted in THF (30 ml)
An anhydrous copper bromide (3.44 g, 24.0 mm) was added to the ard reagent.
ol), and the mixture was stirred at room temperature for 1 hour, and then dioxane (15 ml) was added and the mixture was further stirred for 1 hour. To this suspension was added a solution of compound 2 (0.996 g, 1.00 mmol) in toluene (30 ml), and the mixture was stirred at 80 ° C. for 24 hours. The reaction mixture was filtered, the solvent was distilled off under reduced pressure, and the residue was dissolved in toluene. The toluene solution was washed with 3M hydrochloric acid, further washed with saturated saline, dried over anhydrous magnesium sulfate, and toluene was distilled off under reduced pressure. The target compound A: 1,3,5-trifluoro-2,4,4 was obtained by separating and purifying the obtained reaction mixture by silica gel column chromatography (hexane / toluene = 20/1).
6-tris (3,5-bis (pentafluorophenyl)
-2,4,6-trifluorophenyl) benzene (1.
29 g, 85%).

【0061】この化合物Aの融点を測定したところ、M
p:273℃−274℃と非常に高かった。また、重ク
ロロホルム中で19F−核磁器共鳴スペクトル(19F−N
MR(470.4MHz,CDCl3))を測定したと
ころ、化学シフトδが、61.04(s,3F)、6
0.67(s,6F)、60.43(s,3F)、2
4.26−24.49(m,12F)、13.31
(t,J=21.6Hz,6F)、2.42−2.60
(m,12F)の位置に観察された。質量分析(EIM
S(m/z,relative intensit
y))の結果では、1518(M+,100%)のピー
クが観察された。これらの分析より、化合物Aは、C6 0
42であると確認できた。
When the melting point of Compound A was measured, M
p: Very high at 273 ° C-274 ° C. In addition, 19 F-nuclear porcelain resonance spectrum ( 19 F-N
When MR (470.4 MHz, CDCl 3 )) was measured, the chemical shift δ was 61.04 (s, 3F), 6
0.67 (s, 6F), 60.43 (s, 3F), 2
4.26-24.49 (m, 12F), 13.31
(T, J = 21.6 Hz, 6F), 2.42-2.60
It was observed at the position (m, 12F). Mass spectrometry (EIM
S (m / z, relative intensity)
In the result of y)), a peak of 1518 (M + , 100%) was observed. From these analyzes, Compound A, C 6 0
F42 was confirmed.

【0062】[実施例2]実施形態2に示すように本発
明のC−F有機化合物を電子輸送層材料として用いて有
機EL素子を作製した例について、以下実施例2−1及
び2−2として説明する。
Example 2 Examples 2-1 and 2-2 of an example in which an organic EL device was produced by using the CF organic compound of the present invention as an electron transport layer material as shown in Embodiment 2 It will be described as.

【0063】(素子の作製)素子構成は、上述の図1に
示す通りである。基板10としては、第1電極12とな
るITOがパターンニングされているガラス基板を用い
た。この基板10を有機アルカリ洗浄剤セミコクリーン
56(フルウチ化学)、純水、アセトン、エタノールの
順で超音波洗浄後、ITO表面の有機汚染物質を除去す
るために、UVオゾン処理を行い、すばやく蒸着装置に
セットした。次に、真空中で有機化合物層用のマスクを
装着し、その後カーボンるつぼ加熱により、有機化合物
層20として、まず正孔輸送層22[トリフェニルアミ
ン4量体]を60nm、発光層24[キノリノールアル
ミ錯体(Alq3)]を40nm、電子輸送層26[C
−F化合物]を20nmの順で成膜した。成膜レート
は、2〜6nm/minとした。
(Preparation of Device) The device configuration is as shown in FIG. 1 described above. As the substrate 10, a glass substrate on which ITO serving as the first electrode 12 was patterned was used. The substrate 10 is ultrasonically cleaned in the order of an organic alkali cleaning agent Semico Clean 56 (Furuuchi Chemical), pure water, acetone and ethanol, and then subjected to UV ozone treatment to remove organic contaminants on the ITO surface, and quickly deposited. It was set on the device. Next, a mask for an organic compound layer is attached in a vacuum, and then the hole transporting layer 22 [triphenylamine tetramer] is first formed into an organic compound layer 20 by heating to 60 nm by a carbon crucible heating, and the light emitting layer 24 [quinolinol] Aluminum complex (Alq 3 )] of 40 nm and an electron transport layer 26 [C
-F compound] was deposited in the order of 20 nm. The deposition rate was 2 to 6 nm / min.

【0064】次に、真空中でマスクを陰極電極(第2電
極)用に変更し、LiFをTaボートから3nm/mi
n、AlをPBNルツボから10nm/minの堆積速
度で、それぞれ0.5nmと160nm成膜し、積層構
造の第2電極16を得た。素子を構成する各膜は、真空
度に関し5×10-7Torr以下の条件で成膜した。
Next, the mask was changed to a cathode electrode (second electrode) in a vacuum, and LiF was changed from a Ta boat to 3 nm / mi.
n and Al were deposited from a PBN crucible at a deposition rate of 10 nm / min at 0.5 nm and 160 nm, respectively, to obtain a second electrode 16 having a laminated structure. Each film constituting the device was formed under a condition of 5 × 10 −7 Torr or less with respect to the degree of vacuum.

【0065】電子輸送層26としては、実施例2−1に
ついて上述の化合物A、B、C、D、E、F、Zをそれ
ぞれ用いた7種類の有機EL素子を作製した。また実施
例2−2については、電子輸送層26として上述の化合
物I、Jをそれぞれ用いて2種類の有機EL素子を作成
した。
As the electron transporting layer 26, seven types of organic EL devices were prepared using the compounds A, B, C, D, E, F and Z described in Example 2-1. In Example 2-2, two types of organic EL devices were prepared using the above compounds I and J as the electron transport layer 26, respectively.

【0066】比較例1として、図1において電子輸送層
26の代わりにAlq3を20nm成膜した構造の素子
を作製した。
As Comparative Example 1, an element having a structure in which Alq 3 was deposited to a thickness of 20 nm in place of the electron transport layer 26 in FIG. 1 was manufactured.

【0067】(特性評価)上述の方法で作製した有機E
L素子について、十分に窒素置換したチャンバー内にお
いて、印加電圧と発光輝度、注入電流密度と発光輝度の
関係を測定し、発光効率についても算出した。また、初
期輝度が2400cd/m2になるように電流を注入
し、輝度の駆動電圧依存性も測定した。
(Characteristic evaluation) Organic E prepared by the method described above
For the L element, the relationship between the applied voltage and the emission luminance and the relationship between the injection current density and the emission luminance were measured in a chamber sufficiently purged with nitrogen, and the luminous efficiency was also calculated. Further, a current was injected so that the initial luminance became 2400 cd / m 2, and the dependence of the luminance on the driving voltage was measured.

【0068】実施例2−1についての評価結果を図5〜
図7に示す。これらの有機EL素子は,すべて発光層A
lq3からの緑色発光が得られた。比較例1では、Al
3が発光層と電子輸送層を兼ねており、立ち上がり電
圧が4Vである。本実施例2−1では、C−F化合物か
らなる電子輸送層26を備えた素子は、比較例1ほど立
ち上がり電圧が低くないものが多いが、それでも十分に
Al電極から電子がC−F電子輸送層に注入されてい
る。また、図6に示すように、本実施例2−1の素子
は、いずれも1000cd/m2以上の発光輝度が得ら
れており、電子が発光層24(Alq3)まで輸送され
ていることがわかる。特に、フルオロベンゼンが、パラ
位に結合して供役系が長く延びた化合物Eを用いた素子
はその特性が最も優れており、図5〜図7に示したEL
特性は、ほとんどAlq3の比較例と同等となってい
る。
The results of the evaluation of Example 2-1 are shown in FIGS.
As shown in FIG. All of these organic EL devices have a light emitting layer A
green emission from lq 3 was obtained. In Comparative Example 1, Al
q 3 also serves as a light-emitting layer and an electron transporting layer, the rise voltage is 4V. In the present Example 2-1, many of the devices provided with the electron transport layer 26 made of the CF compound have a rising voltage that is not as low as Comparative Example 1, but the electrons are still sufficiently emitted from the Al electrode. Injected into the transport layer. In addition, as shown in FIG. 6, all of the devices of Example 2-1 had a light emission luminance of 1000 cd / m 2 or more, and electrons were transported to the light emitting layer 24 (Alq 3 ). I understand. In particular, a device using compound E in which fluorobenzene is bonded to the para position and the service system is extended for the longest time has the best characteristics, and the EL device shown in FIGS.
The characteristics are almost the same as those of the comparative example of Alq 3 .

【0069】また、初期輝度を2400cd/m2とし
たときの輝度の半減寿命も、比較例1の15時間に対
し、実施例2のC−F電子輸送層26が形成された各素
子は、20時間程度の半減寿命を示した。
The half-life of the luminance when the initial luminance was 2400 cd / m 2 was 15 hours in Comparative Example 1, and each element on which the CF electron transport layer 26 of Example 2 was formed was: It showed a half life of about 20 hours.

【0070】実施例2−2についての評価結果は、図8
及び図9に示す。まず、化合物I又は化合物Jを電子輸
送層に用いたいずれの有機EL素子も、発光層Alq3
からの緑色発光が得られた。そして、図8に示すよう
に、Alq3が発光層と電子輸送層を兼ねた比較例1が
立ち上がり電圧4Vであるのに対し、化合物I、Jを電
子輸送層に用いた実施例2−2に係る有機EL素子は4
V以下が達成されており、立ち上がり電圧が低く、Al
電極から十分な電子が過フッ化化合物(C−F)の電子
輸送層に注入されていることが分かる。また実施例2−
1の各素子と比較しても、非常に低い立ち上がり電圧が
実現されていることが分かる。発光輝度に関し、図9に
示すように実施例2−2の有機EL素子では、1000
0cd/m 2以上が達成されており、比較例1と完全に
同等又はそれ以上の特性が得られ、電子が発光層Alq
3まで輸送されていることがわかる。
The evaluation result of Example 2-2 is shown in FIG.
And FIG. First, compound I or compound J is transferred by electron transport.
Each of the organic EL elements used for the transfer layer was composed of a light-emitting layer AlqThree
Green light was obtained. And as shown in FIG.
AlqThreeIs Comparative Example 1 in which the light emitting layer and the electron transporting layer are combined.
Compounds I and J were charged while the rising voltage was 4V.
The organic EL device according to Example 2-2 used in the
V or less, a low start-up voltage,
Sufficient electrons from the electrode are electrons of the perfluorinated compound (CF)
It can be seen that it has been injected into the transport layer. Example 2
Very low rise voltage compared to each device
It can be seen that it has been realized. FIG. 9 shows the emission luminance.
As shown, in the organic EL device of Example 2-2, 1000
0 cd / m TwoThe above has been achieved, and is completely different from Comparative Example 1.
Equivalent or better characteristics are obtained, and electrons are emitted from the light emitting layer Alq
ThreeYou can see that it has been transported up to.

【0071】[実施例3]実施形態3に示すように本発
明のC−F有機化合物を正孔遮蔽層材料として用いて有
機EL素子を作製した例について、以下実施例3として
説明する。
Example 3 An example in which an organic EL device was produced using the CF organic compound of the present invention as a hole-blocking layer material as described in Embodiment 3 will be described below as Example 3.

【0072】(素子の作製)本実施例3の有機EL素子
の構成は図2に示すとおりである。基板10としては、
上記実施例2と同じ洗浄済みITO(12)付きガラス
基板10を用いた。真空中で有機膜用のマスクを装着
後、カーボンるつぼを加熱することで、有機膜として、
正孔輸送層22[トリフェニルアミン4量体]を60n
m、発光層24[アルミキノリノール錯体(Al
3)]を20nm、次に正孔遮蔽層30として上述の
実施形態1に示すようなC−F有機化合物(化合物B及
びC)を5nm、電子輸送層28としてAlq3を35
nm成膜した。これら成膜レートは、2〜6nm/mi
nとした。
(Fabrication of Device) The structure of the organic EL device of Example 3 is as shown in FIG. As the substrate 10,
The same glass substrate 10 with cleaned ITO (12) as in Example 2 was used. After mounting the mask for the organic film in a vacuum, heating the carbon crucible, as an organic film,
60 n of the hole transport layer 22 [triphenylamine tetramer]
m, light emitting layer 24 [aluminum quinolinol complex (Al
q 3 )] is 20 nm, then the C—F organic compounds (compounds B and C) as described in the first embodiment are 5 nm as the hole blocking layer 30, and the Alq 3 is 35 as the electron transport layer 28.
nm. These film formation rates are 2 to 6 nm / mi.
n.

【0073】次に、真空中でマスクを陰極電極用に換
え、LiF電子注入層をTaボートから2nm/min
で0.5nm、AlをPBNルツボから10nm/mi
nの堆積速度で160nm成膜し、積層構造の第2電極
16を得た。なお、素子を構成する各膜は、真空度に関
し5×10-7Torr以下の条件で成膜した。
Next, the mask was changed to a cathode electrode in a vacuum, and the LiF electron injection layer was removed from the Ta boat by 2 nm / min.
At 0.5 nm and Al from the PBN crucible at 10 nm / mi
A film having a thickness of 160 nm was formed at a deposition rate of n to obtain a second electrode 16 having a laminated structure. Each film constituting the element was formed under a condition of 5 × 10 −7 Torr or less with respect to the degree of vacuum.

【0074】また、比較例2として、正孔遮蔽層のない
有機EL素子(有機化合物層:TPTE/Alq3)を
作製した。
Further, as Comparative Example 2, an organic EL device having no hole blocking layer (organic compound layer: TPTE / Alq 3 ) was manufactured.

【0075】(特性評価)上述の方法で作製した有機E
L素子について、十分に窒素置換したチャンバー内にお
いて、注入電流密度と発光輝度、印加電圧と発光輝度の
関係を測定し、発光効率についても算出した。また、初
期輝度が2400cd/m2になるように電流を注入
し、輝度の駆動電圧依存性も測定した。
(Characteristic evaluation) Organic E prepared by the above method
For the L element, the relationship between the injection current density and the light emission luminance and the relationship between the applied voltage and the light emission luminance were measured in a chamber sufficiently purged with nitrogen, and the light emission efficiency was also calculated. Further, a current was injected so that the initial luminance became 2400 cd / m 2, and the dependence of the luminance on the driving voltage was measured.

【0076】評価結果を図10、図11に示す。実施例
3のように化合物B、Cをそれぞれ正孔遮蔽層30とし
て用いた素子は、その駆動電圧がAlq3の比較例2と
同程度の電圧まで低下している。このことから、正孔遮
蔽層として用いたC−F化合物が充分に電子輸送層とし
ても働いていることがわかる。さらに、上記実施例2の
ようにAl陰極と発光層としてのAlq3層との界面に
電子輸送層としてのC−F化合物層を形成した素子と比
べて、本実施例3の素子では、化合物B及びCのいずれ
について着目しても発光輝度が各段に向上している。従
って、正孔遮蔽層に本発明のC−F化合物を用いた有機
EL素子を作製することで発光効率が向上し、比較例2
のように正孔遮蔽層のない素子と同等以上の発光効率
(cd/A)を容易に達成できることが分かる。
The evaluation results are shown in FIGS. The driving voltage of the device using the compounds B and C as the hole blocking layer 30 as in Example 3 is reduced to the same level as that of Comparative Example 2 of Alq 3 . This indicates that the CF compound used as the hole blocking layer sufficiently functions as the electron transporting layer. Further, as compared with the device in which the C—F compound layer as the electron transport layer was formed at the interface between the Al cathode and the Alq 3 layer as the light emitting layer as in Example 2 above, the compound of the present Example 3 Regardless of whether attention is paid to B or C, the emission luminance is improved in each step. Therefore, the luminous efficiency was improved by preparing an organic EL device using the CF compound of the present invention for the hole shielding layer, and Comparative Example 2
It can be seen that the luminous efficiency (cd / A) equal to or higher than that of the element having no hole blocking layer can be easily achieved.

【0077】また、初期輝度を2400cd/m2とし
たときの輝度の半減寿命も、比較例2の15時間に対し
て、実施例2に係る各素子では20時間以上に延び、長
寿命化が可能となった。
The half-life of the luminance when the initial luminance is set to 2400 cd / m 2 is increased to 20 hours or more in each element according to Example 2 as compared with 15 hours in Comparative Example 2, and the life is prolonged. It has become possible.

【0078】[実施例4]実施形態4に示すように本発
明のC−F有機化合物を有機EL素子の保護膜として利
用した例について、以下実施例4として説明する。
Example 4 An example in which the CF organic compound of the present invention is used as a protective film of an organic EL device as described in Embodiment 4 will be described below as Example 4.

【0079】(素子の作製)素子の作製は、Al陰極を
作製する工程まで、上述の実施例2及び3の比較例1及
び2と同一であり、TPTEとAlq3の2層構造の有
機化合物層20を備える素子を作製した(図4(a)参
照)。その後、本実施例4では、図4(a)に示すよう
に保護膜40として実施形態1において説明した本発明
のC−F化合物(化合物A,B,D)を堆積速度5nm
/minで300nm形成した。また比較例3及び4と
して、図4(b)のように保護膜を形成していない素子
及び封止筐体によって乾燥窒素で封止した素子を作製し
た。
(Preparation of Device) The device was prepared in the same manner as in Comparative Examples 1 and 2 of Examples 2 and 3 up to the step of preparing an Al cathode. The organic compound having a two-layer structure of TPTE and Alq 3 was used. An element including the layer 20 was manufactured (see FIG. 4A). Thereafter, in Example 4, as shown in FIG. 4A, the CF compound (compounds A, B, and D) of the present invention described in Embodiment 1 was deposited as the protective film 40 at a deposition rate of 5 nm.
/ Min at 300 nm. In addition, as Comparative Examples 3 and 4, an element having no protective film formed thereon and an element sealed with dry nitrogen by a sealing housing as shown in FIG. 4B were produced.

【0080】(特性評価)図12に示すように、保護膜
を全く形成していない素子(比較例3)と比べて、本実
施例4のように保護膜40を形成した有機EL素子は、
化合物A,B,Dいずれを用いたものも、その素子の輝
度半減寿命が各段に延びており、有機化合物層等の劣化
に伴って発生する発光欠陥であるダークスポットもほと
んど成長しない。そして、この実施例4に係るC−F化
合物を保護膜40として形成した素子は、乾燥窒素中で
駆動した素子(比較例4)とほとんど同じ寿命を示し
た。従って、蒸着によって保護膜を形成するという簡単
な工程の追加によって乾燥窒素と封止筐体によって素子
を封止した素子と同等以上の長寿命の素子を実現するこ
とが可能であることがわかる。
(Evaluation of Characteristics) As shown in FIG. 12, the organic EL device having the protective film 40 formed in the present Example 4 was different from the device having no protective film formed (Comparative Example 3).
In any of the devices using Compounds A, B, and D, the luminance half life of the device is prolonged in each step, and a dark spot, which is a light emission defect generated due to deterioration of an organic compound layer or the like, hardly grows. The device in which the CF compound according to Example 4 was formed as the protective film 40 showed almost the same life as the device driven in dry nitrogen (Comparative Example 4). Therefore, it can be seen that by adding a simple step of forming a protective film by vapor deposition, it is possible to realize an element having a long life equal to or longer than that of an element in which the element is sealed with dry nitrogen and a sealing housing.

【0081】また、このように素子寿命が延びるのは、
本発明に係るC−F化合物は、撥水性に優れており、大
気中の水分の侵入を防ぐ効果が高いためであり、保護膜
として優れていることがわかる。
The prolongation of the life of the element is as follows.
The CF compound according to the present invention is excellent in water repellency and has a high effect of preventing intrusion of moisture in the air, and thus is found to be excellent as a protective film.

【0082】[0082]

【発明の効果】この発明に係るC−F化合物は、熱的、
化学的な安定性が非常に高く、また電子・正孔等のキャ
リア輸送性、或いは正孔遮蔽性などの機能を発揮するこ
とができる。
The CF compound according to the present invention is thermally,
It has very high chemical stability, and can exhibit functions such as carrier transportability of electrons and holes or hole blocking properties.

【0083】また、このようなC−F結合を有する有機
化合物を有機EL素子等のデバイスの機能材料として用
いれば、耐久性が良くかつ高性能な素子が得られる。有
機EL素子の有機化合物層、一例として電子輸送層に本
発明の有機化合物を用いた場合、C−H系有機化合物か
らなる電子輸送層に比べ電子注入特性高く、層内での電
子移動度が大きいため、発光効率の向上が図れ、駆動電
圧の低下等が可能となり、素子の寿命も向上する。ま
た、有機EL素子の正孔遮蔽層として用いれば更なる素
子の発光効率向上を図ることもできる。
When such an organic compound having a CF bond is used as a functional material of a device such as an organic EL device, a device having good durability and high performance can be obtained. When the organic compound of the present invention is used for an organic compound layer of an organic EL device, for example, an electron transport layer, electron injection characteristics are higher than an electron transport layer composed of a CH organic compound, and electron mobility in the layer is higher. Since it is large, the luminous efficiency can be improved, the drive voltage can be reduced, and the life of the element can be improved. In addition, when used as a hole blocking layer of an organic EL element, the luminous efficiency of the element can be further improved.

【0084】保護膜としても本発明の有機化合物は有用
であり、デバイス保護用に用いると素子の長寿命化に寄
与すると共に、ディスプレイパネルの薄型化等の点で非
常に有効である。また、この保護膜は蒸着などによって
形成できるため簡単に作製することができる。
The organic compound of the present invention is useful also as a protective film, and when used for device protection, contributes to prolonging the life of the device and is very effective in terms of reducing the thickness of the display panel. Further, since this protective film can be formed by vapor deposition or the like, it can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態2に係る有機EL素子の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of an organic EL device according to a second embodiment of the present invention.

【図2】 本発明の実施形態3に係る有機EL素子の構
成を示す図である。
FIG. 2 is a diagram illustrating a configuration of an organic EL device according to a third embodiment of the present invention.

【図3】 本発明の実施形態3に係る有機EL素子の正
孔ブロック機能を説明する図である。
FIG. 3 is a diagram illustrating a hole blocking function of an organic EL element according to a third embodiment of the present invention.

【図4】 本発明の実施形態4及び比較例に係る有機E
L素子の構成を説明する図である。
FIG. 4 shows organic E according to Embodiment 4 of the present invention and a comparative example.
FIG. 3 is a diagram illustrating a configuration of an L element.

【図5】 実施例2−1及び比較例1の素子の印加電圧
と電流密度との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the applied voltage and the current density of the devices of Example 2-1 and Comparative Example 1.

【図6】 実施例2−1及び比較例1の素子の印加電圧
と発光輝度との関係を示す図である。
FIG. 6 is a diagram showing a relationship between applied voltage and light emission luminance of the devices of Example 2-1 and Comparative Example 1.

【図7】 実施例2−1及び比較例1の素子の注入電流
密度と発光輝度との関係を示す図である。
FIG. 7 is a diagram showing a relationship between injection current density and light emission luminance of the devices of Example 2-1 and Comparative example 1.

【図8】 実施例2−2及び比較例1の素子の印加電圧
と電流密度との関係を示す図である。
FIG. 8 is a diagram showing the relationship between applied voltage and current density of the devices of Example 2-2 and Comparative Example 1.

【図9】 実施例2−2及び比較例1の素子の印加電圧
と発光輝度との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the applied voltage and the light emission luminance of the devices of Example 2-2 and Comparative Example 1.

【図10】 実施例3及び比較例2の素子の印加電圧と
電流密度との関係を示す図である。
FIG. 10 is a diagram showing the relationship between applied voltage and current density of the devices of Example 3 and Comparative Example 2.

【図11】 実施例3及び比較例2の素子の電流密度と
発光効率との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the current density and the luminous efficiency of the devices of Example 3 and Comparative Example 2.

【図12】 実施例4及び比較例3の素子の駆動時間と
発光輝度との関係を示す図である。
FIG. 12 is a diagram showing a relationship between driving time and light emission luminance of the elements of Example 4 and Comparative Example 3.

【符号の説明】[Explanation of symbols]

10 基板(透明基板)、12 第1電極(陽極)、1
6 第2電極(陰極)、20 有機化合物層、22 正
孔輸送層、24 発光層、26 CxFy層(電子輸送
層)、28 電子輸送層、30 正孔遮蔽層(CxFy
層)。
10 substrate (transparent substrate), 12 first electrode (anode), 1
6 Second electrode (cathode), 20 organic compound layer, 22 hole transport layer, 24 light emitting layer, 26 CxFy layer (electron transport layer), 28 electron transport layer, 30 hole shield layer (CxFy)
layer).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 篤志 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 時任 静士 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 多賀 康訓 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 阪元 洋一 愛知県岡崎市八帖南町二丁目6番地の4 (72)発明者 鈴木 敏泰 愛知県刈谷市泉田町欠ノ上11番地2 Fターム(参考) 3K007 AB12 CA01 CB01 DB03 FA01 4H006 AA01 AA03 AB92  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Miura 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (1) Inside Toyota Toyota Central Research Institute Co., Ltd. (72) Inventor Yasunori Taga 41, Nagakute-cho, Aichi-gun, Aichi Prefecture (72) Inventor Toshiyasu Suzuki 11-11 Misono-cho, Kariya-shi, Aichi Prefecture 2F, 6F, F-term (reference) 3K007 AB12 CA01 CB01 DB03 FA01 4H006 AA01 AA03 AB92

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 3個以上の芳香族環が互いの任意位置で
結合した骨格を有し、炭素原子Cの数が18以上で炭素
原子Cとフッ素原子Fのみから構成される有機化合物。
1. An organic compound having a skeleton in which three or more aromatic rings are bonded to each other at arbitrary positions, comprising 18 or more carbon atoms C, and comprising only carbon atoms C and fluorine atoms F.
【請求項2】 請求項1に記載の有機化合物において、 組成式がC6n4n+2で表される有機化合物。2. The organic compound according to claim 1, wherein the composition is represented by C 6n F 4n + 2 . 【請求項3】 請求項1に記載の有機化合物において、 下記化学式(1)又は化学式(2) 【化1】 【化2】 に示す構造で表される有機化合物。3. The organic compound according to claim 1, wherein the compound is represented by the following chemical formula (1) or (2). Embedded image An organic compound represented by the structure shown in 【請求項4】 ナフタレン環以上のポリアセン環が任意
の位置で直接結合し、全ての水素がフッ素で置換されて
いる有機化合物。
4. An organic compound in which a polyacene ring not less than a naphthalene ring is directly bonded at an arbitrary position, and all hydrogens are substituted by fluorine.
【請求項5】 請求項4に記載の有機化合物において、 組成式がC10n6n+2で表される有機化合物。5. The organic compound according to claim 4, wherein the composition is represented by C 10n F 6n + 2 . 【請求項6】 請求項4に記載の有機化合物において、 組成式がC14n8n+2で表される有機化合物。6. The organic compound according to claim 4, wherein the composition formula is represented by C 14n F 8n + 2 . 【請求項7】 請求項4に記載の有機化合物において、 組成式がC18n10n+2で表される有機化合物。7. The organic compound according to claim 4, wherein the composition is represented by C 18n F 10n + 2 . 【請求項8】 請求項4に記載の有機化合物において、 組成式がC22n12n+2で表される有機化合物。8. The organic compound according to claim 4, wherein the composition formula is represented by C 22n F 12n + 2 . 【請求項9】 有機薄膜を有する機能素子であって、 該有機薄膜が上記請求項1〜請求項8のいずれか一つに
記載の有機化合物を含む機能素子。
9. A functional element having an organic thin film, wherein the organic thin film contains the organic compound according to any one of claims 1 to 8.
【請求項10】 電極間に、少なくとも1層の有機化合
物層が形成された有機電界発光素子において、 前記有機化合物層が、上記請求項1〜請求項8のいずれ
か一つに記載の有機化合物を含む有機電界発光素子。
10. An organic electroluminescent device having at least one organic compound layer formed between electrodes, wherein the organic compound layer is an organic compound according to any one of claims 1 to 8. An organic electroluminescent device comprising:
【請求項11】 陽極と陰極との間に、有機化合物層が
形成された有機電界発光素子において、 前記有機化合物層のうち、前記陰極と有機発光層との間
には、上記請求項1〜請求項8のいずれか一つに記載の
有機化合物を含む正孔遮蔽層を備えることを特徴とする
有機電界発光素子。
11. An organic electroluminescent device in which an organic compound layer is formed between an anode and a cathode, wherein the organic compound layer is provided between the cathode and the organic light-emitting layer. An organic electroluminescent device comprising a hole blocking layer containing the organic compound according to claim 8.
【請求項12】 電極間に有機化合物層を備える有機電
界発光素子であって、 該素子を覆う保護膜として上記請求項1〜請求項8のい
ずれか一つに記載の有機化合物を用いたことを特徴とす
る有機電界発光素子。
12. An organic electroluminescent device comprising an organic compound layer between electrodes, wherein the organic compound according to claim 1 is used as a protective film covering the device. An organic electroluminescent device comprising:
JP2000304121A 1999-12-27 2000-10-03 Organic compound and element using the same Expired - Fee Related JP3716732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304121A JP3716732B2 (en) 1999-12-27 2000-10-03 Organic compound and element using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-371618 1999-12-27
JP37161899 1999-12-27
JP2000304121A JP3716732B2 (en) 1999-12-27 2000-10-03 Organic compound and element using the same

Publications (2)

Publication Number Publication Date
JP2001247498A true JP2001247498A (en) 2001-09-11
JP3716732B2 JP3716732B2 (en) 2005-11-16

Family

ID=26582336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304121A Expired - Fee Related JP3716732B2 (en) 1999-12-27 2000-10-03 Organic compound and element using the same

Country Status (1)

Country Link
JP (1) JP3716732B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008483A1 (en) * 2001-07-12 2003-01-30 Asahi Glass Company, Limited Aromatic fluoropolymer and use thereof
JP2003208988A (en) * 2001-11-09 2003-07-25 Konica Corp Organic electroluminescent device and display equipment
JP2003323988A (en) * 2002-02-28 2003-11-14 Semiconductor Energy Lab Co Ltd Light emitting device and electric equipment using the same
US6905787B2 (en) 2002-08-22 2005-06-14 Fuji Photo Film Co., Ltd. Light emitting element
JP2006335719A (en) * 2005-06-03 2006-12-14 Asahi Kasei Corp Polyacene compound, method for producing the same and organic semiconductor element
JP2007035793A (en) * 2005-07-25 2007-02-08 Optrex Corp Organic led element
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
US7368181B2 (en) 2004-12-15 2008-05-06 Electronics And Telecommunications Research Institute Organic electroluminescent elements including triazine derivative compounds
EP1950818A1 (en) 2007-01-24 2008-07-30 Samsung SDI Co., Ltd. Organic light-emitting device including fluorine-containing compound and carbon-based compound
WO2008111461A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Fluorine-containing polycyclic aromatic compound, fluorine-containing polymer, organic thin film and organic thin film device
JP2009170885A (en) * 2008-01-15 2009-07-30 Samsung Mobile Display Co Ltd Organic electro-luminescent element and its manufacturing method
US7799439B2 (en) * 2006-01-25 2010-09-21 Global Oled Technology Llc Fluorocarbon electrode modification layer
US8378338B2 (en) 2007-11-30 2013-02-19 Sumitomo Chemical Company, Limited Conjugated compound, nitrogenated condensed-ring compound, nitrogenated condensed-ring polymer, organic thin film, and organic thin film element
WO2023282511A1 (en) 2021-07-05 2023-01-12 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008483A1 (en) * 2001-07-12 2003-01-30 Asahi Glass Company, Limited Aromatic fluoropolymer and use thereof
JP2003208988A (en) * 2001-11-09 2003-07-25 Konica Corp Organic electroluminescent device and display equipment
JP2003323988A (en) * 2002-02-28 2003-11-14 Semiconductor Energy Lab Co Ltd Light emitting device and electric equipment using the same
US7560730B2 (en) 2002-08-22 2009-07-14 Fujifilm Corporation Light emitting element having an organic layer including a light-emitting layer
US6905787B2 (en) 2002-08-22 2005-06-14 Fuji Photo Film Co., Ltd. Light emitting element
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
US7368181B2 (en) 2004-12-15 2008-05-06 Electronics And Telecommunications Research Institute Organic electroluminescent elements including triazine derivative compounds
JP2006335719A (en) * 2005-06-03 2006-12-14 Asahi Kasei Corp Polyacene compound, method for producing the same and organic semiconductor element
JP2007035793A (en) * 2005-07-25 2007-02-08 Optrex Corp Organic led element
US7799439B2 (en) * 2006-01-25 2010-09-21 Global Oled Technology Llc Fluorocarbon electrode modification layer
EP1950818A1 (en) 2007-01-24 2008-07-30 Samsung SDI Co., Ltd. Organic light-emitting device including fluorine-containing compound and carbon-based compound
WO2008111461A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Fluorine-containing polycyclic aromatic compound, fluorine-containing polymer, organic thin film and organic thin film device
US8378338B2 (en) 2007-11-30 2013-02-19 Sumitomo Chemical Company, Limited Conjugated compound, nitrogenated condensed-ring compound, nitrogenated condensed-ring polymer, organic thin film, and organic thin film element
JP2009170885A (en) * 2008-01-15 2009-07-30 Samsung Mobile Display Co Ltd Organic electro-luminescent element and its manufacturing method
JP4663775B2 (en) * 2008-01-15 2011-04-06 三星モバイルディスプレイ株式會社 Organic electroluminescent device and manufacturing method thereof
US7994713B2 (en) 2008-01-15 2011-08-09 Samsung Mobile Display Co., Ltd. Organic light emitting diode and method of fabricating the same
WO2023282511A1 (en) 2021-07-05 2023-01-12 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device thereof
EP4219436A2 (en) 2021-07-05 2023-08-02 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
EP4234524A2 (en) 2021-07-05 2023-08-30 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Also Published As

Publication number Publication date
JP3716732B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP4299028B2 (en) Organic EL device
JP5250516B2 (en) A novel blue light emitter for use in organic electroluminescent devices
JP4261855B2 (en) Phenanthroline compound and organic light emitting device using the same
JP4585750B2 (en) Fused polycyclic compound and organic light emitting device using the same
US7923129B2 (en) Carbazole derivative and organic light emitting device using the same
JP4323935B2 (en) Organic light emitting device
KR101188461B1 (en) Fused ring aromatic compound and organic light-emitting device using same
WO2012035962A1 (en) New condensed polycyclic compound and organic light-emitting element using the same
JP2004349245A (en) Phenanthroline molecule condensed with oxazole, thiazole or imidazole in organic light emitting device (oled)
JP2000309566A (en) Organic electroluminescent element and phenylene diamine derivative
WO2004083162A1 (en) Aromatic amine derivative and organic electroluminescent element made with the same
US8357821B2 (en) Aromatic amine compound, organic electroluminescent element including the same, and display device including organic electroluminescent element
JP2007230960A (en) Aromatic amine derivative and organic electroluminescent device using the same
JP4717703B2 (en) Compound and organic EL device
JP3716732B2 (en) Organic compound and element using the same
JP4336537B2 (en) Organic light emitting device
JP2008231127A (en) Organic electroluminescent element material, and element
JP2004186157A (en) Organic light emitting device having phenanthroline-condensed phenazine
KR20170055621A (en) 2-phenanthrene carbazole derivative compound and organic electroluminescent device including the same
JP5145544B2 (en) Benzodithiophene derivative and organic electroluminescence device using the benzodithiophene derivative as a light emitting layer
JP4065552B2 (en) Organic light emitting device
JP4280617B2 (en) Organic light emitting device
JP4280618B2 (en) Organic light emitting device
JP2004186158A (en) Organic light emitting device using paracyclophane
JP4211191B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees