JP2001247379A - Formed refractory material and waste melting furnace - Google Patents

Formed refractory material and waste melting furnace

Info

Publication number
JP2001247379A
JP2001247379A JP2000060978A JP2000060978A JP2001247379A JP 2001247379 A JP2001247379 A JP 2001247379A JP 2000060978 A JP2000060978 A JP 2000060978A JP 2000060978 A JP2000060978 A JP 2000060978A JP 2001247379 A JP2001247379 A JP 2001247379A
Authority
JP
Japan
Prior art keywords
particles
refractory
mass
molded
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000060978A
Other languages
Japanese (ja)
Inventor
Otojiro Kida
音次郎 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000060978A priority Critical patent/JP2001247379A/en
Publication of JP2001247379A publication Critical patent/JP2001247379A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1075Chromium-free or very low chromium-content materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a formed refractory material free from chromium, having excellent corrosion resistance, slug infiltration resistance and spalling resistance and suitable for the furnace for melting waste material. SOLUTION: The objective formed refractory material is produced by compounding 100 pts. of a refractory composition with 0.5-3.5 pts. of sodium aluminate in terms of NaAlO2 and 0.1-1.3 pts. of sorbitol. The sum of spinel particle and dolomite particle in the refractory composition is 80-96% and the amount of fused zirconia particle containing glassy phase is 4-20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クロムを含まず、
焼却灰等の廃棄物を溶融する廃棄物溶融炉に適した成形
耐火物に関する。
TECHNICAL FIELD The present invention does not contain chromium,
The present invention relates to a molded refractory suitable for a waste melting furnace for melting waste such as incineration ash.

【0002】[0002]

【従来の技術】近年、廃棄物の発生量は急増しており、
その処理は大きな社会問題となっている。この対策とし
て、廃棄物の減容化、無害化または再資源化が望まれて
おり、一つの方策として溶融法が注目されている。溶融
法は、廃棄物中の無機物を溶融スラグとして取り出し、
大幅に減容する方法である。廃棄物の溶融法としては、
固形廃棄物(生ごみなど)を直接熱分解し溶融処理する
方法と、焼却炉で廃棄物を一次焼却し、生じた焼却灰、
飛灰、下水汚泥を二次溶融する方法とがある。
2. Description of the Related Art In recent years, the amount of waste generated has increased rapidly.
The treatment has become a major social problem. As a countermeasure, it is desired to reduce the volume, detoxify, or recycle the waste, and a melting method is attracting attention as one of the measures. The melting method takes out the inorganic substances in the waste as molten slag,
This is a method of drastically reducing the volume. As a method for melting waste,
Solid waste (such as garbage) is directly pyrolyzed and melted, and incinerators are primarily incinerated to produce incinerated ash.
There is a method of secondary melting of fly ash and sewage sludge.

【0003】いずれの溶融法においても溶融炉に使用さ
れる耐火物の侵食は、主として炉内に投入される焼却
灰、飛灰、下水汚泥等の溶融スラグの成分および溶融温
度に大きく左右される。溶融スラグの成分は廃棄物の種
類などにより変動するが、一般には、焼却灰、飛灰およ
び下水汚泥の乾燥固化物等の化学組成は、SiO2:1
5〜45質量%(以下、単に%と記す)、Al23:1
0〜20%、CaO:5〜45%、Na2O:1〜15
%である。この他、焼却灰や飛灰には、Cd、Pb、Z
n、Cu、As、Cr、Hg等の有害な金属も多く含ま
れている。下水汚泥中には、金属は少ないが、P25
5〜15%含まれている。さらに揮発成分としてSやC
lの化合物等も多く含まれている。また、溶融炉の炉内
温度は、1400〜1650℃の高温にする必要があ
る。
In any of the melting methods, the erosion of the refractory used in the melting furnace largely depends on the components of the melting slag such as incineration ash, fly ash, sewage sludge and the like and the melting temperature. . Although the components of the molten slag vary depending on the type of waste and the like, generally, the chemical composition of incinerated ash, fly ash, and dried solidified sewage sludge is SiO 2 : 1
5 to 45% by mass (hereinafter simply referred to as%), Al 2 O 3 : 1
0~20%, CaO: 5~45%, Na 2 O: 1~15
%. In addition, incineration ash and fly ash include Cd, Pb, Z
Many harmful metals such as n, Cu, As, Cr, and Hg are also contained. Sewage sludge contains 5 to 15% of P 2 O 5 , although the amount of metal is small. S and C as volatile components
The compound 1 is also included in a large amount. Further, the temperature in the melting furnace must be as high as 1400 to 1650 ° C.

【0004】したがって、現在は、廃棄物溶融炉等に
は、耐食性の点から酸化クロムを含む耐火物が使用され
ている。酸化クロムを含む耐火物は酸化クロムの含有量
が多いほど耐食性がよいが、耐火物中の酸化クロムが高
温、かつアルカリ等の雰囲気条件で使用されると、有害
な六価クロムに変化するため、環境汚染問題を生ずるお
それがある。
Therefore, at present, refractories containing chromium oxide are used in waste melting furnaces and the like from the viewpoint of corrosion resistance. The higher the content of chromium oxide, the better the corrosion resistance of refractories containing chromium oxide.However, if chromium oxide in the refractory is used at high temperatures and in atmosphere conditions such as alkali, it changes to harmful hexavalent chromium. May cause environmental pollution problems.

【0005】クロムを含まない不焼成の成形耐火物とし
ては、マグネシア−炭素系、アルミナ−炭化ケイ素−炭
素系、アルミナ系等があるが、焼成の成形耐火物と同等
の耐食性、耐スポーリング性を確保できないため廃棄物
溶融炉用耐火物としては充分ではない。
[0005] Examples of the unfired molded refractory containing no chromium include magnesia-carbon, alumina-silicon carbide-carbon, and alumina-based, but the corrosion resistance and spalling resistance are the same as those of the fired molded refractory. Is not sufficient as a refractory for waste melting furnaces.

【0006】[0006]

【発明が解決しようとする課題】本発明は、クロムを含
まず、耐食性、耐スポーリング性、機械的強度に優れ、
廃棄物溶融炉などに適する成形耐火物の提供を目的とす
る。
The present invention does not contain chromium and has excellent corrosion resistance, spalling resistance and mechanical strength.
The purpose is to provide molded refractories suitable for waste melting furnaces.

【0007】[0007]

【課題を解決するための手段】本発明は、耐火組成物1
00質量部に、アルミン酸ナトリウムをNaAlO2
換算して0.5〜3.5質量部、ソルビトールを0.1
〜1.3質量部の割合で配合してなる成形耐火物であっ
て、耐火組成物中に、スピネル粒子とドロマイト粒子と
ガラス相を含む溶融ジルコニア粒子とを含み、耐火組成
物中のスピネル粒子とドロマイト粒子との合計の含有量
が80〜96%、ガラス相を含む溶融ジルコニア粒子の
含有量が4〜20%、である成形耐火物を提供する。た
だし、上記においてスピネル粒子とは、MgAl24
晶を含み、粒子中にMgO成分を23〜60%含み、か
つMgO成分とAl23成分の合計量が95%以上であ
る粒子をいう。また、上記成形耐火物から形成された炉
壁を少なくとも一部に使用した廃棄物溶融炉を提供す
る。
The present invention relates to a refractory composition 1
To 00 parts by mass, 0.5 to 3.5 parts by mass of sodium aluminate converted to NaAlO 2 and 0.1 parts by mass of sorbitol
A molded refractory compounded at a ratio of about 1.3 parts by mass, comprising spinel particles, dolomite particles, and molten zirconia particles containing a glass phase in the refractory composition, wherein the spinel particles in the refractory composition And a dolomite particle having a total content of 80 to 96% and a molten zirconia particle containing a glass phase having a content of 4 to 20%. However, in the above description, the spinel particles refer to particles containing MgAl 2 O 4 crystals, containing 23 to 60% of an MgO component in the particles, and having a total amount of the MgO component and the Al 2 O 3 component of 95% or more. . Further, the present invention provides a waste melting furnace using at least a part of a furnace wall formed from the molded refractory.

【0008】[0008]

【発明の実施の形態】本発明の成形耐火物(以下、本成
形耐火物という)は、耐火組成物に結合材等を添加し、
成形して得られる。本成形耐火物は、通常、不焼成品と
して用いられるが、焼成品として用いてもよい。本成形
耐火物は、耐火組成物、アルミン酸ナトリウム、および
ソルビトールを含む。耐火組成物は、スピネル粒子、ド
ロマイト粒子および溶融ジルコニア粒子を主体とする。
溶融ジルコニア粒子はガラス相を含む。
BEST MODE FOR CARRYING OUT THE INVENTION The molded refractory of the present invention (hereinafter referred to as the molded refractory) is obtained by adding a binder and the like to a refractory composition.
Obtained by molding. The molded refractory is usually used as a non-fired product, but may be used as a fired product. The molded refractory comprises a refractory composition, sodium aluminate, and sorbitol. The refractory composition is mainly composed of spinel particles, dolomite particles and molten zirconia particles.
The molten zirconia particles include a glass phase.

【0009】ここで、スピネル粒子とは、MgAl24
結晶を含み、粒子中にMgO成分を23〜60%含み、
かつMgO成分とAl23成分の合計量が95%以上で
ある粒子をいい、電融(溶融)スピネル、焼結スピネル
のいずれでもよく、またそれらを併用してもよい。
Here, the spinel particles are MgAl 2 O 4
Containing crystals, containing 23-60% of MgO component in the particles,
In addition, it refers to particles in which the total amount of the MgO component and the Al 2 O 3 component is 95% or more, and may be any of an electrofused (fused) spinel and a sintered spinel, or may be used in combination.

【0010】これらのスピネル粒子は、海水マグネシア
とアルミナをMgO:23〜60%、Al23:40〜
77%の範囲になるように混合した原料混合物をロータ
リーキルンで焼成する方法、または、上記原料混合物を
電気溶融法により溶融し、冷却、粉砕した後、整粒する
方法等で作製される。
These spinel particles are composed of magnesia of seawater and alumina of 23 to 60% of MgO and 40 to 40% of Al 2 O 3.
It is prepared by a method in which a raw material mixture mixed so as to be in a range of 77% is fired by a rotary kiln, or a method in which the raw material mixture is melted by an electric melting method, cooled, pulverized, and then sized.

【0011】本発明においてスピネル粒子は、本質的に
MgO成分とAl23成分とからなるが、不可避的な不
純物または本発明の目的、効果を損なわない程度の他の
成分を含んでいてもよい。MgO成分とAl23成分の
合計量は97%以上であると好ましい。スピネル(Mg
Al24)の理論組成は、MgO成分28%、Al23
成分72%であるが、本発明においては種々のMgO成
分:Al23成分比のスピネル粒子を使い分けることに
より、さらに優れた効果が発揮される。
In the present invention, the spinel particles consist essentially of an MgO component and an Al 2 O 3 component, but may contain unavoidable impurities or other components that do not impair the object and effects of the present invention. Good. The total amount of the MgO component and the Al 2 O 3 component is preferably 97% or more. Spinel (Mg
Theoretical composition of Al 2 O 4) is, MgO component 28%, Al 2 O 3
The component is 72%, but in the present invention, even better effects are exhibited by properly using spinel particles having various MgO component: Al 2 O 3 component ratios.

【0012】本明細書において、スピネル粒子中のMg
O成分含有量が、23%以上かつ33%未満のものを略
理論組成スピネル粒子といい、33%以上かつ60%以
下のものをマグネシア過剰スピネル粒子という。マグネ
シア過剰スピネル粒子には通例、ペリクレース結晶が析
出している。
In the present specification, Mg in spinel particles
Those having an O component content of 23% or more and less than 33% are referred to as substantially theoretical composition spinel particles, and those having an O component content of 33% or more and 60% or less are referred to as magnesia-excess spinel particles. Periclase crystals are usually precipitated in the magnesia-excess spinel particles.

【0013】本発明におけるスピネル粒子はMgO成分
を23〜60%含む。MgO成分が23%未満では、相
対的にアルミナ過剰となるため、本成形耐火物の主要成
分であるドロマイト粒子中のCaOと反応しCaO・A
23などの低融点化合物を生成し耐食性が低下する。
MgO成分が60%を超えると耐食性はあるものの耐ス
ラグ浸透性が悪くなり組織的スポーリングを起こしやす
くなる。スピネル粒子中のMgO成分が25〜50%で
あるとさらに好ましい。
The spinel particles according to the present invention contain 23-60% of MgO component. If the MgO component is less than 23%, the alumina becomes relatively excessive, so that it reacts with CaO in dolomite particles, which is a main component of the molded refractory, and CaO.A
A low melting point compound such as l 2 O 3 is formed, and the corrosion resistance is reduced.
If the MgO component exceeds 60%, although corrosion resistance is present, slag penetration resistance is deteriorated, and systematic spalling is likely to occur. More preferably, the MgO component in the spinel particles is 25 to 50%.

【0014】本発明におけるドロマイト粒子としては、
天然のものも使用できるが、合成ドロマイト粒子で高純
度のものが好ましい。合成ドロマイト粒子は、例えば、
水酸化マグネシウムに水酸化鉄を共沈させて鉄含有水酸
化マグネシウムとし、これに石灰乳を加え消化防止剤と
して酸化チタンを添加し、ロータリーキルンにて焼成す
ることで得られる。
The dolomite particles in the present invention include:
Although natural ones can be used, synthetic dolomite particles of high purity are preferred. Synthetic dolomite particles, for example,
It is obtained by coprecipitating iron hydroxide with magnesium hydroxide to obtain iron-containing magnesium hydroxide, adding lime milk thereto, adding titanium oxide as an antidigestion agent, and firing in a rotary kiln.

【0015】ドロマイト粒子中のCaO成分が5〜20
%(残部の大部分はMgO成分)であると好ましい。ド
ロマイト粒子は水により消化しやすいので、耐消化性を
向上させるために、ドロマイト粒子の表面にリン酸溶液
を被膜する等の処理をしてもよい。
When the CaO component in the dolomite particles is 5 to 20
% (Most of the remainder is MgO component). The dolomite particles are easily digested by water, so that the surface of the dolomite particles may be treated with a phosphoric acid solution or the like to improve the digestion resistance.

【0016】本発明における溶融ジルコニア粒子は、ジ
ルコニア原料を電融などの方法で溶融し再固化して得る
ことができ、ガラス相を含有する。溶融ジルコニア粒子
としては、単斜晶ZrO2結晶相とガラス相とを含むも
のが好ましく、具体的には1)ジルコンを脱ケイして得
られたガラス相を含む脱ケイ溶融ジルコニア、2)ガラ
ス相を含む単斜晶溶融ジルコニア、3)ガラス相を含む
溶融ジルコニア−アルミナ、等が挙げられる。
The molten zirconia particles in the present invention can be obtained by melting and re-solidifying a zirconia raw material by electrofusion or the like, and contains a glass phase. As the molten zirconia particles, those containing a monoclinic ZrO 2 crystal phase and a glass phase are preferable. Specifically, 1) desiliconized molten zirconia containing a glass phase obtained by desiliconizing zircon, and 2) glass Phase-containing monoclinic fused zirconia, 3) fused glass-containing zirconia-alumina, and the like.

【0017】1)のガラス相を含む脱ケイ溶融ジルコニ
アは、ZrO2が約95%であり、単斜晶ZrO2を含む
結晶相と、SiO2、Fe23、TiO2、Al23等か
らなるガラス相とを含む。脱ケイ溶融ジルコニアは、ジ
ルコンサンドを脱ケイすることにより得られるが、脱ケ
イ溶融ジルコニアにさらに所望のガラス相を形成しうる
成分を含有する原料を所定量配合して電気アーク溶融に
より溶融し、得られた溶融物を吹き飛ばして粒状化した
り、カーボンの鋳型に流し込む等した後、冷却し、さら
に粉砕、整粒しても得られる。
The desiliconized molten zirconia 1) containing a glass phase has a ZrO 2 content of about 95%, a crystal phase containing monoclinic ZrO 2 , SiO 2 , Fe 2 O 3 , TiO 2 , and Al 2 O. And a glass phase consisting of 3 grades. The desiliconized molten zirconia is obtained by desiliconizing the zircon sand, and a predetermined amount of a raw material containing a component capable of forming a desired glass phase is further mixed with the desiliconized molten zirconia and melted by electric arc melting. After the obtained melt is blown off and granulated or poured into a carbon mold, it is cooled, further pulverized, and sized.

【0018】2)のガラス相を含む単斜晶溶融ジルコニ
アは、ZrO2が約94%であり、単斜晶ZrO2を含む
結晶相と、P25、Na2O、Al23、SiO2等から
なるガラス相とを含む。3)のガラス相を含む溶融ジル
コニア−アルミナは、約40%の単斜晶ZrO 2と約4
0%のコランダム(Al23)と、約20%の、SiO
2、Al23、Na2O等からなるガラス相とを含む。
2) Monoclinic fused zirconia containing glass phase
A is ZrOTwoIs about 94% and monoclinic ZrOTwoincluding
Crystal phase and PTwoOFive, NaTwoO, AlTwoOThree, SiOTwoFrom etc
Glass phase. 3) Molten gill containing glass phase
Konia-alumina is about 40% monoclinic ZrO TwoAnd about 4
0% corundum (AlTwoOThree) And about 20% of SiO
Two, AlTwoOThree, NaTwoO and the like.

【0019】溶融ジルコニア粒子としては、ガラス相を
3〜25%、特には5〜20%含むものが好ましい。ガ
ラス相の含有量が3%未満では、ジルコニアの転移温度
における体積変化が充分吸収されず、残留応力の発生に
より脆弱化するおそれがある。25%を超える場合は、
溶融スラグ、金属、ガラスに対する耐食性や高温強度が
低下するおそれがある。このように、溶融ジルコニア粒
子中のガラス相は、ジルコニアの転移温度における体積
変化を吸収し、溶融ジルコニア粒子の崩壊を防止する。
The molten zirconia particles preferably contain a glass phase in an amount of 3 to 25%, particularly preferably 5 to 20%. When the content of the glass phase is less than 3%, the volume change at the transition temperature of zirconia is not sufficiently absorbed, and the zirconia may be weakened due to generation of residual stress. If it exceeds 25%,
Corrosion resistance to molten slag, metal, and glass and high-temperature strength may be reduced. Thus, the glass phase in the molten zirconia particles absorbs the volume change at the transition temperature of zirconia and prevents the collapse of the molten zirconia particles.

【0020】一方、MgO、CaO、Y23等で安定化
したジルコニア粒子であって、ガラス相を含まないもの
を本成形耐火物の粒子として使用すると、安定化剤であ
るMgO、CaO、Y23等が、溶融金属、溶融スラ
グ、またはガラスと反応し脱安定化を起こす。このため
安定化したジルコニア粒子は、本成形耐火物中に含むと
してもなるべく少量が好ましい。
On the other hand, when zirconia particles stabilized with MgO, CaO, Y 2 O 3, etc. which do not contain a glass phase are used as the particles of the molded refractory, the stabilizers MgO, CaO, Y 2 O 3 and the like react with molten metal, molten slag, or glass to cause destabilization. For this reason, the stabilized zirconia particles are preferably contained in the molded refractory in a small amount as much as possible.

【0021】本発明において、耐火組成物はスピネル粒
子とドロマイト粒子とガラス相を含む溶融ジルコニア粒
子とを含む。スピネル粒子とドロマイト粒子の合計の含
有量は80〜96%、溶融ジルコニア粒子の含有量は4
〜20%、である。スピネル粒子とドロマイト粒子の合
量が80%未満であると耐スラグ浸透性と耐スポーリン
グ性が悪くなり、96%を超えると耐食性が悪くなる。
また、スピネル粒子が耐火組成物中25%未満では充分
な耐食性が得られにくく、55%を超えると耐スラグ浸
透性が低下するため、スピネル粒子を25〜55%とす
ると好ましい。
In the present invention, the refractory composition contains spinel particles, dolomite particles, and molten zirconia particles containing a glass phase. The total content of spinel particles and dolomite particles is 80 to 96%, and the content of molten zirconia particles is 4%.
~ 20%. If the combined amount of the spinel particles and the dolomite particles is less than 80%, the slag penetration resistance and the spalling resistance will be poor, and if it exceeds 96%, the corrosion resistance will be poor.
If the content of the spinel particles in the refractory composition is less than 25%, it is difficult to obtain sufficient corrosion resistance. If the content is more than 55%, the slag penetration resistance is reduced, so that the content of the spinel particles is preferably 25 to 55%.

【0022】耐火組成物中、溶融ジルコニア粒子が4%
未満であると、耐食性や耐熱衝撃性が充分に発揮され
ず、20%を超えると、施工された成形耐火物が多孔質
化して耐食性が悪くなる。溶融ジルコニア粒子が、耐火
組成物中5〜18%であるとさらに好ましい。
4% of molten zirconia particles in the refractory composition
If it is less than 10%, the corrosion resistance and thermal shock resistance will not be sufficiently exhibited, and if it exceeds 20%, the formed molded refractory will be porous and the corrosion resistance will be poor. More preferably, the molten zirconia particles are from 5 to 18% of the refractory composition.

【0023】本成形耐火物において、スピネル粒子、ド
ロマイト粒子および溶融ジルコニア粒子は、主として耐
火組成物として骨材部を構成し、成形耐火物としての性
質を特徴づけることから、できるだけ多い方が好まし
い。耐火組成物中のスピネル粒子、ドロマイト粒子およ
び溶融ジルコニア粒子の合量を、90%以上特には95
%以上とするのが好ましい。
In the molded refractory, the spinel particles, dolomite particles and molten zirconia particles are preferably as large as possible because they mainly constitute the aggregate portion as a refractory composition and characterize the properties as a molded refractory. The total amount of the spinel particles, dolomite particles and molten zirconia particles in the refractory composition is 90% or more, especially 95%.
% Or more is preferable.

【0024】本発明において耐火組成物中の粒子として
は、粒子直径が10μm〜20mmであると好ましい。
本明細書において、粗粒とは粒子直径1.19mm以上
5mm未満の粒子をいい、中粒とは粒子直径0.105
mm以上1.19mm未満の粒子をいい、微粒とは粒子
直径0.105mm未満の粒子をいう。
In the present invention, the particles in the refractory composition preferably have a particle diameter of 10 μm to 20 mm.
In the present specification, coarse particles refer to particles having a particle diameter of 1.19 mm or more and less than 5 mm, and medium particles refer to particles having a particle diameter of 0.105 mm.
The term “fine particles” refers to particles having a particle diameter of less than 0.105 mm.

【0025】本発明において、ドロマイト粒子は、耐消
化性や耐熱衝撃性の点から粗粒で使用すると好ましい。
溶融ジルコニア粒子としては、微粒を主体とするものが
好ましい。スピネル粒子としては、略理論組成スピネル
粒子とマグネシア過剰スピネル粒子を使用すると好まし
く、それぞれ、微粒単独、中粒単独、または中粒と微粒
を粒度配合して使用するとより好ましい。マグネシア過
剰スピネル粒子は、水とともに使用する場合、消化しや
すいので、消化防止剤を併用すると好ましい。
In the present invention, the dolomite particles are preferably used as coarse particles in view of digestion resistance and thermal shock resistance.
As the molten zirconia particles, those mainly composed of fine particles are preferable. As the spinel particles, it is preferable to use spinel particles having a substantially theoretical composition and magnesia-excess spinel particles, and it is more preferable to use fine particles alone, medium particles alone, or a mixture of medium particles and fine particles. When the magnesia-excess spinel particles are used together with water, they are easily digested. Therefore, it is preferable to use an anti-digestion agent in combination.

【0026】消化防止剤としては、水酸化アルミニウム
と、クエン酸および乳酸との塩が好ましく使用できる。
このような塩としては、例えば化学組成がAl23分:
17.5%、乳酸分:46.5%、クエン酸分:33%
である白色粉末がある。消化防止剤は、耐火組成物に対
して外掛で0.1〜1%含まれるのが好ましい。消化防
止剤が0.1%未満であると消化防止効果が小さく、1
%を超えると施工された成形耐火物が多孔質化するため
好ましくない。
As an antidigestion agent, salts of aluminum hydroxide with citric acid and lactic acid can be preferably used.
Examples of such salts include those having a chemical composition of Al 2 O 3 min:
17.5%, lactic acid content: 46.5%, citric acid content: 33%
There is a white powder that is It is preferable that the antidigestion agent is contained in an amount of 0.1 to 1% on the basis of the refractory composition. When the content of the antidigestion agent is less than 0.1%, the antidigestion effect is small and 1%
%, It is not preferable because the formed molded refractory becomes porous.

【0027】本成形耐火物は、耐火組成物以外にアルミ
ン酸ナトリウムとソルビトールを含む。本成形耐火物に
おいて、アルミン酸ナトリウムは結合材として、ソルビ
トールは成形助剤として、それぞれ機能しているものと
思われる。
The molded refractory contains sodium aluminate and sorbitol in addition to the refractory composition. In this molded refractory, it is considered that sodium aluminate functions as a binder and sorbitol functions as a molding aid.

【0028】アルミン酸ナトリウムは、代表的な組成と
して、NaAlO2またはNa3AlO3で表され、その
Na2O/Al23のモル比は1.2〜2.6である。
アルミン酸ナトリウムは、ドロマイト、スピネルおよび
ジルコニア等と比較的低温から反応し、複合スピネル等
の反応物を生成し、強度を発生させる作用があると考え
られ、このため、本成形耐火物は、スポーリングによる
亀裂や剥離も発生しにくく、耐食性は高い。
As a typical composition, sodium aluminate is represented by NaAlO 2 or Na 3 AlO 3 , and the molar ratio of Na 2 O / Al 2 O 3 is 1.2 to 2.6.
It is considered that sodium aluminate reacts with dolomite, spinel, zirconia, etc. at a relatively low temperature to produce a reactant such as a composite spinel and has an action of generating strength. Cracking and peeling due to poling hardly occur, and corrosion resistance is high.

【0029】アルミン酸ナトリウムの配合量は、耐火組
成物100質量部に対してNaAlO2に換算して外掛
で0.5〜3.5質量部である。アルミン酸ナトリウム
の配合量が0.5質量部未満では、不焼成の成形耐火物
としての充分な強度が得られず、また3.5質量部を超
えると使用中に過焼結になり、耐スポーリング性が劣化
する。好ましくは0.5〜3質量部である。アルミン酸
ナトリウムは、粉末で添加しても水溶液の形で添加して
もよい。
The amount of sodium aluminate is 0.5 to 3.5 parts by mass in terms of NaAlO 2 based on 100 parts by mass of the refractory composition. If the amount of sodium aluminate is less than 0.5 parts by mass, sufficient strength as an unfired molded refractory cannot be obtained, and if it exceeds 3.5 parts by mass, oversintering occurs during use, and Spallability deteriorates. Preferably it is 0.5 to 3 parts by mass. Sodium aluminate may be added in the form of a powder or an aqueous solution.

【0030】本成形耐火物はソルビトールを含有する
が、粉末で水に容易に溶けるD−ソルビトールを主成分
とするのが好ましい。ソルビトールは、混練坏土の充填
性、粒子間の潤滑性を向上し、坏土を安定化させ、かつ
スレーキングを抑制し、毒性もなく、高い成形密度の成
形体を得ることができ、高強度を与える。
Although the molded refractory contains sorbitol, it is preferable to use D-sorbitol as a main component which is a powder and easily soluble in water. Sorbitol improves the filling property of the kneaded clay, the lubricity between particles, stabilizes the kneaded clay, suppresses the slaking, has no toxicity, and can provide a molded body with high molding density and high strength. give.

【0031】ソルビトールの配合量は、耐火組成物10
0質量部に対して外掛で0.1〜1.3質量部である。
配合量が0.1質量部未満では、充填性、潤滑性の効果
は得られにくく、また、1.3質量部を超えると、高温
下で使用中に消失し、気孔を残すため好ましくない。ソ
ルビトールの配合量が、0.3〜1.0質量部であると
さらに好ましい。ソルビトールは、アルミン酸ナトリウ
ム水溶液中に添加溶解してもよく、粉末として添加して
もよい。
The amount of sorbitol to be added is 10
It is 0.1 to 1.3 parts by mass with respect to 0 parts by mass.
If the amount is less than 0.1 part by mass, the effects of filling and lubricity are difficult to obtain, and if it exceeds 1.3 parts by mass, it disappears during use at high temperatures, leaving pores. More preferably, the amount of sorbitol is 0.3 to 1.0 part by mass. Sorbitol may be added and dissolved in an aqueous solution of sodium aluminate, or may be added as a powder.

【0032】本成形耐火物は、上記の原料を混練、成形
して製造される。また、焼成品の場合には焼成するが、
その場合にも同様の効果が得られる。混練、成形の方法
は、通常の耐火物製造法と変わりない。なお、成形後に
加熱して乾燥してもよい。
The molded refractory is manufactured by kneading and molding the above-mentioned raw materials. In the case of a baked product, it is baked,
In that case, the same effect can be obtained. The method of kneading and molding is no different from the usual refractory manufacturing method. In addition, you may heat and dry after shaping | molding.

【0033】最初に、耐火組成物中の粗粒、中粒を湿式
で混練し、アルミン酸ナトリウム、ソルビトールを水溶
液または粉末で添加することにより、前記粗粒、中粒の
表面にアルミン酸ナトリウムやソルビトールを被覆した
状態とし、次に微粒を投入混練する方法であると混練物
の均一性がよいため好ましい。
First, the coarse particles and the medium particles in the refractory composition are wet-kneaded, and sodium aluminate and sorbitol are added in the form of an aqueous solution or powder. A method in which sorbitol is coated and then fine particles are charged and kneaded is preferable because the kneaded material has good uniformity.

【0034】成形は用途に合せて、フリクションプレ
ス、オイルプレスまたはラバープレスなどで加圧成形す
る。加熱して乾燥する場合、乾燥温度は100〜500
℃であると好ましい。焼成品とする場合には、1600
〜1650℃で焼成すると好ましい。
The molding is carried out under pressure by a friction press, an oil press, a rubber press or the like according to the application. When drying by heating, the drying temperature is 100 to 500
C. is preferred. 1600 for firing
It is preferable to bake at 161650 ° C.

【0035】本成形耐火物は、ガラス相を含む溶融ジル
コニア粒子、ドロマイト粒子、スピネル粒子およびアル
ミン酸ナトリウムを含むので、使用中から緻密化、高強
度化され、耐食性が優れ、溶融スラグの浸透が少なく、
組織的スポーリングを起こしにくい。
Since the molded refractory contains molten zirconia particles, dolomite particles, spinel particles and sodium aluminate containing a glass phase, it is densified and strengthened during use, has excellent corrosion resistance, and has excellent penetration of molten slag. Less,
Less likely to cause systematic spalling.

【0036】本発明の廃棄物溶融炉は、本成形耐火物を
炉壁の少なくとも一部に使用する。特には溶融スラグと
接触する部分の炉壁を本成形耐火物で構成すると耐食
性、耐久性などの点で好ましい。この場合、焼却灰等の
溶融スラグに含まれるSiO2、CaO、Al23、F
23、Na2O等の成分は、溶融ジルコニア粒子、ス
ピネル粒子と反応するが、溶融ジルコニア粒子との反応
物は高融点物質となり、また、スピネル粒子との反応物
は高粘性物質となるので、本成形耐火物で形成した炉壁
の耐食性は低下しにくいと考えられる。したがって、本
成形耐火物を用いることにより、溶融スラグ等に対する
耐スラグ浸透性に優れ、結果として高い耐食性と耐熱衝
撃性を発揮する耐久性の大きい炉壁を形成できる。本成
形耐火物は、廃棄物溶融炉用に最適であるが、鉄鋼用、
非鉄金属用、セメント用等の各種炉や焼却炉にも好まし
く使用される。
The waste melting furnace of the present invention uses the molded refractory for at least a part of the furnace wall. In particular, it is preferable to form the furnace wall in a portion in contact with the molten slag from the molded refractory in terms of corrosion resistance and durability. In this case, SiO 2 , CaO, Al 2 O 3 , F contained in molten slag such as incinerated ash
Components such as e 2 O 3 and Na 2 O react with the molten zirconia particles and the spinel particles, but the reactant with the molten zirconia particles becomes a high melting point substance, and the reactant with the spinel particles becomes the high viscous substance. Therefore, it is considered that the corrosion resistance of the furnace wall formed of the molded refractory hardly decreases. Therefore, by using the molded refractory material, it is possible to form a highly durable furnace wall having excellent slag penetration resistance to molten slag and the like and consequently exhibiting high corrosion resistance and thermal shock resistance. This molded refractory is ideal for waste melting furnaces,
It is also preferably used in various furnaces and incinerators for non-ferrous metals and cement.

【0037】[0037]

【実施例】以下に本発明の実施例(例1〜例10)およ
び比較例(例11〜例18)を説明する。供試物の原料
配合割合(単位:質量部)を表1、表2に示す。供試物
は、所定量の耐火組成物に、アルミン酸ナトリウム、ソ
ルビトール、消化防止剤(いずれも耐火組成物に対して
外掛、%)を添加混合し、さらに水(耐火組成物に対し
て外掛、%)を添加して混練後、フリクションプレスで
並型形状に加圧成形(98MPa)した。その後、例1
〜例16については200℃で24時間乾燥した。
EXAMPLES Examples of the present invention (Examples 1 to 10) and comparative examples (Examples 11 to 18) will be described below. Tables 1 and 2 show the raw material mixing ratio (unit: parts by mass) of the test sample. The test sample is prepared by adding sodium aluminate, sorbitol, and an antidigestion agent (all of which are external to the refractory composition,%) to a predetermined amount of the refractory composition, and further adding water (to the refractory composition, ,%) Were added and kneaded, followed by pressure molding (98 MPa) into a parallel shape by a friction press. Then, Example 1
About Example 16 was dried at 200 ° C. for 24 hours.

【0038】なお、表1、表2における各原料は以下の
とおりである。 粒子A:脱ケイ溶融ジルコニア粒子、微粒を使用。 粒子B:粒子Aとガラス相形成成分とを混合しアーク溶
融して得られた溶融ジルコニア粒子、微粒を使用。 粒子C:粒子A、アルミナ、ガラス相形成成分を混合
し、アーク溶融して得られた溶融ジルコニア−コランダ
ム粒子、微粒を使用。 粒子D:高純度ジルコニアにMgOを添加し、アーク溶
融して得られた安定化ジルコニア粒子であり、MgOを
4%含む、微粒を使用。 粒子E:略理論組成スピネル粒子(焼結品)、中粒を使
用。 粒子F:マグネシア過剰スピネル粒子(焼結品)、粗粒
または微粒を使用。
The raw materials in Tables 1 and 2 are as follows. Particle A: Desiliconized zirconia particles and fine particles are used. Particle B: Molten zirconia particles and fine particles obtained by mixing particle A with a glass phase forming component and performing arc melting. Particles C: Particles A, alumina, and a glass phase-forming component are mixed, and arc-fused to use fused zirconia-corundum particles and fine particles. Particle D: stabilized zirconia particles obtained by adding MgO to high-purity zirconia and arc melting, and using fine particles containing 4% of MgO. Particles E: Spinel particles of approximately theoretical composition (sintered product), medium particles used. Particle F: Magnesia excess spinel particles (sintered product), coarse or fine particles are used.

【0039】粒子G:ドロマイト粒子。以下の方法で作
製した。MgCl2およびMgSO4を含む海水に、硫酸
鉄および石灰乳を添加、混合し、鉄を含有する水酸化マ
グネシウムを得た。これに石灰乳およびTiO2を添
加、混合したものを成形し、ロータリーキルンで焼成し
て合成ドロマイトクリンカーを得た。これをリン酸処理
した後、粉砕、整粒してドロマイト粒子を得た。得られ
たドロマイト粒子の化学組成は質量比で、CaO:16
〜17%、Al23:1.2、Fe23:0.4%、P
25:0.7%、TiO2:1.0%、残部はMgOで
ある。ドロマイト粒子は粗粒で使用した。
Particles G: Dolomite particles. It was produced by the following method. Iron sulfate and lime milk were added to and mixed with seawater containing MgCl 2 and MgSO 4 to obtain iron-containing magnesium hydroxide. A mixture of lime milk and TiO 2 was added to the mixture, and the mixture was molded and fired in a rotary kiln to obtain a synthetic dolomite clinker. This was treated with phosphoric acid, pulverized and sized to obtain dolomite particles. The chemical composition of the obtained dolomite particles is expressed as a mass ratio of CaO: 16.
~17%, Al 2 O 3: 1.2, Fe 2 O 3: 0.4%, P
2 O 5 : 0.7%, TiO 2 : 1.0%, the balance being MgO. Dolomite particles were used as coarse particles.

【0040】不焼成1:マグネシア−クロミア質(Mg
O:62%、Cr23:23%)の不焼成耐火物。 不定形1:Al23を96%含むアルミナ質不定形耐火
物。 不定形2:Cr23を10%含むアルミナ−クロミア質
不定形耐火物。 アルミン酸塩:Na2O/Al23モル比1.2のアル
ミン酸ナトリウム。 ソルビトール:粉末。 アルミナセメント:Al23分:73%、CaO分:2
6%で、比表面積が6000cm2/gのもの。 消化防止剤:水酸化アルミニウムと、クエン酸および乳
酸とからなる混合塩(多木化学社製、商品名:タキセラ
ムAS−300)。 分散剤:トリポリリン酸ナトリウム。
Unfired 1: magnesia-chromia (Mg
O: 62%, Cr 2 O 3 : 23%). Amorphous 1: Alumina amorphous refractory containing 96% Al 2 O 3 . Amorphous 2: Alumina-chromia amorphous refractory containing 10% Cr 2 O 3 . Aluminate: sodium aluminate having a molar ratio of Na 2 O / Al 2 O 3 of 1.2. Sorbitol: powder. Alumina cement: Al 2 O 3 min: 73%, CaO min: 2
With a specific surface area of 6000 cm 2 / g at 6%. Antidigestion agent: a mixed salt composed of aluminum hydroxide, citric acid and lactic acid (trade name: Taxelum AS-300, manufactured by Taki Kagaku Co., Ltd.). Dispersant: sodium tripolyphosphate.

【0041】また粒子A〜Dの化学組成、結晶形態、ガ
ラス相の割合を表3に示し、粒子E、Fの化学組成、結
晶形態を表4に示す。例17、例18においては、アル
ミナセメントに加えて、粒子直径が5μm以下のアルミ
ナ粒子を用いた。
Table 3 shows the chemical composition, crystal morphology and glass phase ratio of particles A to D, and Table 4 shows the chemical composition and crystal morphology of particles E and F. In Examples 17 and 18, alumina particles having a particle diameter of 5 μm or less were used in addition to the alumina cement.

【0042】[評価結果]例1〜18で得られた供試物
を使用し、その特性を測定、評価し、表1、表2に示し
た。評価項目、測定法は以下のとおりである。 嵩密度(g/cm3):耐火物試験法(JIS R22
05に準拠)により測定。
[Evaluation Results] Using the test specimens obtained in Examples 1 to 18, the characteristics were measured and evaluated, and the results are shown in Tables 1 and 2. Evaluation items and measurement methods are as follows. Bulk density (g / cm 3 ): Refractory test method (JIS R22)
05).

【0043】曲げ強度は、前記供試物から、30×15
×100mmサイズの試験片を切り出し、3点曲げ強度
として室温で測定した。 曲げ強度A(MPa):200℃にて24時間熱処理し
た後の3点曲げ強度。 曲げ強度B(MPa):1000℃にて3時間熱処理し
た後の3点曲げ強度。 曲げ強度C(MPa):1500℃にて3時間熱処理し
た後の3点曲げ強度。
The flexural strength was determined to be 30 × 15 from the specimen.
A test piece having a size of × 100 mm was cut out and measured at room temperature as a three-point bending strength. Flexural strength A (MPa): 3-point flexural strength after heat treatment at 200 ° C. for 24 hours. Bending strength B (MPa): Three-point bending strength after heat treatment at 1000 ° C. for 3 hours. Flexural strength C (MPa): Three-point flexural strength after heat treatment at 1500 ° C. for 3 hours.

【0044】耐熱衝撃性(回):前記供試物から55×
55×230mmの角柱状の試験片を切り出す。該試験
片の長手方向端部を1300℃に保持した電気炉中に1
5分間保持した後、炉外に取り出し室温で15分間保持
するサイクルを繰り返し、剥離が発生するまでの回数を
測定した。上記サイクルの回数は25回を限度とした。
耐熱衝撃性は、剥離が発生するまでの回数が多い方が良
好である。なお、25回反復した時点で剥離がないもの
を表中25+と表した。
Thermal shock resistance (times): 55 × from the test sample
A 55 × 230 mm prismatic test piece is cut out. The end of the test piece in the longitudinal direction was placed in an electric furnace maintained at 1300 ° C.
After holding for 5 minutes, a cycle of taking out of the furnace and holding at room temperature for 15 minutes was repeated, and the number of times until peeling occurred was measured. The number of cycles was limited to 25 times.
The thermal shock resistance is better when the number of times until peeling occurs is larger. In addition, the thing which does not have peeling at the time of repeating 25 times was represented as 25+ in the table.

【0045】耐食性指数およびスラグ浸透深さ(m
m):前記供試物から複数の台形柱状のテストピースを
切り出し、研磨して所定の寸法にし、これを回転ドラム
内に内張りした。次いで、回転ドラムを回転させなが
ら、回転ドラムの軸線方向に酸素プロパン炎を吹込み1
600℃に加熱した。1600℃に保持した状態で、侵
食材として、焼却灰および飛灰の合成スラグを回転ドラ
ム内に投入し6時間回転させた。
The corrosion resistance index and the slag penetration depth (m
m): A plurality of trapezoidal column-shaped test pieces were cut out from the specimen, polished to a predetermined size, and lined in a rotating drum. Then, while rotating the rotating drum, oxygen propane flame was blown in the axial direction of the rotating drum.
Heated to 600 ° C. With the temperature maintained at 1600 ° C., a synthetic slag of incinerated ash and fly ash was charged into a rotating drum as an erosion material and rotated for 6 hours.

【0046】合成スラグの化学組成は、Al23:16
%、CaO:32%、SiO2:32%、Fe23:8
%、K2O:2%、Na2O:2%、MgO:2%、P2
5:6%である。合成スラグは30分毎に新しく投入
して試験した。
The chemical composition of the synthetic slag is Al 2 O 3 : 16
%, CaO: 32%, SiO 2: 32%, Fe 2 O 3: 8
%, K 2 O: 2%, Na 2 O: 2%, MgO: 2%, P 2
O 5 : 6%. The synthetic slag was tested fresh every 30 minutes.

【0047】回転ドラムを冷却後、テストピースを取り
出して切断し、溶損量(mm)、スラグ浸透深さ(m
m)をテストピースの各部で測定し、平均値を求めた。
例18の溶損量を100とした場合の各例の溶損量の比
を、耐食性指数として算出した。耐食性指数は、小さい
ものが耐食性が良好であることを示す。
After cooling the rotating drum, the test piece was taken out and cut, and the erosion amount (mm) and the slag penetration depth (m
m) was measured at each part of the test piece, and the average value was determined.
The ratio of the amount of erosion in each example when the amount of erosion in Example 18 was 100 was calculated as the corrosion resistance index. A small corrosion resistance index indicates that the corrosion resistance is good.

【0048】耐消化性試験における質量増加率(%):
学振法7の「ドロマイトクリンカーの消化性試験方法」
によるもので、134℃にて3気圧のオートクレーブ中
で2時間保持した後の質量増加率(%)を測定した。耐
消化性は質量増加率が小さいほど優れている。
Mass increase rate (%) in digestion resistance test:
Gakushin Method 7 "Drugite Clinker Digestibility Test Method"
The rate of mass increase (%) after holding at 134 ° C. in a 3 atm autoclave for 2 hours was measured. The digestion resistance is better as the mass increase rate is smaller.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【発明の効果】本成形耐火物は、スピネル粒子とドロマ
イト粒子とガラス相を含む溶融ジルコニア粒子とを含む
耐火組成物に、アルミン酸ナトリウムとソルビトールを
添加することで、粒子間結合を高め、比較的低い温度よ
り複合スピネル等の反応物を生成させるため、強度変化
が少なく強度特性も優れ、さらに、耐食性、耐スラグ浸
透性、耐スポーリング性にも優れるため長期間使用でき
る。本成形耐火物は、クロムを含まないため環境汚染の
原因となるおそれがない。よって、本成形耐火物は、廃
棄物溶融炉等に使用されているクロム系耐火物を代替で
きる。
The refractory molded article according to the present invention has an improved interparticle bond by adding sodium aluminate and sorbitol to a refractory composition containing spinel particles, dolomite particles, and molten zirconia particles containing a glass phase. Since a reactant such as a composite spinel is generated at an extremely low temperature, there is little change in strength and excellent strength characteristics, and furthermore, it has excellent corrosion resistance, slag penetration resistance, and spalling resistance, so that it can be used for a long time. Since the molded refractory does not contain chromium, there is no possibility of causing environmental pollution. Therefore, this molded refractory can replace the chromium-based refractory used in the waste melting furnace and the like.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】耐火組成物100質量部に、アルミン酸ナ
トリウムをNaAlO2に換算して0.5〜3.5質量
部、ソルビトールを0.1〜1.3質量部の割合で配合
してなる成形耐火物であって、耐火組成物中に、スピネ
ル粒子とドロマイト粒子とガラス相を含む溶融ジルコニ
ア粒子とを含み、耐火組成物中のスピネル粒子とドロマ
イト粒子との合計の含有量が80〜96質量%、ガラス
相を含む溶融ジルコニア粒子の含有量が4〜20質量
%、である成形耐火物。ただし、上記においてスピネル
粒子とは、MgAl24結晶を含み、粒子中にMgO成
分を23〜60質量%含み、かつMgO成分とAl23
成分の合計量が95質量%以上である粒子をいう。
(1) To 100 parts by mass of a refractory composition, sodium aluminate is added at a ratio of 0.5 to 3.5 parts by mass in terms of NaAlO 2 and sorbitol is added at a ratio of 0.1 to 1.3 parts by mass. Molded refractory, comprising in the refractory composition, spinel particles, dolomite particles and molten zirconia particles containing a glass phase, the total content of spinel particles and dolomite particles in the refractory composition is 80 to A molded refractory having a content of 96% by mass and 4 to 20% by mass of molten zirconia particles containing a glass phase. However, in the above description, the spinel particles include MgAl 2 O 4 crystals, the particles contain 23 to 60% by mass of MgO component, and the MgO component and Al 2 O 3
A particle having a total amount of 95% by mass or more.
【請求項2】溶融ジルコニア粒子中のガラス相の含有量
が3〜25質量%である請求項1記載の成形耐火物。
2. The molded refractory according to claim 1, wherein the content of the glass phase in the molten zirconia particles is 3 to 25% by mass.
【請求項3】溶融ジルコニア粒子が、単斜晶ZrO2
晶を含む請求項1または2記載の成形耐火物。
3. The molded refractory according to claim 1, wherein the molten zirconia particles contain monoclinic ZrO 2 crystals.
【請求項4】成形耐火物中のスピネル粒子の含有量が2
5〜55質量%である請求項1、2または3記載の成形
耐火物。
4. The content of spinel particles in the molded refractory is 2
The molded refractory according to claim 1, 2 or 3, wherein the content is 5 to 55% by mass.
【請求項5】粒子直径が1.19mm未満であるスピネ
ル粒子を含む請求項1、2、3または4記載の成形耐火
物。
5. A molded refractory according to claim 1, comprising spinel particles having a particle diameter of less than 1.19 mm.
【請求項6】粒子直径が1.19mm以上5mm未満の
ドロマイト粒子を含む請求項1〜5のいずれかに記載の
成形耐火物。
6. The molded refractory according to claim 1, comprising dolomite particles having a particle diameter of 1.19 mm or more and less than 5 mm.
【請求項7】耐火組成物100質量部に、さらに消化防
止剤を0.1〜1質量部の割合で配合してなる請求項1
〜6のいずれかに記載の成形耐火物。
7. The composition according to claim 1, further comprising 0.1 to 1 part by mass of an antidigestion agent in 100 parts by mass of the refractory composition.
7. The molded refractory according to any one of items 6 to 6.
【請求項8】成形耐火物が不焼成の成形耐火物である請
求項1〜7のいずれかに記載の成形耐火物。
8. The molded refractory according to claim 1, wherein the molded refractory is an unfired molded refractory.
【請求項9】請求項1〜8のいずれかに記載の成形耐火
物を、炉壁の少なくとも一部に使用した廃棄物溶融炉。
9. A waste melting furnace using the molded refractory according to claim 1 for at least a part of a furnace wall.
JP2000060978A 2000-03-06 2000-03-06 Formed refractory material and waste melting furnace Pending JP2001247379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060978A JP2001247379A (en) 2000-03-06 2000-03-06 Formed refractory material and waste melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060978A JP2001247379A (en) 2000-03-06 2000-03-06 Formed refractory material and waste melting furnace

Publications (1)

Publication Number Publication Date
JP2001247379A true JP2001247379A (en) 2001-09-11

Family

ID=18581205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060978A Pending JP2001247379A (en) 2000-03-06 2000-03-06 Formed refractory material and waste melting furnace

Country Status (1)

Country Link
JP (1) JP2001247379A (en)

Similar Documents

Publication Publication Date Title
US5559064A (en) Chrome-free brick
JP2002193681A (en) Castable refractory and waste melting furnace utilizing it
WO2013057756A1 (en) Burned magnesia brick
MXPA05005845A (en) Heavy ceramic moulded body, method for producing said body and use of the same.
JP2003238250A (en) Yttria refractory
JP2000335978A (en) Castable refractory material
JP2002220290A (en) Castable refractory
JP2002241173A (en) Shaped refractory
JP2001247379A (en) Formed refractory material and waste melting furnace
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2001253768A (en) Molded refractory and waste melting furnace
JP2007001827A (en) Alumina-chromia based monolithic refractory
JP2001247356A (en) Molded refractory and waste-melting furnace
JP4474658B2 (en) Alumina-magnesia refractory brick
JP4538779B2 (en) Magnesia-alumina clinker and refractory obtained using the same
WO2013032065A1 (en) Low cement corrosion-resistive unshaped refractories
JP2000281455A (en) Alumina-zirconia-based amorphous refractory
JP3327536B2 (en) Irregular refractories for waste melting furnace pouring and waste melting furnace using the same
JP2001253782A (en) Monolithic refractory and furnace for melting waste material
JP2000327435A (en) Monolithic refractory and waste melting furnace using the same
JP2001220250A (en) Monolithic refractory material and melting furnace for waste
JP2002128573A (en) Castable refractory and furnace for fusing wastes
JP2002145674A (en) Monolithic refractory and waste fusion furnace utilizing the same
JP2000319073A (en) Monolithic refractory material and waste melting furnace
JP4205926B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it