JP2001245433A - Measuring device for high harmonic - Google Patents

Measuring device for high harmonic

Info

Publication number
JP2001245433A
JP2001245433A JP2000052852A JP2000052852A JP2001245433A JP 2001245433 A JP2001245433 A JP 2001245433A JP 2000052852 A JP2000052852 A JP 2000052852A JP 2000052852 A JP2000052852 A JP 2000052852A JP 2001245433 A JP2001245433 A JP 2001245433A
Authority
JP
Japan
Prior art keywords
injection
frequency
current
time information
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000052852A
Other languages
Japanese (ja)
Inventor
Isao Koda
勲 香田
Masakazu Tsukamoto
政和 塚本
Toshihiko Shikata
俊彦 志方
Yasukazu Natsuda
育千 夏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2000052852A priority Critical patent/JP2001245433A/en
Publication of JP2001245433A publication Critical patent/JP2001245433A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable dispersively and concurrently injecting in phase the output current of an injection frequency of each injection unit to a host-system side without transmitting a timing-control signal to each injection-control unit from a host device. SOLUTION: The device comprises a clock-circuit unit 12 that outputs a clock information to each injection-control unit 7a to 7c calculating a clock signal by a multistage counter, a GPS receiving unit 23 that receives a clock information and a pulse signal of every one second from GPS satellite 21, and a clock-correcting unit 24 that renews the clock information of the circuit unit 12 with the received clock information of the receiving unit 23 and resets a lower figure smaller than second of the multistage counter to zero with an edge of the received pulse signal of every one second of the receiving unit 23. A phase of the output current of the injection frequency of the injection units 6a to 6c is corrected by a timing control based on the clock information of the circuit unit 12 corresponding to a load condition of each lower-end system 5a to 5c. Then the current in sync. with the identical injection frequency is dispersively injected to the host-system 1 side from the systems 5a to 5c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の下位系統か
ら上位系統側に系統基本周波数を非整数倍した電流を同
時に注入し、上位系統又はこの上位系統から分枝した注
入装置が設置されていない下位系統の注入周波数の等価
回路を求めて高調波特性を測定する高調波測定装置に関
し、詳しくはその電流注入の同期制御に関する。
The present invention relates to an injection device which simultaneously injects a current obtained by multiplying the system fundamental frequency by a non-integer number from a plurality of lower systems to a higher system, and branches from the upper system or this higher system. More specifically, the present invention relates to a harmonic measurement device for measuring a harmonic characteristic by obtaining an equivalent circuit of an injection frequency of a lower system, and more particularly to a synchronous control of current injection.

【0002】[0002]

【従来の技術】本出願人は、送,配電系統(電力系統)
の高調波特性を正確に把握して高調波レベルの良好な低
減等を行うため、電力系統に測定調波(着目高調波)の
上,下両側の系統基本周波数fs を非整数倍した周波数
の電流(次数間高調波の電流)を注入し、注入周波数の
電圧,電流の実測結果に基づき、電力系統の注入周波数
についての等価回路を求め、この等価回路から着目高調
波の等価回路を補間演算して決定し、その高調波特性を
測定する発明を既に特願平8−310192号にて出願
している。(以下,これを第1の既出願という。)
2. Description of the Related Art The applicant of the present invention is a transmission and distribution system (power system).
In order to accurately understand the harmonic characteristics of the power system and to reduce the harmonic level satisfactorily, the power system was multiplied by a non-integer multiple of the system fundamental frequency f s above and below the measured harmonics (harmonics of interest). A frequency current (interharmonic current) is injected, and based on the measured results of the voltage and current at the injection frequency, an equivalent circuit for the injection frequency of the power system is obtained. From this equivalent circuit, the equivalent circuit of the harmonic of interest is determined. An invention in which an interpolation operation is determined and its harmonic characteristics are measured has already been filed in Japanese Patent Application No. 8-310192. (Hereinafter, this is referred to as the first already filed application.)

【0003】この高調波測定の場合、注入周波数の電流
が系統に本来存在しない系統基本周波数fを非整数倍
した周波数の電流であり、注入周波数についての等価回
路のアドミタンスが実測により精度よく求まるため、こ
の結果を用いて着目高調波についての特性を精度よく把
握し得る。
In the case of this harmonic measurement, current injection frequency is current having a frequency which is integral multiple original nonexistent system fundamental frequency f s to the system, admittance of the equivalent circuit for the injection frequency is determined accurately by measurement Therefore, the characteristics of the harmonic of interest can be accurately grasped using this result.

【0004】しかし、前記第1の既出願に記載の高調波
測定方法は、注入点と計測点とを同一点にするため、上
位系統から複数の下位系統が分枝する実際の電力系統に
あっては、例えば20KV級の上位系統の高調波測定に
際し、注入点を上位系統に設定し、上位系統に前記の次
数間高調波の電流を直接注入しなければならず、この場
合、注入点が高電圧であるため、注入装置の電圧階級
(絶縁階級)を十分に高くする必要があり、しかも、そ
の十分な保護対策を講じる必要もあり、装置が大型かつ
複雑で高価になる。
However, in the harmonic measurement method described in the above-mentioned first application, since the injection point and the measurement point are set to the same point, the method is applied to an actual power system in which a plurality of lower systems branch from an upper system. For example, when measuring harmonics of a higher-order system of the 20 KV class, for example, the injection point must be set to the higher-order system, and the current of the above-mentioned interharmonics must be directly injected into the higher-order system. Because of the high voltage, the voltage class (insulation class) of the injection device must be sufficiently high, and sufficient protection measures must be taken, which makes the device large, complex and expensive.

【0005】そこで、本出願人はつぎに説明する電力系
統の高調波測定方法の発明も既に特願平9−19780
8号にて出願している。(以下,これを第2の既出願と
いう。)
Accordingly, the applicant of the present invention has already proposed an invention of a method for measuring higher harmonics in a power system which will be described below in Japanese Patent Application No. 9-19780.
No. 8 filed. (Hereinafter, this is referred to as the second already filed application.)

【0006】この第2の既出願の高調波測定方法は、上
位系統から分枝した複数の母線(下位系統)に注入点を
設定し、各注入点に注入装置を接続し、各注入装置から
各注入点に同期をとって同時に着目高調波(周波数n×
s )を挟む系統基本周波数feを非整数倍した2周波
数f1,f2(f1<n×fe<f2)の電流を次数間高調
波の電流としてそれぞれ注入し、上位系統の計測点の計
測装置により、周波数f 1,f2の次数間高調波それぞれ
についての等価回路のアドミタンスを求め、この両アド
ミタンスから上位系統の着目高調波についての等価回路
を補間演算して決定し、上位系統の着目高調波について
の高調波特性を測定するものである。
[0006] The harmonic measurement method of the second filed application is described above.
Injection points to multiple buses (sub-systems) branched from
Set, connect the injection device to each injection point, and from each injection device
The harmonics of interest (frequency nx
fs) Sandwiching the system fundamental frequency feFrequency of non-integer multiple of
Number f1, FTwo(F1<Nxfe<FTwo) Current of order
The current is injected as a wave current, and the
Frequency f 1, FTwoEach interharmonic of
Find the admittance of the equivalent circuit for
Equivalent circuit for higher harmonics of interest from mitance to higher system
Is determined by interpolation calculation, and the higher harmonics of interest are determined.
This is to measure the harmonic characteristics of.

【0007】この場合、次数間高調波の注入点が計測点
より下位低圧側の分枝した複数の下位系統に設定され、
測定に必要な周波数f1,f2の次数間高調波の電流が各
下位系統の注入点から分散注入されるため、各注入装置
の電圧階級を低くすることができるとともに、各注入装
置の電流容量を1台で賄う場合より小さくすることがで
き、電圧階級が低く、電流容量が小さい小型かつ簡素な
装置を用いて高調波測定が行える。
In this case, the injection points of the interharmonics are set in a plurality of branched lower systems on the low pressure side lower than the measurement point,
Since the interharmonic currents of the frequencies f 1 and f 2 required for the measurement are dispersedly injected from the injection points of the respective sub-systems, the voltage class of each injection device can be lowered and the current of each injection device can be reduced. Harmonic measurement can be performed using a small and simple device having a small voltage class and a small current capacity, as compared with a case where a single device can cover the capacity.

【0008】[0008]

【発明が解決しようとする課題】前記第2の既出願の高
調波測定方法の場合、各注入装置による注入電流をそれ
ぞれの注入点で同期させて同時に注入しても、実際に
は、各注入装置が接続された下位系統(注入系統)の条
件すなわち負荷状態により、上位系統側に注入された電
流の位相が注入装置毎(下位系統毎)にずれる。
In the case of the harmonic measurement method of the second application, even if the injection currents of the injection devices are simultaneously injected at the respective injection points in synchronization with each other, actually, each injection Depending on the condition of the lower system (injection system) to which the device is connected, that is, the load state, the phase of the current injected into the upper system is shifted for each injection device (for each lower system).

【0009】そして、この位相のずれ(位相差)が18
0°にもなると、注入電流間で互いに打消合う事態が発
生し、上位系統側への注入量が減少して分散注入の効果
が薄れ、場合によっては、多数の下位系統から分散注入
しているにもかかわらず、実質的にはそのうちの1つの
下位系統の1台の注入装置から注入している状態にな
り、十分な注入量を確保できなくなる。
The phase shift (phase difference) is 18
When the angle reaches 0 °, the injection currents cancel each other, the amount of injection into the upper system decreases, and the effect of dispersion injection is weakened. In some cases, dispersion injection is performed from a large number of lower systems. Nevertheless, the injection is practically performed from one injection device of one of the lower systems, and a sufficient injection amount cannot be secured.

【0010】そこで、何らかの手法により、各注入系統
の負荷状態を事前に把握し、測定時に、各注入装置によ
る注入電流の位相を、それぞれの注入系統の負荷状態に
基づく変化を見込んでずらし、上位系統側の計測点で各
注入装置による注入電流が同相になるようにすることが
考えられる。
Therefore, the load state of each injection system is grasped in advance by some method, and at the time of measurement, the phase of the injection current by each injector is shifted in anticipation of a change based on the load state of each injection system, and It is conceivable that the injection currents of the injection devices at the measurement points on the system side have the same phase.

【0011】そして、各注入系統の負荷状態は、例え
ば、予め測定対象の系統全体につき、接続されている負
荷を調査して系統図(単線結線図)を作成すれば、この
系統図から各注入系統の注入周波数についての等価回路
を求めて把握することができる。
[0011] The load state of each injection system can be determined, for example, by examining the connected loads for the entire system to be measured in advance and creating a system diagram (single-line connection diagram). An equivalent circuit for the injection frequency of the system can be obtained and grasped.

【0012】また、前記の調査を行う代わりに、測定前
に、各注入装置を個別に駆動し、各注入装置からそれぞ
れの接続系統(注入系統)の負荷側に流れる注入周波数
の電流,電圧を計測し、この計測結果から各注入系統の
注入周波数についての等価回路を求めて各注入系統の負
荷状態を把握することも可能である。
Instead of conducting the above-mentioned investigation, before the measurement, each injection device is individually driven, and the current and voltage of the injection frequency flowing from each injection device to the load side of each connection system (injection system) are measured. It is also possible to determine the load state of each injection system by measuring and obtaining an equivalent circuit for the injection frequency of each injection system from this measurement result.

【0013】そして、各注入系統の負荷状態が判明すれ
ば、簡単な等価回路演算により、各注入装置の注入周波
数の電流を上位系統側に注入したときの上位系統側での
位相変化が求まり、測定時、各注入装置の出力電流の位
相を求めた位相変化の逆にずらして補正すれば、上位系
統側の計測点に各注入装置の出力電流を同相で同期して
分散注入することができる。
When the load state of each injection system is determined, the phase change in the upper system when the current of the injection frequency of each injector is injected into the upper system can be obtained by a simple equivalent circuit operation. At the time of measurement, if the phase of the output current of each injection device is shifted in the opposite direction of the obtained phase change and corrected, the output current of each injection device can be dispersedly injected at the measurement point on the upper system side in synchronization with the same phase. .

【0014】ところで、この種高調波測定においては、
測定対象の目標高調波が5次,7次,…であることか
ら、各注入装置の次数間高調波の出力電流を正確に同期
させて同相にするには、それらの注入位相をマイクロ秒
程度の極めて高い精度で補正して上位系統側で一致させ
る必要がある。
By the way, in this kind of harmonic measurement,
Since the target harmonics to be measured are 5th, 7th,..., In order to accurately synchronize the output currents of the interharmonics of each injection device so that they are in phase, their injection phases should be on the order of microseconds. Needs to be corrected with extremely high precision and made to match on the upper system side.

【0015】一方、各注入装置の動作タイミングは、通
常、それぞれの注入制御装置のマイクロコンピュータの
内蔵時計等の時刻情報に基づいて個別に制御され、この
とき各内蔵時計等の時刻情報の精度はあまり高くない。
On the other hand, the operation timing of each injection device is usually individually controlled based on time information such as a built-in clock of a microcomputer of each injection control device. Not very expensive.

【0016】したがって、従来は各注入装置による出力
電流の位相を高いタイミング精度で正確に補正すること
ができず、測定時に各注入系統から上位系統側に注入周
波数の次数間高調波の電流を高い精度で同期させて分散
注入することができない問題点がある。
Therefore, conventionally, the phase of the output current of each injection device cannot be accurately corrected with high timing accuracy, and the current of the interharmonic of the injection frequency is increased from each injection system to the higher system side during measurement. There is a problem that distributed injection cannot be performed in synchronization with precision.

【0017】なお、例えば共通の上位装置から各注入制
御装置に有線又は無線で測定開始毎に何らかのタイミン
グ制御の信号を送り、この信号のタイミングを基準にし
て各注入装置による出力電流の位相をずらして補正すれ
ば、上位系統側で各注入装置による出力電流を同相にす
ることが可能であるが、この場合は、上位装置を要する
とともに、注入制御装置毎に、タイミング制御の信号を
送受する送受信器や電話線等の通信ケーブルを要し、極
めて複雑かつ高価になる。
[0017] For example, a signal of some timing control is sent from a common host device to each injection control device by wire or wireless every time the measurement is started, and the phase of the output current by each injection device is shifted based on the timing of this signal. If the correction is made, it is possible to make the output current of each injection device in-phase on the upper system side, but in this case, the upper device is required, and the transmission / reception for transmitting / receiving the timing control signal is performed for each injection control device. It requires a communication cable such as a device and a telephone line, and is extremely complicated and expensive.

【0018】本発明は、上位装置から各注入制御装置に
タイミング制御の信号を伝送したりすることなく、測定
時、各注入装置による同一注入周波数の次数間高調波の
出力電流を上位系統側で正確に同期するように同時に分
散注入することを課題とする。
According to the present invention, at the time of measurement, the higher-order system outputs the output current of the inter-order harmonic of the same injection frequency from each injection device without transmitting a timing control signal from the higher-order device to each injection control device. It is an object of the present invention to simultaneously perform distributed injection so as to synchronize accurately.

【0019】[0019]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の高調波測定装置においては、各注入制御
装置に、クロック信号を多段カウンタにより計数してタ
イミング制御の時刻情報を出力する時計回路部と、GP
S衛星の時刻情報及び1秒毎のパルス信号を受信するG
PS受信機部と、GPS受信機部の受信時刻情報により
時計回路部の時刻情報を更新し,GPS受信機部の1秒
毎の受信パルス信号のエッジにより多段カウンタの秒よ
り下位を零にリセットする時刻補正部とを備え、各注入
制御装置それぞれの時計回路部の時刻情報に基づくタイ
ミング制御により、各注入装置の注入周波数の出力電流
の位相を、各注入装置が接続された下位系統それぞれの
負荷状態に応じて補正し、各注入装置が接続された下位
系統から上位系統側に、注入周波数の同期した電流を分
散注入する。
In order to solve the above-mentioned problems, in the harmonic measuring apparatus according to the present invention, a clock signal is counted by a multi-stage counter and time information of timing control is output to each injection control apparatus. Clock circuit and GP
G to receive time information of S satellite and pulse signal every second
The time information of the clock circuit is updated by the reception time information of the PS receiver and the GPS receiver, and the lower order than the second of the multi-stage counter is reset to zero by the edge of the reception pulse signal every second of the GPS receiver. And a timing correction unit based on the time information of the clock circuit unit of each injection control device, thereby controlling the phase of the output current of the injection frequency of each injection device, and the level of each lower system to which each injection device is connected. Correction is made according to the load state, and a current synchronized with the injection frequency is distributed and injected from the lower system to which the respective injection devices are connected to the upper system.

【0020】したがって、各注入制御装置はそれぞれの
時計回路部の時刻情報がGPS衛星の時刻情報及び1秒
毎のパルス信号に基づき、1秒毎にGPS衛星の時刻情
報の時刻に同期するように較正される。
Therefore, each injection control device controls the time information of each clock circuit unit based on the time information of the GPS satellite and the pulse signal of each second so as to synchronize with the time of the time information of the GPS satellite every second. Calibrated.

【0021】この較正により、各注入制御装置の動作タ
イミングの時刻情報が、時計回路部がマイクロコンピュ
ータの内蔵時計等の精度のあまり高くない時計回路部で
あっても、誤差がほとんどなく、マイクロ秒以下の精度
で同期して一致する。
According to this calibration, even if the time information of the operation timing of each injection control device is a clock circuit having a very low accuracy such as a built-in clock of a microcomputer, there is almost no error, and Synchronous matches with the following precision:

【0022】そのため、各注入制御装置の時刻情報に基
づくタイミング制御により、各注入装置による同一注入
周波数の次数間高調波の電流を正確に位相補正し、各下
位系統から上位系統側に、注入周波数の次数間高調波の
電流を位相のずれなく同相で同期して分散注入すること
ができる。
For this reason, the timing control based on the time information of each injection control device accurately corrects the phase of the interharmonic current of the same injection frequency by each injection device, and the injection frequency from each lower system to the upper system is adjusted. Can be dispersedly injected synchronously in phase with no phase shift.

【0023】そして、GPS衛星の時刻情報を利用して
各注入制御装置のいわゆる時刻合わせを行うため、各注
入制御装置に共通の上位装置から有線,無線でタイミン
グ制御の情報等を伝送する必要がなく、簡素かつ安価に
同期した注入周波数の電流を上位系統側に注入すること
ができる。
Since the so-called time adjustment of each injection control device is performed using the time information of the GPS satellites, it is necessary to transmit timing control information and the like by wire or wireless from a host device common to each injection control device. In addition, it is possible to simply and inexpensively inject the current having the synchronized injection frequency into the upper system side at low cost.

【0024】つぎに、請求項2の場合は、各注入制御装
置に、クロック信号を多段カウンタにより計数してタイ
ミング制御の時刻情報を出力する時計回路部と、標準電
波を受信して受信時刻情報及び受信秒信号を復調出力す
る標準電波受信機部と、受信時刻情報により前記時計回
路部の時刻情報を更新し,受信秒信号と時計回路部の1
秒の計数パルス信号とのエッジタイミングの誤差により
前記クロック信号の周波数をフィードバック制御する時
刻補正部とを備え、各注入制御装置それぞれの時計回路
部の時刻情報に基づくタイミング制御により、各注入装
置の注入周波数の出力電流の位相を、各注入装置が接続
された下位系統それぞれの負荷状態に応じて補正し、各
注入装置が接続された各下位系統から上位系統側に、注
入周波数の同期した電流を分散注入する。
In the case of the present invention, a clock circuit for counting clock signals by a multi-stage counter and outputting time information for timing control, and receiving time information for receiving standard radio waves to each injection control device. And a standard radio receiver for demodulating and outputting the received second signal, and updating the time information of the clock circuit with the received time information, and
A time correction unit that performs feedback control of the frequency of the clock signal based on an edge timing error with a count pulse signal of seconds, and performs timing control based on time information of a clock circuit unit of each injection control device to control each injection device. The phase of the output current at the injection frequency is corrected according to the load state of each lower system to which each injection device is connected, and the current synchronized with the injection frequency is transferred from each lower system to which each injection device is connected to the upper system. Is dispersedly injected.

【0025】したがって、この場合は各注入制御装置の
時計回路部の時刻情報が標準電波の時刻情報の時刻に同
期するように較正されるとともに、時計回路部の各1秒
が標準電波の1秒に一致するように各注入制御装置の時
計回路部に供給されるクロック信号の周波数(位相)が
フィードバック制御される。
Therefore, in this case, the time information of the clock circuit of each injection control device is calibrated so as to be synchronized with the time of the time information of the standard radio wave, and each second of the clock circuit is converted to one second of the standard radio wave. The frequency (phase) of the clock signal supplied to the clock circuit unit of each injection control device is feedback-controlled so as to coincide with

【0026】そのため、各注入制御装置の動作タイミン
グの基準となる時刻情報が標準電波の時刻情報の時刻に
高精度に一致し、請求項1のGPS衛星の時刻情報を用
いた場合と同様の正確に同期した分散注入が行える。
Therefore, the time information serving as the reference for the operation timing of each injection control device matches the time of the time information of the standard radio wave with high accuracy, and the same precision as in the case of using the time information of the GPS satellite according to claim 1 is used. Can be synchronized with the injection.

【0027】[0027]

【発明の実施の形態】本発明の実施の形態について、図
1ないし図5を参照して説明する。 (1形態)まず、GPS衛星の時刻情報を利用する1形
態について、図1ないし図4を参照して説明する。図1
は全体構成を示す配電系統の単線結線図であり、上位系
統1の配電幹線2に変圧器3の1次側が接続され、その
2次側に変圧器4a,4b,4cを介して例えば6.6
KVの下位系統5a,5b,5cが分枝している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. (One Embodiment) First, one embodiment using time information of a GPS satellite will be described with reference to FIGS. FIG.
Is a single-line diagram of the distribution system showing the overall configuration, in which the primary side of the transformer 3 is connected to the distribution main line 2 of the upper system 1, and the secondary side is connected via the transformers 4 a, 4 b, 4 c, for example. 6
The lower systems 5a, 5b and 5c of the KV are branched.

【0028】そして、下位系統5a〜5cに注入点P
a,Pb,Pcが設定され、これらの注入点Pa〜Pc
にインバータ等からなる注入装置6a,6b,6cが接
続されている。
Then, the injection points P are added to the lower systems 5a to 5c.
a, Pb and Pc are set, and these injection points Pa to Pc are set.
Are connected to injection devices 6a, 6b and 6c, each of which comprises an inverter or the like.

【0029】これらの注入装置6a〜6cはそれぞれの
注入制御装置7a,7b,7cにより駆動制御され、系
統基本周波数fs を非整数倍した同一注入周波数の次数
間高調波の電流を出力する。
[0029] These injection devices 6a~6c Each injection control device 7a, 7b, is driven and controlled by 7c, and outputs the interharmonic current of the same injection frequency was non-integer multiple lineage fundamental frequency f s.

【0030】そして、注入装置6a〜6cによる同一注
入周波数の出力電流を位相θ1,θ2,θ3の電流I
11), I22), I33)とすると、これらの出力電
流I11), I22) , I33)は、一部が注入点P
a,Pb,Pcから上位系統1側に位相角θ1’,
θ2’,θ3 の電流I1’(θ1’),I2’(θ2’),I3
3’)として注入され、残りが注入点Pa,Pb,P
cからそれぞれの系統5a〜5cの負荷8a,8b,8
cに位相θ1”,θ2”,θ3”の電流I1”(θ1”),
2”(θ 2”),I3”(θ3”)として流れる。
Then, the same injection is performed by the injection devices 6a to 6c.
The output current at the input frequency is phase θ1, ΘTwo, ΘThreeCurrent I
11), ITwoTwo), IThreeThree), These output power
Style I11), ITwoTwo), IThreeThree) Indicates that the injection point P
a, Pb, Pc to upper system 1 side1’,
θTwo’, ΘThree Current I1’(Θ1’), ITwo’(ΘTwo’), IThree
Three′) And the rest are injected at the injection points Pa, Pb, P
c, the loads 8a, 8b, 8 of the respective systems 5a to 5c
phase θ in c1”, ΘTwo”, ΘThreeCurrent I1”(Θ1”),
ITwo”(Θ Two"), IThree”(ΘThree)).

【0031】このとき、位相θ1,θ2,θ3 は、各下位
系統5a〜5cの負荷状態(負荷量)に応じて位相角θ
1’(θ1”),θ2’(θ2”),θ3’(θ3”)に変化する。
At this time, the phases θ 1 , θ 2 , and θ 3 are determined by the phase angles θ according to the load state (load amount) of each of the lower systems 5a to 5c.
1 ′ (θ 1 ″), θ 2 ′ (θ 2 ″), and θ 3 ′ (θ 3 ″).

【0032】したがって、測定前に注入装置6a〜6c
を個別に単独駆動し、計器用変流器9a,9b,9c,
10a,10b,10cの電流の計測信号,計器用変圧
器11a,11b,11cの電圧の計測信号を注入制御
装置7a〜7cに取込み、DFT,FFTのデンタル処
理により周波数解析して注入周波数についての電流,電
圧を求めると、負荷8a〜8cが求まり下位系統(注入
系統)5a〜5cの負荷状態を把握できる。
Therefore, before the measurement, the injection devices 6a to 6c
Are individually driven, and the current transformers 9a, 9b, 9c,
The measurement signals of the currents 10a, 10b, and 10c and the measurement signals of the voltages of the instrumentation transformers 11a, 11b, and 11c are taken into the injection control devices 7a to 7c, and subjected to frequency analysis by DFT and FFT dental processing to determine the injection frequency. When the current and the voltage are obtained, the loads 8a to 8c are obtained, and the load states of the lower systems (injection systems) 5a to 5c can be grasped.

【0033】ところで、各注入制御装置7a〜7cはマ
イクロコンピュータ等を用いて、それぞれ図2に示すよ
うに形成される。
Each of the injection control devices 7a to 7c is formed as shown in FIG. 2 using a microcomputer or the like.

【0034】この図2は注入制御装置7aの構成を示
し、時計回路部12の例えば数百MHzのクロック信号が
装置内各所に動作クロックとして供給され、この動作ク
ロック及び時計回路部12の時刻情報に基づき、タイミ
ング制御部13がA/D変換部14,周波数解析部1
5,演算部16及び注入制御部17の動作を制御する。
FIG. 2 shows the configuration of the injection control device 7a. A clock signal of, for example, several hundred MHz of the clock circuit unit 12 is supplied as an operation clock to various parts in the device. , The timing controller 13 controls the A / D converter 14 and the frequency analyzer 1
5. Control the operations of the operation unit 16 and the injection control unit 17.

【0035】この制御に基づき、A/D変換部14は計
測前に計器用変流器9a〜9c,10a〜10c及び計
器用変圧器11a〜11cの計測信号をデジタル信号に
変換し、周波数解析部15はこれらのデジタル信号をD
FT或いはFFTのデジタル処理により周波数解析して
注入周波数の次数間高調波の電流,電圧を抽出する。
Based on this control, the A / D converter 14 converts the measurement signals of the current transformers 9a to 9c, 10a to 10c and the transformers 11a to 11c into digital signals before measurement, and performs frequency analysis. The unit 15 converts these digital signals into D
Frequency analysis is performed by digital processing of FT or FFT to extract currents and voltages of interharmonics of the injection frequency.

【0036】そして、演算部16は周波数解析部15の
解析結果に基づき、次数間高調波についての注入系統5
a〜5cそれぞれの負荷8a〜8cのアドミタンス(又
はインピーダンス)を算出して等価回路を求め、この等
価回路による注入装置6a〜6cによる同一注入周波数
の出力電流の位相変化を演算し、測定時の位相の補正量
を、この位相変化を相殺する量に決定する。
Then, based on the analysis result of the frequency analysis unit 15, the calculation unit 16 calculates the injection system 5 for the interharmonic.
a to 5c calculate the admittance (or impedance) of each of the loads 8a to 8c to obtain an equivalent circuit, calculate the phase change of the output current of the same injection frequency by the injection devices 6a to 6c using the equivalent circuit, and The phase correction amount is determined as an amount that cancels out this phase change.

【0037】さらに、注入制御部17は時計回路部12
の時刻情報に基づくタイミング制御部13のタイミング
制御により、測定前は例えば注入開始位相を0°の基準
位相にして注入装置6a〜6cそれぞれを駆動し、測定
時は注入開始位相を基準位相より演算部16の決定した
補正量ずらして注入装置6a〜6cそれぞれを駆動す
る。
Further, the injection controller 17 controls the clock circuit 12
Before the measurement, for example, the injection start phase is set to the reference phase of 0 ° to drive the injectors 6a to 6c before the measurement, and the injection start phase is calculated from the reference phase at the time of measurement by the timing control of the timing control unit 13 based on the time information. Each of the injection devices 6a to 6c is driven by shifting the correction amount determined by the unit 16.

【0038】このとき、各注入装置6a〜6cの測定時
の注入位相は、注入開始位相又は注入開始時刻を前記の
補正量ずらして補正される。
At this time, the injection phase at the time of measurement of each of the injection devices 6a to 6c is corrected by shifting the injection start phase or the injection start time by the above-mentioned correction amount.

【0039】そして、後述するように各注入制御装置7
a〜7cの時刻情報が正確であるため、これらの時刻情
報に基づくタイミング制御により、測定時に同時に注入
される各注入装置6a〜6cの出力電流の位相が各下位
系統5a〜5cの負荷状態を見込んで正確に補正され、
変圧器4a〜4c,3を通って上位系統1側に注入され
た各出力電流の位相θ1’,θ2’,θ3’が等しくな
り、各下位系統5a〜5cから上位系統1側に注入周波
数の次数間高調波の電流が位相のずれなく正確に同期し
て分散注入される。
Then, as described later, each injection control device 7
Since the time information of a to 7c is accurate, the phases of the output currents of the injection devices 6a to 6c simultaneously injected at the time of measurement are changed by the timing control based on the time information to change the load state of each of the lower systems 5a to 5c. Corrected to be accurate,
The phases θ 1 ′, θ 2 ′, and θ 3 ′ of the respective output currents injected into the upper system 1 through the transformers 4 a to 4 c and 3 become equal, and the lower systems 5 a to 5 c move to the upper system 1. Currents of harmonics between orders of the injection frequency are dispersed and injected accurately and synchronously without phase shift.

【0040】つぎに、時計回路部12について説明する
と、時計回路部12はいわゆるパソコンの内蔵時計の時
計回路部と同様であり、例えば水晶発振器18の自走発
振出力の数百MHzのクロック信号をカウンタ部19によ
り計数する。
Next, the clock circuit section 12 will be described. The clock circuit section 12 is similar to a clock circuit section of a so-called built-in clock of a personal computer. For example, a clock signal of several hundred MHz of the free-running oscillation output of the crystal oscillator 18 is output. It is counted by the counter unit 19.

【0041】このカウンタ部19は、上位側から順の日
付,時,分,秒,1/10秒,…,1/m秒のカウンタ
20a,20b,20c,20d,20e,…,20m
を縦列に接続した多段カウンタからなり、クロック信号
を計数して最小単位がマイクロ秒以下の時刻情報を出力
する。
The counter section 19 includes counters 20a, 20b, 20c, 20d, 20e,..., 20m for date, hour, minute, second, 1/10 second,.
Are connected in cascade to count clock signals and output time information whose minimum unit is microseconds or less.

【0042】また、この時刻情報を注入制御装置7a〜
7c間で正確に一致させるため、この実施の形態にあっ
てはGPS衛星21を利用する。
Further, this time information is stored in the injection control devices 7a to 7a.
In this embodiment, a GPS satellite 21 is used in order to make the coincidence between 7c exactly.

【0043】すなわち、GPS衛星21の時刻情報及び
世界協定時(UTC)に同期した1秒毎のパルス信号
を、注入制御装置7a〜7cそれぞれのアンテナ22を
介してGPS受信機部23により受信する。
That is, the GPS receiver unit 23 receives the time information of the GPS satellites 21 and the pulse signal every one second synchronized with the Coordinated Universal Time (UTC) via the antenna 22 of each of the injection control devices 7a to 7c. .

【0044】そして、受信機部23の受信時刻情報を時
計回路部12の時刻補正部24を介してカウンタ部12
のカウンタ20a〜20dに送り、これらの日付,時,
分,秒を受信時刻情報のそれぞれの値に更新する。
The reception time information of the receiver unit 23 is transmitted to the counter unit 12 via the time correction unit 24 of the clock circuit unit 12.
To the counters 20a to 20d of these date, time,
Update the minutes and seconds to the respective values of the reception time information.

【0045】また、受信機部23の1秒毎の受信パルス
信号を時刻補正部24のフリップフロップ25のリセッ
ト端子r及びアンドゲート26に供給し、カウンタ部1
9のカウンタ20eからカウンタ20dに供給される1
秒の計数パルス信号をフリップフロップ25のセット端
子sに供給する。
The reception pulse signal of the receiver unit 23 for each second is supplied to the reset terminal r of the flip-flop 25 of the time correction unit 24 and the AND gate 26, and the counter unit 1
9 supplied from the counter 20e to the counter 20d.
The second count pulse signal is supplied to the set terminal s of the flip-flop 25.

【0046】そして、カウンタ部19の1秒の計数パル
ス信号の立上りのエッジでフリップフロップ25をセッ
トしてアンドゲート26をオンし、その直後の受信機部
23の受信パルス信号の立上りのエッジでカウンタ部1
9の秒より下位のカウンタ20e〜20mを零に瞬時リ
セットする。
Then, the flip-flop 25 is set at the rising edge of the one-second counting pulse signal of the counter section 19 to turn on the AND gate 26, and immediately thereafter, at the rising edge of the receiving pulse signal of the receiver section 23. Counter part 1
The counters 20e to 20m lower than the seconds of 9 are instantaneously reset to zero.

【0047】このくり返しによりカウンタ部19の時刻
情報が1秒毎に較正されてGPS衛星21の時刻情報の
時刻にマイクロ秒以下の誤差精度で極めて正確に一致
し、各注入制御装置7a〜7cの時刻情報に基づくタイ
ミング制御がマイクロ秒以下の精度で同期して行われ
る。
Due to this repetition, the time information of the counter unit 19 is calibrated every second, and the time information of the GPS satellite 21 coincides with the time information of the GPS satellite 21 very accurately with an error precision of microsecond or less. Timing control based on time information is performed synchronously with an accuracy of microseconds or less.

【0048】したがって、共通の上位装置から有線又は
無線で各注入制御装置7a〜7cにタイミング制御の信
号を伝送したりすることなく、測定前及び測定時に各注
入制御装置7a〜7cをそれぞれの設定された時刻(タ
イミング)に正確に駆動することができ、とくに、測定
時は各注入装置6a〜6cによる同一注入周波数の次数
間高調波の出力電流の位相を正確に測定前に決定した補
正量ずつずらし、上位系統1側に注入周波数の次数間高
調波の電流を位相のずれなく同期して同時に分散注入す
ることができる。
Therefore, without transmitting a timing control signal to each of the injection control devices 7a to 7c from a common host device by wire or wirelessly, each of the injection control devices 7a to 7c can be set before and during the measurement. In particular, at the time of measurement (timing), it is possible to accurately drive the phase of the output current of the interharmonic having the same injection frequency by the injection devices 6a to 6c at the time of measurement. In this way, it is possible to simultaneously dispersely inject the current of the interharmonic of the injection frequency into the upper system 1 side synchronously without phase shift.

【0049】そして、前記第2の既出願の高調波測定方
法等と同様、次数間高調波の注入周波数を着目高調波
(周波数n×fs )を挟む2周波数f1,f2(f1<n
×fs<f2 )とし、注入装置6a〜6cによる同一注
入周波数をf1,f2に順に変更して測定をくり返す。
[0049] Then, the same as the second supra Application harmonic measuring methods, etc., interharmonic attention harmonic injection frequency (frequency n × f s) sandwiching the second frequency f 1, f 2 (f 1 <N
× f s <f 2 ), and repeat the measurement while changing the same injection frequency by the injection devices 6a to 6c to f 1 and f 2 in order.

【0050】このとき、上位系統1に測定点を設け、こ
の測定点での2周波数f1,f2の電流,電圧を計測すれ
ば、前記したように注入周波数f1,f2が系統に本来存
在しない周波数であるため、その計測結果から2周波数
1,f2それぞれについての上位系統1の等価回路が求
まり、両等価回路のインピーダンス又はアドミタンスか
ら、目標高調波についての上位系統1の等価回路を補間
演算して求めることができ、上位系統1の高調波特性を
測定することができる。
At this time, a measurement point is provided in the upper system 1 and the currents and voltages of the two frequencies f 1 and f 2 at this measurement point are measured. As described above, the injection frequencies f 1 and f 2 are added to the system. Since the frequency does not originally exist, an equivalent circuit of the upper system 1 for each of the two frequencies f 1 and f 2 is obtained from the measurement result, and the equivalent of the higher system 1 for the target harmonic is determined from the impedance or admittance of both equivalent circuits. The circuit can be obtained by performing an interpolation operation, and the harmonic characteristics of the upper system 1 can be measured.

【0051】また、図1に示すように、上位系統1の配
電幹線2から変圧器14,15を介して下位系統5a〜
5cと同電圧階級の注入装置が設置されていない下位系
統16が分枝している場合、注入装置6a〜6cから上
位系統1側に分散注入された注入周波数f1,f2の次数
間高調波の電流が十分に大きければ、下位系統16に測
定点を設け、この測定点での2周波数f1,f2の電流,
電圧を計測することにより、2周波数f1,f2それぞれ
についての下位系統16の等価回路を求めて目標高調波
についての下位系統16の等価回路を補間演算し、下位
系統16の高調波特性を測定することもできる。なお、
図中の8dは下位系統16の負荷を示す。
As shown in FIG. 1, the lower system 5a to the lower system 5a
In the case where the lower system 16 in which an injection device of the same voltage class as 5c is not installed is branched, harmonics between orders of the injection frequencies f 1 and f 2 dispersedly injected from the injection devices 6a to 6c to the upper system 1 side. If the current of the wave is sufficiently large, a measurement point is provided in the lower system 16 and the current of the two frequencies f 1 and f 2 at this measurement point is
By measuring the voltage, the equivalent circuit of the lower system 16 for each of the two frequencies f 1 and f 2 is obtained, and the equivalent circuit of the lower system 16 for the target harmonic is interpolated to obtain the harmonic characteristics of the lower system 16. Can also be measured. In addition,
8d in the figure indicates the load of the lower system 16.

【0052】そして、測定点の計測装置についても注入
制御装置7a〜7cの時計回路部12,受信機部23と
同様の時計回路部,GPS受信機部を備え、測定時に時
計回路部の時刻情報に基づいて測定を行えば、正確なタ
イミング制御で測定を開始することができる。
The measuring device of the measuring point also has a clock circuit unit and a GPS receiver unit similar to the clock circuit unit 12 and the receiver unit 23 of the injection control devices 7a to 7c. , Measurement can be started with accurate timing control.

【0053】ところで、実際の測定にあっては着目高調
波が複数設定され、各着目高調波それぞれにつき、2周
波数f1,f2の電流を注入して高調波特性を測定するこ
とが行われる。
By the way, in the actual measurement, a plurality of harmonics of interest are set, and for each of the harmonics of interest, current of two frequencies f 1 and f 2 is injected to measure the harmonic characteristics. Will be

【0054】この場合、測定前及び測定時の注入制御装
置7a〜7cによる注入装置6a〜6cそれぞれの駆動
制御は、実際には、例えば図3又は図4に示すようにし
て行われる。
In this case, the drive control of each of the injection devices 6a to 6c by the injection control devices 7a to 7c before and during the measurement is actually performed, for example, as shown in FIG. 3 or FIG.

【0055】まず、図3の場合は、ステップS1〜S3
計測前の制御により、注入装置6a〜6cそれぞれにつ
き、予め全ての注入周波数の位相補正量を求める。
Firstly, in the case of FIG. 3, the control of the previous measurement step S 1 to S 3, per each injection device 6 a to 6 c, obtains a phase correction amount in advance all injection frequency.

【0056】そして、測定時刻になると、ステップS7
〜S11の測定の制御により、注入装置6a〜6cの注入
周波数を数秒程度の一定時間毎に各次数間高調波の周波
数に順次に変更するとともに、それぞれの出力電流の位
相を測定前に求めた補正量ずつずらして上位系統1側で
の同期をとる。
Then, at the measurement time, step S 7
The control of measurements to S 11, the injection frequency of the injection device 6a~6c every predetermined several seconds while sequentially changing the frequency of each interharmonic, determined before measuring the phase of the respective output currents The upper system 1 synchronizes by shifting the correction amount.

【0057】一方、図4の場合は、ステップQ1〜Q4
測定前の制御であり、ステップQ5〜Q7が測定時の制御
であり、ステップQ8により注入周波数を変えながらス
テップQ1〜Q7をくり返し実行し、注入周波数毎に位相
の補正量を求めて測定することをくり返す。
On the other hand, in the case of FIG. 4, steps Q 1 to Q 4 are controls before measurement, steps Q 5 to Q 7 are controls during measurement, and step Q 8 changes the injection frequency while changing the injection frequency. 1 to Q 7 repeatedly executes the, repeating the measuring seeking correction amount of the phase for each injection frequency.

【0058】(他の形態)つぎに、標準電波の時刻情報
を利用する他の形態について、図5を参照して説明す
る。図5において、ダッシュ(’)を付した符号のもの
は、図1〜図4の同一符号のものと同一又は相当するも
のを示す。
(Other Embodiment) Next, another embodiment using the time information of the standard radio wave will be described with reference to FIG. In FIG. 5, the reference numerals with a dash (') indicate the same or corresponding ones as those in FIGS.

【0059】そして、この形態においては、各注入制御
装置7a〜7cに、前記1形態のGPS受信機部23の
代わりに標準電波を受信復調する標準電波受信機部27
を設け、アンテナ28を介して受信機部27により標準
電波を受信し、標準電波の送信フォーマットに基づき、
間欠的に受信時刻情報及び受信秒信号を出力する。
In this embodiment, each of the injection controllers 7a to 7c is provided with a standard radio receiver 27 for receiving and demodulating a standard radio instead of the GPS receiver 23 of the first embodiment.
Is provided, a standard radio wave is received by the receiver unit 27 via the antenna 28, and based on the transmission format of the standard radio wave,
The reception time information and the reception second signal are output intermittently.

【0060】そして、受信時刻情報によりカウンタ部1
9’の日付,時,分,秒を更新し、カウンタ部19’の
1秒毎の計数パルス信号の立上りのエッジによりセット
されたフリップフロップ25’を受信信号の立上りのエ
ッジによりリセットし、フリップフロップ25’から両
信号の位相差のパルス幅の誤差信号を出力する。
Then, the counter unit 1 receives the reception time information.
The date, hour, minute, and second of 9 'are updated, and the flip-flop 25' set by the rising edge of the counting pulse signal every second of the counter unit 19 'is reset by the rising edge of the received signal, An error signal having the pulse width of the phase difference between the two signals is output from the amplifier 25 '.

【0061】さらに、この誤差信号を時刻補正部24’
のCR積分回路29により積分してフィードバック制御
の信号を形成し、この信号により水晶発振器18’の発
振周波数を、誤差が零になるようにフィードバック制御
する。
Further, the error signal is converted to a time correction unit 24 '.
To form a feedback control signal, and the signal is used to feedback control the oscillation frequency of the crystal oscillator 18 'so that the error becomes zero.

【0062】この制御のくり返しにより、適当な時間後
には時計回路部12’の時刻情報の時刻が標準電波の時
刻情報の時刻に同期して一致し、各注入制御装置7a〜
7dが同一の時刻情報に基づいて動作する。
By repeating this control, after an appropriate time, the time of the time information of the clock circuit section 12 'coincides with the time of the time information of the standard radio wave, and each of the injection control devices 7a to 7a.
7d operates based on the same time information.

【0063】したがって、その後に例えば図3又は図4
の処理を行うことにより、1形態の場合と同様の効果が
得られる。
Therefore, after that, for example, FIG.
By performing the above processing, the same effect as in the case of the first embodiment can be obtained.

【0064】なお、時計回路部12,12’及び時刻補
正部24,24’の構成は前記両実施の形態のものに限
られるものではなく、例えばそれぞれがマイクロコンピ
ュータのソフトウェア処理で実現されていてもよいのは
勿論である。
The configurations of the clock circuit sections 12 and 12 'and the time correction sections 24 and 24' are not limited to those of the above-mentioned embodiments, and each of them is realized by software processing of a microcomputer. Of course, it is good.

【0065】そして、注入装置が接続される下位系統の
数や注入装置の容量等はどのようであってもよい。
The number of sub-systems to which the injection device is connected, the capacity of the injection device, and the like are arbitrary.

【0066】また、各注入装置6a〜6cから各同一注
入周波数の電流を注入する代わりに電圧を注入(印加)
することも考えられるが、電圧歪みより電流歪みが大き
いことから、電流を注入することが実用的で好ましい。
Also, instead of injecting currents of the same injection frequency from the injection devices 6a to 6c, a voltage is injected (applied).
However, since current distortion is larger than voltage distortion, it is practical and preferable to inject current.

【0067】[0067]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、請求項1の場合は、各注入制御装置7a〜7
cの時計回路部12の時刻情報を、GPS衛星21の時
刻情報及び1秒毎のパルス信号に基づき、1秒毎にGP
S衛星21の時刻情報の時刻に同期するように較正する
ことができる。
The present invention has the following effects. First, in the case of claim 1, each of the injection control devices 7a to 7
c, based on the time information of the GPS satellites 21 and the pulse signal every second, the GP
Calibration can be performed so as to be synchronized with the time of the time information of the S satellite 21.

【0068】そして、この較正により、各注入制御装置
7a〜7cの時計回路部12がマイクロコンピュータの
内蔵時計等の精度のあまり高くない時計回路部であって
も、それらの動作タイミングの誤差(ずれ)がほとんど
なく、各注入制御装置7a〜7cの制御がマイクロ秒以
下の精度で同期する。
By this calibration, even if the clock circuit section 12 of each of the injection control devices 7a to 7c is a clock circuit section having a not so high accuracy such as a built-in clock of a microcomputer, errors in the operation timings (shifts) of the clock circuit sections 12a to 7c. ), And the control of each of the injection control devices 7a to 7c is synchronized with an accuracy of microsecond or less.

【0069】したがって、各注入制御装置7a〜7cの
制御に基づき、測定前及び測定時にタイミングのずれな
く注入装置6a〜6cが同一注入周波数の次数間高調波
の電流を出力し、測定時には、測定前に得られた必要量
の位相補正を正確に行うことができ、各下位系統5a〜
5cから上位系統1側に注入周波数の次数間高調波の電
流を位相のずれなく同相で同期して分散注入することが
できる。
Therefore, based on the control of each of the injection control devices 7a to 7c, the injection devices 6a to 6c output the currents of the interharmonics of the same injection frequency without deviation in timing before and during the measurement. The required amount of phase correction previously obtained can be accurately performed, and each of the lower systems 5a to 5a
From 5c, it is possible to dispersely inject the harmonic current between the orders of the injection frequency into the upper system 1 side in synchronism in phase with no phase shift.

【0070】そして、GPS衛星21の時計情報を利用
して各注入制御装置7a〜7cのいわゆる時刻合わせを
行うため、各注入制御装置7a〜7cに共通の上位装置
からタイミング制御の情報等を伝送する必要がなく、簡
素かつ安価に同期した注入周波数の電流を上位系統側に
注入して高調波特性を測定することができる。
Then, in order to perform so-called time adjustment of each of the injection control devices 7a to 7c using the clock information of the GPS satellite 21, information on timing control and the like is transmitted from a higher-level device common to each of the injection control devices 7a to 7c. Therefore, it is possible to measure the harmonic characteristics by simply and inexpensively injecting the current having the synchronized injection frequency into the upper system.

【0071】また、請求項2の場合は、各注入制御装置
7a〜7cの時計回路部12’の時刻情報を標準電波の
時刻情報の時刻に同期するように較正することができ、
この時刻の較正に基づき、請求項1の場合と同様の効果
を得ることができる。
Further, in the case of claim 2, it is possible to calibrate the time information of the clock circuit unit 12 'of each of the injection control devices 7a to 7c so as to be synchronized with the time of the time information of the standard radio wave.
Based on the calibration of the time, the same effect as that of the first aspect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の系統図である。FIG. 1 is a system diagram of one embodiment of the present invention.

【図2】図1の注入制御装置のブロック図である。FIG. 2 is a block diagram of the injection control device of FIG.

【図3】図1の動作の1例のフローチャートである。FIG. 3 is a flowchart of an example of the operation of FIG. 1;

【図4】図1の動作の他の例のフローチャートである。FIG. 4 is a flowchart of another example of the operation of FIG. 1;

【図5】本発明の実施の他の形態の注入制御装置のブロ
ック図である。
FIG. 5 is a block diagram of an injection control device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 上位系統 5a,5b,5c,16 下位系統 6a,6b,6c 注入装置 7a,7b,7c 注入制御装置 8a,8b,8c,8d 負荷 12,12’ 時計回路部 23 GPS受信機部 24,24’ 時刻補正部 27 標準電源受信機部 1 Upper system 5a, 5b, 5c, 16 Lower system 6a, 6b, 6c Injection device 7a, 7b, 7c Injection control device 8a, 8b, 8c, 8d Load 12, 12 'Clock circuit unit 23 GPS receiver unit 24, 24 '' Time correction unit 27 Standard power receiver unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 政和 名古屋市東区東新町1番地 中部電力株式 会社内 (72)発明者 志方 俊彦 京都市右京区梅津高畝町47番地 日新電機 株式会社内 (72)発明者 夏田 育千 京都市右京区梅津高畝町47番地 日新電機 株式会社内 Fターム(参考) 5G066 EA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masakazu Tsukamoto 1 Higashi-Shinmachi, Higashi-ku, Nagoya-shi Inside Chubu Electric Power Company (72) Inventor Toshihiko Shikata 47-47 Umezu Takaune-cho, Ukyo-ku, Kyoto-shi Nissin Electric Co., Ltd. (72) Inventor Ikusen Natsuta 47, Takaune-cho, Umezu, Ukyo-ku, Kyoto-shi F-term of Nissin Electric Co., Ltd. (reference) 5G066 EA03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上位系統から分枝した複数の下位系統に
それぞれ接続された複数の注入装置と、 前記各注入装置の出力電流を系統基本波周波数を非整数
倍した同一の注入周波数の電流に制御し,前記各下位系
統から前記上位系統側に前記注入周波数の電流を分散注
入する複数の注入制御装置とを備え、 前記上位系統又は前記上位系統から分枝した注入装置が
設置されていない下位系統で前記注入周波数の電流,電
圧を計測し、前記上位系統又は前記注入装置が接続され
ていない下位系統の前記注入周波数についての等価回路
を求めて高調波特性を測定する高調波測定装置であっ
て、 前記各注入制御装置に、 クロック信号を多段カウンタにより計数して時刻情報を
出力する時計回路部と、 GPS衛星の時刻情報及び1秒毎のパルス信号を受信す
るGPS受信機部と、 前記GPS受信機部の受信時刻情報により前記時計回路
部の時刻情報を更新し,前記GPS受信機部の1秒毎の
受信パルス信号のエッジにより前記多段カウンタの秒よ
り下位を零にリセットする時刻補正部とを備え、 前記各注入制御装置それぞれの前記時計回路部の時刻情
報に基づくタイミング制御により、前記各注入装置の前
記注入周波数の出力電流の位相を、前記各注入装置が接
続された下位系統それぞれの負荷状態に応じて補正し、 前記各注入装置が接続された各下位系統から前記上位系
統側に、前記注入周波数の同期した電流を分散注入する
ようにしたことを特徴とする高調波測定装置。
1. A plurality of injectors respectively connected to a plurality of lower systems branched from an upper system, and a current of the same injection frequency obtained by multiplying an output current of each of the injectors by a non-integer multiple of a system fundamental frequency. And a plurality of injection control devices for controlling and dispersing and injecting the current of the injection frequency from each of the lower systems to the upper system side, wherein the lower system is not provided with an injection device branched from the upper system or the upper system. A harmonic measurement device that measures a current and a voltage of the injection frequency in a system and obtains an equivalent circuit for the injection frequency in the upper system or a lower system to which the injection device is not connected and measures harmonic characteristics. A clock circuit for counting the clock signal by a multi-stage counter and outputting time information; and receiving time information of a GPS satellite and a pulse signal every second. The GPS receiver unit updates the time information of the clock circuit unit with the reception time information of the GPS receiver unit, and updates the time of the multi-stage counter by the edge of the received pulse signal every second of the GPS receiver unit. A time correction unit that resets the lower order to zero, and by performing timing control based on time information of the clock circuit unit of each of the injection control devices, the phase of the output current of the injection frequency of each of the injection devices, Correction is made in accordance with the load state of each of the lower systems to which the injection devices are connected, and the current synchronized with the injection frequency is dispersedly injected from each of the lower systems to which each of the injection devices is connected to the upper system. A harmonic measuring device, characterized in that:
【請求項2】 上位系統から分枝した複数の下位系統に
それぞれ接続された複数の注入装置と、 前記各注入装置の出力電流を系統基本波周波数を非整数
倍したのと同一の注入周波数の電流に制御し,前記各下
位系統から前記上位系統側に前記注入周波数の電流を分
散注入する複数の注入制御装置とを備え、 前記上位系統又は前記上位系統から分枝した注入装置が
設置されていない下位系統で前記注入周波数の電流,電
圧を計測し、前記上位系統又は前記注入装置が設置され
ていない下位系統の前記注入周波数についての等価回路
を求めて高調波特性を測定する高調波測定装置であっ
て、 前記各注入制御装置に、 クロック信号を多段カウンタにより計数して時刻情報を
出力する時計回路部と、 標準電波を受信して受信時刻情報及び受信秒信号を復調
出力する標準電波受信機部と、 前記受信時刻情報により前記時計回路部の時刻情報を更
新し,前記受信秒信号と前記時計回路部の1秒の計数パ
ルス信号とのエッジタイミングの誤差により前記クロッ
ク信号の周波数をフィードバック制御する時刻補正部と
を備え、 前記各注入制御装置それぞれの前記時計回路部の時刻情
報に基づくタイミング制御により、前記各注入装置の前
記注入周波数の出力電流の位相を、前記各注入装置が接
続された下位系統それぞれの負荷状態に応じて補正し、 前記各注入装置が接続された各下位系統から前記上位系
統側に、前記注入周波数の同期した電流を分散注入する
ようにしたことを特徴とする高調波測定装置。
2. A plurality of injection devices respectively connected to a plurality of lower systems branched from an upper system, and an injection current of the same injection frequency as a non-integer multiple of a system fundamental frequency of an output current of each of the injection devices. A plurality of injection controllers for controlling the current and dispersing and injecting the current of the injection frequency from each of the lower systems to the upper system, and an injection device branched from the upper system or the upper system is provided. Harmonic measurement for measuring the current and voltage of the injection frequency in a non-existing lower system and obtaining an equivalent circuit for the injection frequency of the upper system or a lower system in which the injection device is not installed and measuring harmonic characteristics. A clock circuit for counting clock signals by a multi-stage counter and outputting time information; and receiving time information and a reception second signal by receiving a standard radio wave. A standard wave receiver for demodulating and outputting, and updating the time information of the clock circuit unit with the reception time information, wherein the error of the edge timing between the reception second signal and the one-second count pulse signal of the clock circuit unit is used. And a time correction unit that performs feedback control of the frequency of the clock signal.By timing control based on time information of the clock circuit unit of each of the injection control devices, the phase of the output current of the injection frequency of each injection device is Correction is made in accordance with the load state of each of the lower systems to which each of the injectors is connected, and the current synchronized with the injection frequency is dispersedly injected from each of the lower systems to which each of the injectors is connected into the upper system. A harmonic measuring device, characterized in that:
JP2000052852A 2000-02-29 2000-02-29 Measuring device for high harmonic Pending JP2001245433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000052852A JP2001245433A (en) 2000-02-29 2000-02-29 Measuring device for high harmonic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000052852A JP2001245433A (en) 2000-02-29 2000-02-29 Measuring device for high harmonic

Publications (1)

Publication Number Publication Date
JP2001245433A true JP2001245433A (en) 2001-09-07

Family

ID=18574305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000052852A Pending JP2001245433A (en) 2000-02-29 2000-02-29 Measuring device for high harmonic

Country Status (1)

Country Link
JP (1) JP2001245433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266684A (en) * 2005-03-22 2006-10-05 Meidensha Corp Higher harmonic detection apparatus
JP2016226279A (en) * 2015-05-29 2016-12-28 国立大学法人 東京大学 Power converter, power network system and control method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266684A (en) * 2005-03-22 2006-10-05 Meidensha Corp Higher harmonic detection apparatus
JP2016226279A (en) * 2015-05-29 2016-12-28 国立大学法人 東京大学 Power converter, power network system and control method therefor

Similar Documents

Publication Publication Date Title
US9912465B2 (en) Systems and methods of clock synchronization between devices on a network
US7589595B2 (en) Distributing frequency references
US7394415B2 (en) Time-interleaved analog-to-digital converter and high speed signal processing system using the same
CN110311673B (en) Frequency calibration method, terminal and storage medium
KR20180050738A (en) Calibration of serial interconnection
KR101200601B1 (en) Method and system for determining the amplitude and/or phase of the output signal for a transmission body depending on the amplitude of the input signal
CN110460505B (en) Parallel bus time sequence calibration method and device and receiving end equipment
US20070108986A1 (en) Systems and methods for performing differential measurements in an electrical system
EP3130930A1 (en) Synchronization of unstable signal sources for use in a phase stable instrument
CN114640409A (en) Receiver trigger delay measuring method
EP3574331B1 (en) An interferometric iq-mixer/dac solution for active, high speed vector network analyser impedance renormalization
US10534027B2 (en) Phase coherent main and remote units of a network analyzer
JP2001245433A (en) Measuring device for high harmonic
US9459591B2 (en) Multipoint simultaneous measurement method and multipoint simultaneous measurement system in electric power station, and internal clock used therefor
CN205377841U (en) Time standard frequency source
CN107817480B (en) A kind of time matching measurement device and method
EP4145149A1 (en) Broadband measurement system and measurement method for broadband property
KR101324172B1 (en) Method and device for toa calibration of multi-channel digital receiver
CN105743498A (en) Time reference system and apparatus, and method and device for time reference
CN111064533B (en) Time delay measurement system, time delay measurement method, electronic device, and storage medium
CN110391894B (en) Receiving end of synchronous system, synchronous system and particle accelerator
KR101333596B1 (en) Device and method for tdoa calibration between rf receivers
JP6659642B2 (en) Array antenna device and calibration method
Yu et al. Study on Measurement Methods for GNSS Antenna Cable Delay
US5765101A (en) Portable VHF receiver/tape recorder calibrator