JP2001244535A - Polarization maintaining optical amplification fiber - Google Patents

Polarization maintaining optical amplification fiber

Info

Publication number
JP2001244535A
JP2001244535A JP2000054647A JP2000054647A JP2001244535A JP 2001244535 A JP2001244535 A JP 2001244535A JP 2000054647 A JP2000054647 A JP 2000054647A JP 2000054647 A JP2000054647 A JP 2000054647A JP 2001244535 A JP2001244535 A JP 2001244535A
Authority
JP
Japan
Prior art keywords
edf
wavelength
polarization maintaining
fiber
stress applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000054647A
Other languages
Japanese (ja)
Other versions
JP3732705B2 (en
Inventor
Katsuaki Izoe
克昭 井添
Kuniharu Himeno
邦治 姫野
Shigeru Emori
滋 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000054647A priority Critical patent/JP3732705B2/en
Publication of JP2001244535A publication Critical patent/JP2001244535A/en
Application granted granted Critical
Publication of JP3732705B2 publication Critical patent/JP3732705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a cut-off wavelength of 980 nm excitation PANDA type PM-EDF lower than 980 nm and realize enough polarization maintaining function. SOLUTION: A distance (d) between a pair of stress application parts 2, 2 provided to a core doped with erbium is made 16 to 21 μm. The stress application part is formed of B2O3-SiO2 glass doped with B2O3 of 15 to 20 mole %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、偏波保持特性と
光増幅作用を併せ持ち、光増幅の励起光の波長が980
nmである偏波保持光増幅用ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has both a polarization maintaining characteristic and an optical amplifying function, and the wavelength of the pump light for optical amplification is 980.
The present invention relates to a polarization maintaining optical amplification fiber having a wavelength of nm.

【0002】[0002]

【従来の技術】超高速光通信の可能性が検討されるにつ
れ、コアにエルビウムをドープした光増幅作用を有する
エルビウムドープ光ファイバ(以下、EDFと言う。)
を使用した光ファイバ増幅器や光ファイバレーザーにお
いて、EDF内の偏波に起因する種々の問題が生じてい
る。このような問題を解決するために、偏波保持特性を
有するEDF,偏波保持光増幅用ファイバ(以下、PM
−EDFと言う。)が求められるようになった。
2. Description of the Related Art As the possibility of ultra-high-speed optical communication is examined, an erbium-doped optical fiber (hereinafter, referred to as EDF) having an optical amplifying action in which a core is doped with erbium.
In an optical fiber amplifier and an optical fiber laser using the same, various problems have occurred due to the polarization in the EDF. In order to solve such a problem, an EDF having a polarization maintaining characteristic and a polarization maintaining optical amplification fiber (hereinafter referred to as PM
-EDF. ) Was required.

【0003】ところで、偏波保持特性を有する光ファイ
バとしては、圧縮だ円クラッド型,楕円コア型,ボウタ
イ型,PANDA型等があげられるが、その中でもPA
NDA型偏波保持光ファイバ(以下、PANDAファイ
バと言う。)は精度よく作成可能であり、偏波保持特性
の良好な物を作れるという優れた特徴を持つ。PAND
Aファイバは、図2に示すように、コア1の両側方の対
称位置に一対の応力付与部2,2が設けられ、これらコ
ア1および応力付与部2,2がクラッド3で包囲された
構造となっており、通常のシングルモードファイバとは
応力付与部2,2が設けられている点が異なるところで
ある。以下、本発明では、このように、コア1の両側方
に応力付与部2,2を形成することをPANDAファイ
バ化すると言うことがある。
[0003] Optical fibers having polarization maintaining characteristics include a compression elliptical clad type, an elliptical core type, a bow tie type, a PANDA type and the like.
An NDA type polarization maintaining optical fiber (hereinafter, referred to as a PANDA fiber) has an excellent feature that it can be produced with high accuracy and can be made with good polarization maintaining characteristics. PAND
As shown in FIG. 2, the A-fiber has a structure in which a pair of stress applying portions 2 and 2 are provided at symmetrical positions on both sides of a core 1, and the core 1 and the stress applying portions 2 and 2 are surrounded by a clad 3. This is different from a normal single mode fiber in that stress applying parts 2 and 2 are provided. Hereinafter, in the present invention, forming the stress applying portions 2 and 2 on both sides of the core 1 as described above may be referred to as a PANDA fiber.

【0004】応力付与部2,2は、通常15〜20モル
%のB23(酸化ホウ素)を石英(SiO2)にドープし
たB23−SiO2ガラスからなるものである。このB2
3−SiO2ガラスは石英ガラス(SiO2)に比べて大
きな熱膨張係数を有し、応力付与部2,2は、溶融紡糸
後にコア1に引張り応力を与え、これによりコア1に偏
波保持特性が付与されるようになっている。また、応力
付与部2,2による応力によってコア1の屈折率が光弾
性効果により上昇し、これに起因してカットオフ波長が
長波長側へシフトする。
The stress applying portions 2 and 2 are usually made of B 2 O 3 —SiO 2 glass obtained by doping quartz (SiO 2 ) with 15 to 20 mol% of B 2 O 3 (boron oxide). This B 2
O 3 —SiO 2 glass has a larger coefficient of thermal expansion than quartz glass (SiO 2 ), and the stress imparting portions 2 and 2 apply a tensile stress to the core 1 after melt spinning, whereby the core 1 is polarized. Retention characteristics are provided. Further, the refractive index of the core 1 increases due to the photoelastic effect due to the stress by the stress applying units 2 and 2, and the cutoff wavelength shifts to the longer wavelength side due to this.

【0005】一方、EDFは、波長1.55μm帯の光
増幅用として使用され、その励起光(ポンプ光)の波長
が1480nmのものと980nmのものの2種類があ
る。980nm励起用EDFは、1480nm励起用E
DFに比べて光増幅時の動作原理から安定した3準位動
作をするため、雑音特性が良いと言う特徴がある反面、
カットオフ波長を少なくとも980nmよりも低波長側
となるように設計する必要がある。
On the other hand, EDF is used for optical amplification in the 1.55 μm band, and there are two types of EDFs, in which the wavelength of pump light (pump light) is 1480 nm and 980 nm. The 980 nm excitation EDF is 1480 nm excitation EDF.
Compared to the DF, the three-level operation is more stable based on the operation principle at the time of optical amplification, so that it has good noise characteristics.
It is necessary to design so that the cutoff wavelength is at least lower than 980 nm.

【0006】一般に、シングルモード光ファイバのカッ
トオフ波長を低波長にすると曲げ損失が大きくなる。カ
ットオフ波長と曲げ損失は、主に、該光ファイバのモー
ドフィールド径とコア/クラッド比屈折率差によって定
まる。EDFの屈折率分布(プロファイル)を設計する
際、励起光に対する励起効率を高めるため、モードフィ
ールド径は通常のシングルモード光ファイバのモードフ
ィールド径に比べて小さくされ、コア/クラッド比屈折
率差は大きくされる。
In general, when the cutoff wavelength of a single mode optical fiber is set to a low wavelength, bending loss increases. The cutoff wavelength and the bending loss are mainly determined by the mode field diameter of the optical fiber and the core / clad relative refractive index difference. When designing the refractive index distribution (profile) of the EDF, the mode field diameter is made smaller than that of a normal single mode optical fiber, and the core / clad relative refractive index difference is increased in order to increase the pumping efficiency with respect to the pump light. Be enlarged.

【0007】実際のEDFのファイバ母材の作成上の制
約から、コア/グラッド比屈折率差を大きくすることに
限界があり、励起効率とのバランスからモードフィール
ド径,コア/クラッド比屈折率差の値は比較的狭い範囲
に限定される。このような事情から、980nm励起用
EDFのカットオフ波長は800〜850nmの範囲で
設計されている。
[0007] Due to restrictions on the preparation of the fiber preform of the actual EDF, there is a limit in increasing the core / gradation relative refractive index difference, and the mode field diameter and the core / cladding relative refractive index difference are determined from the balance with the pumping efficiency. Is limited to a relatively narrow range. Under such circumstances, the cutoff wavelength of the 980 nm excitation EDF is designed in the range of 800 to 850 nm.

【0008】ところで、PANDAファイバとEDFと
を組み合わせたPANDA型PM−EDFは、図2に示
すものと同様にEDFのエルビウムドープコア1の両側
方の対称位置に一対の応力付与部2,2を設け、これら
をクラッド3で包囲した構造を有するものである。この
PANDA型PM−EDFの製造は、通常のPANDA
ファイバの製造と同様に、VAD法などによりEDF用
の母材を作成する。ついで、この母材のコア部の両側方
に応力付与部となるガラスロッドを挿入するための一対
の挿入孔を穿孔し、この挿入孔にB23−SiO2ガラス
からなるガラスロッドを挿入する。ついで、この母材を
加熱,延伸し、溶融紡糸する方法によって行われる。
In the PANDA type PM-EDF in which the PANDA fiber and the EDF are combined, a pair of stress applying portions 2 and 2 are provided at symmetrical positions on both sides of the erbium-doped core 1 of the EDF as shown in FIG. And a structure in which these are surrounded by a clad 3. The production of this PANDA-type PM-EDF is performed by the usual PANDA.
As in the case of manufacturing the fiber, a base material for EDF is prepared by a VAD method or the like. Next, a pair of insertion holes for inserting a glass rod serving as a stress applying portion is formed on both sides of the core portion of the base material, and a glass rod made of B 2 O 3 —SiO 2 glass is inserted into the insertion hole. I do. Then, the base material is heated, drawn, and melt-spun.

【0009】このような構造をとることから、PAND
A型PM−EDFでも、応力付与部2,2の存在によ
り、応力付与部2,2のない通常のEDFに比べてカッ
トオフ波長が必然的に長波長側にシフトする。このカッ
トオフ波長の長波長側へのシフト量は、経験的に応力付
与部2,2間の間隔dとの間に相関が認められる。
Due to such a structure, PAND
Even in the A-type PM-EDF, due to the presence of the stress applying portions 2 and 2, the cutoff wavelength is naturally shifted to a longer wavelength side as compared with a normal EDF without the stress applying portions 2 and 2. The shift amount of the cutoff wavelength toward the longer wavelength side is empirically correlated with the distance d between the stress applying parts 2 and 2.

【0010】図3のグラフは、クラッド径125μm、
応力付与部2の直径33〜38μmのPANDAファイ
バについて、その応力付与部2,2の間隔dを変化させ
て多数作成し、カットオフ波長のシフト量を測定した結
果を示すものである。図3の縦軸は、PANDAファイ
バの応力付与部を形成する前のシングルモードファイバ
の母材のカットオフ波長推定値Aと、この母材から上述
の方法によって形成されたPANDAファイバのカット
オフ波長Bとの比B/Aを表わす。このグラフから、応
力付与部の間隔dが狭くなるにつれてシフト量が増大
し、カットオフ波長が長波長側にシフトすることがわか
る。
The graph of FIG. 3 shows a cladding diameter of 125 μm,
This shows the results of measuring a shift amount of the cutoff wavelength by preparing a large number of PANDA fibers having a diameter of 33 to 38 μm of the stress applying unit 2 while changing the distance d between the stress applying units 2 and 2. The vertical axis in FIG. 3 represents the cutoff wavelength estimation value A of the single-mode fiber base material before forming the stress applying portion of the PANDA fiber, and the cutoff wavelength of the PANDA fiber formed from the base material by the above-described method. It represents the ratio B / A to B. From this graph, it can be seen that as the distance d between the stress applying portions becomes smaller, the shift amount increases, and the cutoff wavelength shifts to the longer wavelength side.

【0011】上述のように、980nm励起用EDFで
は、そのカットオフ波長を800〜850nmとなるよ
うに設計しているため、これをPANDA型PM−ED
Fとすると、図3のグラフからそのカットオフ波長が
1.1〜1.25倍程度長波長側にシフトし、880〜
1060nmとなって、場合によっては励起光波長より
も長波長となり、使用できない。一方、図3のグラフか
ら応力付与部の間隔dが広がると、カットオフ波長のシ
フト量が低減することがわかり、カットオフ波長の長波
長側へのシフトを抑えるには、間隔dを大きくすればよ
いことになる。しかし、間隔dを大きくすると、応力付
与部2,2によるコア1に作用する応力が減少し、偏波
保持特性が低下し、偏波保持光ファイバ本来の機能を失
うことになる。
As described above, since the cut-off wavelength of the 980 nm excitation EDF is designed to be 800 to 850 nm, the cut-off wavelength is set to PANDA type PM-ED.
Assuming that F, the cutoff wavelength shifts from the graph of FIG.
The wavelength becomes 1060 nm, and in some cases, the wavelength becomes longer than the wavelength of the excitation light and cannot be used. On the other hand, it can be seen from the graph of FIG. 3 that the shift amount of the cutoff wavelength is reduced when the distance d between the stress applying portions is increased. In order to suppress the shift of the cutoff wavelength to the longer wavelength side, the distance d must be increased. It will be good. However, when the distance d is increased, the stress acting on the core 1 by the stress applying parts 2 and 2 is reduced, the polarization maintaining characteristic is reduced, and the original function of the polarization maintaining optical fiber is lost.

【0012】[0012]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、980nm励起用PANDA型PM−EDF
において、そのカットオフ波長が長波長側にシフトして
使用に供しえなくなることを防止し、かつコアに十分な
応力が作用して偏波保持特性が低下しないようにするこ
とにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a PANDA type PM-EDF for 980 nm excitation.
It is an object of the present invention to prevent the cut-off wavelength from shifting to the longer wavelength side and becoming unusable, and to prevent sufficient stress from acting on the core to lower the polarization maintaining characteristic.

【0013】[0013]

【課題を解決するための手段】かかる課題は、PAND
A型PM−EDFの一対の応力付与部間の間隔dを16
〜21μmとすることで解決される。また、応力付与部
には、B23を15〜20モル%ドープしたB23−S
iO 2ガラスを用い、その直径を33〜38μmとする
ことが好ましい。
The object of the present invention is to provide a PAND
The distance d between the pair of stress applying portions of the A-type PM-EDF is 16
It can be solved by setting the thickness to 21 μm. In addition, the stress applying section
Has BTwoOThreeB doped with 15 to 20 mol%TwoOThree-S
iO TwoUse glass with a diameter of 33 to 38 μm
Is preferred.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳しく説明する。
図1のグラフは、カットオフ波長が800nmと850
nmの2種の980nm励起用EDFをPANDAファ
イバ化したときのカットオフ波長と応力付与部の間隔d
との関係を、図3のグラフに示された相関関係に基づい
て、示したものである。グラフ中、直線Cはカットオフ
波長800nmの、直線Dはカットオフ波長850nm
のものである。図1のグラフから、PANDAファイバ
化することによって、カットオフ波長が長波長側へ大き
くシフトすることがわかる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The graph of FIG. 1 shows that the cutoff wavelength is 800 nm and 850.
cutoff wavelength and distance d between stress applying parts when two types of 980 nm excitation EDFs of 980 nm are converted into PANDA fibers.
Is shown based on the correlation shown in the graph of FIG. In the graph, a straight line C has a cutoff wavelength of 800 nm, and a straight line D has a cutoff wavelength of 850 nm.
belongs to. From the graph of FIG. 1, it can be seen that the cutoff wavelength greatly shifts to the longer wavelength side by using a PANDA fiber.

【0015】980nm励起用PANDA型PM−ED
Fでは、そのカットオフ波長は、980nm以下でなけ
ればシングルモードファイバとして動作せず、そのため
曲げ損失が大きくなり励振効率が悪くなるので、増幅用
ファイバとして使用出来ない。また、実際の使用条件や
製品ファイバでのバラツキなどを考慮すると、カットオ
フ波長は930nm以下とすることが必要となる。した
がって、図1のグラフから、カットオフ波長が800n
mのEDFをPANDAファイバ化した場合には間隔d
を16μm以上にし、カットオフ波長が850nmのE
DFをPANDAファイバ化した場合には間隔dを21
μm以上すればよいことになる。
PANDA type PM-ED for 980 nm excitation
In the case of F, the cut-off wavelength does not operate as a single mode fiber unless the cutoff wavelength is 980 nm or less. Therefore, the bending loss increases and the excitation efficiency deteriorates, so that the fiber cannot be used as an amplification fiber. Further, in consideration of the actual use conditions and the variation in the product fiber, the cutoff wavelength needs to be 930 nm or less. Therefore, from the graph of FIG.
When the EDF of m is converted to PANDA fiber, the distance d
Is set to 16 μm or more, and the E of the cutoff wavelength is 850 nm.
When the DF is a PANDA fiber, the interval d is set to 21.
It is sufficient that the thickness is at least μm.

【0016】一方、上述のように間隔dを大きくすれ
ば、コア1に作用する応力が減少し、PANDAファイ
バとして偏波保持機能が低下することになり、間隔dは
出来るだけ小さい方がよい。この点から、間隔dを16
〜21μmとすれば、カットオフ波長が800nmのE
DFであっても、850nmのEDFであっても、これ
をPANDA化した場合にはそのカットオフ波長を93
0nm以下とでき、しかも十分な偏波保持特性を有する
ようになる。
On the other hand, if the interval d is increased as described above, the stress acting on the core 1 is reduced, and the polarization maintaining function of the PANDA fiber is reduced. The interval d is preferably as small as possible. From this point, the interval d is set to 16
If it is set to 21 μm, the cut-off wavelength of E is 800 nm.
Regardless of the DF or the 850 nm EDF, if this is converted to PANDA, the cutoff wavelength is set to 93.
It can be set to 0 nm or less and has sufficient polarization maintaining characteristics.

【0017】また、本発明では応力付与部として、B2
3を15〜20モル%ドープしたB 23−SiO2ガラ
スを用い、その直径を33〜38μmとすることが好ま
しく、これによって間隔dを16〜21μmとしても、
コアに十分な応力が作用し偏波保持機能が高いレベルで
維持され、しかもカットオフ波長を980nm以下とす
ることができる。
Further, in the present invention, as the stress applying portion, BTwo
OThreeB doped with 15 to 20 mol% TwoOThree-SiOTwoGala
It is preferable that the diameter be 33 to 38 μm.
Therefore, even if the distance d is 16 to 21 μm,
Sufficient stress acts on the core and the polarization maintaining function is at a high level
Is maintained and the cut-off wavelength is set to 980 nm or less.
Can be

【0018】以下、具体例を示す。EDF母材をVAD
法によって作成した。コア部分にドープしたエルビウム
濃度は1100〜1200ppm、アルミニウム濃度は
11000〜14000ppmとした。得られた母材に
ついてプリフォームアナライザーにて測定した推定モー
ドフィルード径は4.5〜5.5μm、カットオフ波長
は800〜850nmであった。このEDF母材のコア
部の両側方の対称位置に一対の挿入孔を穿孔し、この挿
入孔にB2320モル%ドープのB23−SiO2ガラ
スのロッドを挿入した。挿入孔の位置は、PANDA型
PM−EDFとしたときに応力付与部の間隔dが20μ
mとなるように、また挿入孔の孔径を応力付与部とした
ときの直径が35μmとなるように定めた。
The following is a specific example. VAD for EDF base material
Created by law. The erbium concentration doped in the core portion was 1100 to 1200 ppm, and the aluminum concentration was 11000 to 14000 ppm. The presumed mode field diameter of the obtained base material measured by a preform analyzer was 4.5 to 5.5 μm, and the cutoff wavelength was 800 to 850 nm. The puncturing the pair of insertion holes at symmetrical positions on both sides of the core portion of the EDF preform was inserted the insertion hole into the B 2 O 3 20 mol% doped B 2 O 3 -SiO 2 glass rods. When the PANDA type PM-EDF is used, the distance d between the stress applying portions is 20 μm.
m and the diameter of the insertion hole as the stress applying portion is 35 μm.

【0019】この母材を加熱,延伸し、溶融紡糸して、
外径125μmのPANDA型PM−EDFを作製し
た。このファイバのカットオフ波長は930〜970n
mであり、980nm励起用として十分使用可能な値で
あった。また、モードフィルード径は5.19〜5.3
9μmであった。また、このファイバの増幅特性は、測
定波長1540〜1560nm、,入力パワー0dB
m,励起パワー100mW,ファイバ長20mで16.
8dBであった。また、雑音指数は3.45dBであ
り、偏波クロストークは−26dB/100mであっ
た。
This base material is heated, drawn, melt-spun,
A PANDA type PM-EDF having an outer diameter of 125 μm was produced. The cutoff wavelength of this fiber is 930-970n
m, which was a value sufficiently usable for excitation at 980 nm. The mode field diameter is 5.19 to 5.3.
It was 9 μm. The amplification characteristics of this fiber are: measurement wavelength 1540-1560 nm, input power 0 dB.
m, pump power 100 mW, fiber length 20 m.
It was 8 dB. The noise figure was 3.45 dB, and the polarization crosstalk was -26 dB / 100 m.

【0020】以上の結果から、このPANDA型PM−
EDFは、980nm励起用として使用でき、良好な増
幅特性,雑音特性を示し、しかも十分な偏波保持特性を
も有することがわかる。
From the above results, this PANDA type PM-
It can be seen that the EDF can be used for pumping at 980 nm, exhibits good amplification characteristics and noise characteristics, and has sufficient polarization maintaining characteristics.

【0021】[0021]

【発明の効果】以上説明したように本発明にあっては、
980nm励起用PANDA型PM−EDFにおいて、
応力付与部間の間隔dを16〜21μmとしたので、カ
ットオフ波長を980nm以下に抑えることができ、し
かも十分な偏波保持機能を有するものが得られる。
As described above, in the present invention,
In the PANDA type PM-EDF for 980 nm excitation,
Since the distance d between the stress applying portions is 16 to 21 μm, the cutoff wavelength can be suppressed to 980 nm or less, and a material having a sufficient polarization maintaining function can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 PANDA型PM−EDFのとカットオフ波
長応力付与部の間隔dとの関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a PANDA type PM-EDF and a distance d between cut-off wavelength stress applying portions.

【図2】 PANDAファイバの一例を示す断面図であ
る。
FIG. 2 is a cross-sectional view illustrating an example of a PANDA fiber.

【図3】 PANDAファイバのカットオフ波長のシフ
ト量と応力付与部間の間隔dとの関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between a shift amount of a cutoff wavelength of a PANDA fiber and a distance d between stress applying portions.

【符号の説明】[Explanation of symbols]

1…コア、2…応力付与部、3…クラッド DESCRIPTION OF SYMBOLS 1 ... Core, 2 ... Stress application part, 3 ... Clad

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江森 滋 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉事業所内 Fターム(参考) 2H050 AA04 AB07X AB18X AC44 AD16 5F072 AB09 AK06 JJ20 YY17  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeru Emori 1440 Mutsuzaki, Sakura-shi, Chiba F-term in Fujikura Sakura Works (reference) 2H050 AA04 AB07X AB18X AC44 AD16 5F072 AB09 AK06 JJ20 YY17

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エルビウムがドープされたコアの両側方
に一対の応力付与部が設けられ、これらのコアおよび応
力付与部がクラッドに包囲されてなり、波長980nm
の励起光により励起されるPANDA型偏波保持光増幅
用ファイバであって、 上記応力付与部間の間隔が16〜21μmであることを
特徴とする偏波保持光増幅用ファイバ。
A pair of stress applying portions are provided on both sides of an erbium-doped core, and the core and the stress applying portions are surrounded by a clad, and have a wavelength of 980 nm.
A PANDA type polarization maintaining light amplifying fiber that is excited by the pumping light according to (1), wherein the distance between the stress applying portions is 16 to 21 μm.
【請求項2】 応力付与部が15〜20モル%のB23
をドープしたB23−SiO2ガラスからなり、その直径
が33〜38μmであることを特徴とする請求項1記載
の偏波保持光増幅用ファイバ。
2. The method according to claim 1, wherein the stress imparting portion has 15 to 20 mol% of B 2 O 3.
Made from doped B 2 O 3 -SiO 2 glass, claim 1 polarization maintaining optical amplifying fiber according to its diameter is equal to or is 33~38Myuemu.
JP2000054647A 2000-02-29 2000-02-29 Method for manufacturing polarization maintaining optical amplification fiber Expired - Fee Related JP3732705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054647A JP3732705B2 (en) 2000-02-29 2000-02-29 Method for manufacturing polarization maintaining optical amplification fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054647A JP3732705B2 (en) 2000-02-29 2000-02-29 Method for manufacturing polarization maintaining optical amplification fiber

Publications (2)

Publication Number Publication Date
JP2001244535A true JP2001244535A (en) 2001-09-07
JP3732705B2 JP3732705B2 (en) 2006-01-11

Family

ID=18575874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054647A Expired - Fee Related JP3732705B2 (en) 2000-02-29 2000-02-29 Method for manufacturing polarization maintaining optical amplification fiber

Country Status (1)

Country Link
JP (1) JP3732705B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018765A (en) * 2009-07-08 2011-01-27 Furukawa Electric Co Ltd:The Optical fiber for optical amplification, optical fiber amplifier, and optical fiber laser
JP2016051804A (en) * 2014-08-29 2016-04-11 株式会社フジクラ Polarization holding fiber for amplification and fiber laser device using the same
CN114751638A (en) * 2022-06-13 2022-07-15 武汉长进激光技术有限公司 Panda type elliptical core few-mode erbium-doped optical fiber and preparation method thereof
WO2023145863A1 (en) * 2022-01-31 2023-08-03 株式会社フジクラ Polarization-maintaining fiber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207003A (en) * 1982-05-28 1983-12-02 Nippon Telegr & Teleph Corp <Ntt> Single polarization optical fiber of low loss, to which internal stress is given
JPS6033513A (en) * 1983-08-05 1985-02-20 Nippon Telegr & Teleph Corp <Ntt> Single linear polarization optical fiber
JPS61132533A (en) * 1984-11-30 1986-06-20 Fujikura Ltd Production of polarization-keeping optical fiber
JPH01279211A (en) * 1988-04-30 1989-11-09 Furukawa Electric Co Ltd:The Polarized wave maintaining optical fiber
JPH0545682A (en) * 1991-08-14 1993-02-26 Fujitsu Ltd Optical amplifier
JPH05218551A (en) * 1991-07-18 1993-08-27 General Instr Corp Narrow-band incoherent light carrier wave generator
JPH08313749A (en) * 1995-05-15 1996-11-29 Fujikura Ltd Rare earth added polarization maintaining optical fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207003A (en) * 1982-05-28 1983-12-02 Nippon Telegr & Teleph Corp <Ntt> Single polarization optical fiber of low loss, to which internal stress is given
JPS6033513A (en) * 1983-08-05 1985-02-20 Nippon Telegr & Teleph Corp <Ntt> Single linear polarization optical fiber
JPS61132533A (en) * 1984-11-30 1986-06-20 Fujikura Ltd Production of polarization-keeping optical fiber
JPH01279211A (en) * 1988-04-30 1989-11-09 Furukawa Electric Co Ltd:The Polarized wave maintaining optical fiber
JPH05218551A (en) * 1991-07-18 1993-08-27 General Instr Corp Narrow-band incoherent light carrier wave generator
JPH0545682A (en) * 1991-08-14 1993-02-26 Fujitsu Ltd Optical amplifier
JPH08313749A (en) * 1995-05-15 1996-11-29 Fujikura Ltd Rare earth added polarization maintaining optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018765A (en) * 2009-07-08 2011-01-27 Furukawa Electric Co Ltd:The Optical fiber for optical amplification, optical fiber amplifier, and optical fiber laser
US8537458B2 (en) 2009-07-08 2013-09-17 Furukawa Electric Co., Ltd. Optical fiber for optical amplification, optical fiber amplifier, and optical fiber laser
JP2016051804A (en) * 2014-08-29 2016-04-11 株式会社フジクラ Polarization holding fiber for amplification and fiber laser device using the same
WO2023145863A1 (en) * 2022-01-31 2023-08-03 株式会社フジクラ Polarization-maintaining fiber
CN114751638A (en) * 2022-06-13 2022-07-15 武汉长进激光技术有限公司 Panda type elliptical core few-mode erbium-doped optical fiber and preparation method thereof

Also Published As

Publication number Publication date
JP3732705B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP4755114B2 (en) Double clad optical fiber with glass core doped with rare earth metal
US6724528B2 (en) Polarization-maintaining optical fiber amplifier employing externally applied stress-induced birefringence
US6954575B2 (en) Single-polarization high power fiber lasers and amplifiers
JP5629207B2 (en) Polarization maintaining optical fiber and single polarization optical fiber
JP5977215B2 (en) Fiber that provides double-clad gain with increased cladding absorption while maintaining single-mode operation
US7406236B2 (en) Optical fiber and optical fiber coupler, erbium-doped optical fiber amplifier, and optical waveguide using the same
KR20040047871A (en) Multimode fiber laser gratings
TW200528781A (en) Single polarization optical fiber laser and amplifier
JPH11223734A (en) Cladding excitation fiber
US7236672B2 (en) Optical systems utilizing optical fibers transmitting high power signal and a method of operating such systems
US6243196B1 (en) Optical fiber for optical amplifier and fiber optic amplifier
JP4947853B2 (en) Rare earth element doped fiber
JPH09139534A (en) Rare earth element doped fiber amplifier
JP2001244535A (en) Polarization maintaining optical amplification fiber
JPH11223744A (en) Article including optical fiber laser doped with improved rare-earth element
US20020071455A1 (en) Light-conductive fiber and method of producing a light conductive fiber
US7206486B2 (en) Optical amplification fiber, optical fiber amplifier, and optical communication system
US7046902B2 (en) Large mode field diameter optical fiber
JP2001291917A (en) C band optical amplifier for fiber provided with multimode clad
JP2001326404A (en) Rare earth element doped optical fiber
JPH09211505A (en) Optical fiber amplifier
EP1533634A1 (en) Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide
JP3640943B2 (en) Photonic crystal fiber
Jianga et al. Net gain of 15.5 dB from a 5.1 cm long Er/sup 3+/-doped phosphate glass fiber
RU203256U1 (en) Single-mode polarization-resistant erbium radiation-hardened optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R151 Written notification of patent or utility model registration

Ref document number: 3732705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees