JP2001242257A - Radiation measuring device - Google Patents

Radiation measuring device

Info

Publication number
JP2001242257A
JP2001242257A JP2000056608A JP2000056608A JP2001242257A JP 2001242257 A JP2001242257 A JP 2001242257A JP 2000056608 A JP2000056608 A JP 2000056608A JP 2000056608 A JP2000056608 A JP 2000056608A JP 2001242257 A JP2001242257 A JP 2001242257A
Authority
JP
Japan
Prior art keywords
signal
hole
charge generation
generation depth
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000056608A
Other languages
Japanese (ja)
Inventor
Masashi Yamada
真史 山田
Mikio Izumi
幹雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000056608A priority Critical patent/JP2001242257A/en
Publication of JP2001242257A publication Critical patent/JP2001242257A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation detector capable of accurately detecting radiation in a wide range while simplifying signal processing. SOLUTION: The amount of charge proportional to radiation energy detected by a cold semiconductor detector 1 is amplified by an amplifier 2, converted into a digital signal by an analog-to-digital converter part 3 and inputted to a charge generation depth determining part 5 of a signal processing part 4. The charge generation depth determining part 5 specifies charge generation depth on the basis of an electron signal and a hole signal of the digital signal, and a hole signal correcting part 6 corrects the wave height loss of the hole signal according to the charge generation depth. A total signal correcting part 7 obtains radiation energy by obtaining the wave height value of real charge from the hole signal corrected by the hole signal correcting part 6, and the electron signal detected by the cold semiconductor detector 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線のエネルギ
ーに比例した電荷を常温半導体検出器で検出しディジタ
ル信号処理を施して放射線を測定する放射線測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation measuring apparatus for detecting an electric charge proportional to the energy of radiation with a semiconductor detector at normal temperature and performing digital signal processing to measure the radiation.

【0002】[0002]

【従来の技術】放射線検出装置として、常温半導体検出
器を用いて放射線を検出するようにしたものがある。常
温半導体検出器は、結晶内に入射した放射線のエネルギ
ーに比例した電荷量を発生するものであり、常温半導体
検出器で発生した電荷量の電子対(電子と正孔)電子対に
対し、電界を印加してその電荷量を収集することで入射
した放射線のエネルギーを測定する。
2. Description of the Related Art As a radiation detecting apparatus, there is an apparatus which detects radiation by using a normal temperature semiconductor detector. A room-temperature semiconductor detector generates an electric charge in proportion to the energy of radiation incident on the crystal, and an electric field is applied to the electron pair (electrons and holes) of the electric charge generated by the room-temperature semiconductor detector. Is applied to collect the amount of charge to measure the energy of the incident radiation.

【0003】一般に、常温半導体検出器は、結晶内での
正孔の移動度が小さいため、正孔の結晶欠陥等への捕獲
や再結合により電荷総量自体が欠損し、常温半導体検出
器からの信号が入射放射線エネルギーに比例しない。つ
まり、捕獲され消滅した正孔の電荷量分だけ信号波高が
欠損するので、エネルギー分解能およびピークコンプト
ン比が低いという欠点を有している。
In general, a room-temperature semiconductor detector has a small mobility of holes in a crystal, so that the total charge itself is lost due to capture or recombination of holes into a crystal defect or the like, and the room-temperature semiconductor detector has a problem. The signal is not proportional to the incident radiation energy. That is, since the signal wave height is lost by the charge amount of the holes that have been captured and annihilated, there is a disadvantage that the energy resolution and the peak Compton ratio are low.

【0004】そこで、常温半導体検出器の検出信号を信
号処理して放射線を検出する放射線検出装置が提案され
ている。すなわち、常温半導体検出器からの検出信号を
ディジタル処理して、ニューラルネットワークを用いた
パターン識別や最小二乗法によるモデル波形への適合に
より、信号波高の欠損を補正しエネルギー分解能を向上
する手法が提案されている(「日本原子力学会 1997春
の年会予稿集、B16 酒井、他」や「日本原子力学会1995
秋の大会予稿集、C16福田、他」)。
Therefore, a radiation detecting apparatus has been proposed which detects radiation by processing a detection signal of a room-temperature semiconductor detector. In other words, a method is proposed in which the detection signal from a room-temperature semiconductor detector is digitally processed and the signal wave height is corrected and energy resolution is improved by pattern recognition using a neural network and adaptation to the model waveform using the least squares method. ("Atomic Energy Society of Japan 1997 Spring Annual Conference Proceedings, B16 Sakai, et al." And "Atomic Energy Society of Japan 1995
Autumn meeting proceedings, C16 Fukuda and others ”).

【0005】図9は、そのような常温半導体検出器を用
いた従来の放射線検出装置の構成図である。常温半導体
検出器1の信号は、電荷有感型のプリアンプ2で増幅さ
れ、プリアンプ2からの信号はA/D変換部3でディジ
タイズされ、A/D変換部3でディジタイズされた信号
は信号処理部4でニューラルネットワークやモデルフィ
ッティング等の処理をされる。これにより、捕獲され消
滅した正孔の電荷量分の信号波高の欠損を補正し、放射
線を検出するようにしている。
FIG. 9 is a block diagram of a conventional radiation detecting apparatus using such a normal temperature semiconductor detector. The signal of the ordinary temperature semiconductor detector 1 is amplified by a charge-sensitive preamplifier 2, the signal from the preamplifier 2 is digitized by an A / D converter 3, and the signal digitized by the A / D converter 3 is subjected to signal processing. Processing such as neural network and model fitting is performed by the unit 4. Thus, the loss of the signal wave height corresponding to the charge amount of the holes that have been captured and annihilated is corrected, and the radiation is detected.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述のよう
な放射線検出装置のディジタル信号処理においては、予
め用意したモデルとフィッティングさせるという過程が
生じるため計算量が多く処理に時間がかかるという難点
がある。また、常温半導体検出器1の検出信号をディジ
タル信号処理するA/D変換時に、アナログ入力電圧レ
ベルが固定されていると、広いアナログ入力電圧レベル
の入力がある環境では精度が確保できないという欠点が
ある。
However, in the digital signal processing of the radiation detection apparatus as described above, there is a problem that a process of fitting with a model prepared in advance occurs, so that the amount of calculation is large and the processing takes time. . Further, when the analog input voltage level is fixed at the time of A / D conversion in which the detection signal of the room temperature semiconductor detector 1 is digitally processed, accuracy cannot be ensured in an environment having a wide analog input voltage level input. is there.

【0007】また、一般に、常温半導体検出器は、正孔
の欠損を低減するため厚さの薄い結晶が使用されている
が、薄い結晶ではエネルギーの高い放射線に対して感度
が低いという難点がある。さらに、測定対象の放射線強
度が弱く感度が不十分な場合、大面積の結晶が必要とな
り、薄い結晶では大面積化が困難であると言う問題点が
あった。
In general, a normal temperature semiconductor detector uses a crystal having a small thickness in order to reduce the loss of holes. However, a thin crystal has a drawback that its sensitivity to high-energy radiation is low. . Furthermore, when the radiation intensity of the measurement object is weak and the sensitivity is insufficient, a crystal having a large area is required, and there is a problem that it is difficult to increase the area with a thin crystal.

【0008】本発明の目的は、信号処理が簡素化でき精
度良く広い測定範囲で放射線を検出できる放射線検出装
置を提供することである。
An object of the present invention is to provide a radiation detecting apparatus capable of simplifying signal processing and detecting radiation over a wide measuring range with high accuracy.

【0009】[0009]

【課題を解決するための手段】請求項1の発明に係わる
放射線測定装置は、照射された放射線に比例して発生し
た電子および正孔の電荷量を検出する常温半導体検出器
と、前記常温半導体検出器で検出された電荷量をデジタ
ル信号に変換するA/D変換部と、前記A/D変換部か
らのデジタル信号に基づいて放射線エネルギーを求める
信号処理部とを備えた放射線測定装置において、前記信
号処理部は、前記A/D変換部でデジタル信号に変換さ
れた電子信号および正孔信号に基づいて電荷生成深さを
特定する電荷生成深さ決定部と、前記電荷生成深さ決定
部で特定された電荷生成深さに応じて正孔信号の波高欠
損を補正する正孔信号補正部と、前記正孔信号補正部で
補正された正孔信号と前記常温半導体検出器で検出され
た電子信号とから真の電荷の波高値を求め放射線エネル
ギーを求める全信号補正部とを備えたことを特徴とす
る。
According to the present invention, there is provided a radiation measuring apparatus, comprising: a room-temperature semiconductor detector for detecting an amount of charge of electrons and holes generated in proportion to irradiation radiation; A radiation measuring apparatus comprising: an A / D conversion unit that converts a charge amount detected by a detector into a digital signal; and a signal processing unit that calculates radiation energy based on the digital signal from the A / D conversion unit. The signal processing unit includes a charge generation depth determination unit that specifies a charge generation depth based on the electronic signal and the hole signal converted to digital signals by the A / D conversion unit, and the charge generation depth determination unit A hole signal correction unit that corrects the peak height loss of the hole signal in accordance with the charge generation depth specified in the above, the hole signal corrected by the hole signal correction unit, and the hole signal corrected by the room temperature semiconductor detector. From electronic signals Characterized in that a total signal correcting unit for obtaining a radiation energy seeking the peak value of the charge.

【0010】請求項1の発明に係わる放射線測定装置で
は、常温半導体検出器で検出された放射線エネルギーに
比例した電荷量は、アンプで増幅されA/D変換部でデ
ジタル信号に変換されて信号処理部の電荷生成深さ決定
部に入力される。電荷生成深さ決定部では、デジタル信
号の電子信号および正孔信号に基づいて電荷生成深さを
特定し、正孔信号補正部では電荷生成深さに応じて正孔
信号の波高欠損を補正する。そして、全信号補正部で
は、正孔信号補正部で補正された正孔信号と常温半導体
検出器で検出された電子信号とから真の電荷の波高値を
求め放射線エネルギーを求める。
In the radiation measuring apparatus according to the first aspect of the present invention, the charge amount proportional to the radiation energy detected by the room temperature semiconductor detector is amplified by an amplifier, converted into a digital signal by an A / D converter, and processed. Input to the charge generation depth determining unit. The charge generation depth determination unit specifies the charge generation depth based on the electronic signal and the hole signal of the digital signal, and the hole signal correction unit corrects the peak loss of the hole signal according to the charge generation depth. . Then, the all-signal correcting unit obtains the peak value of the true charge from the hole signal corrected by the hole signal correcting unit and the electronic signal detected by the room-temperature semiconductor detector to obtain radiation energy.

【0011】請求項2の発明に係わる放射線測定装置
は、請求項1の発明において、前記電荷生成深さ決定部
は、前記デジタル信号の立上がりから信号傾きの不連続
点を求める信号傾き不連続点決定部と、前記不連続点決
定部からの不連続点に基づいて電子信号と正孔信号とを
分別し電荷生成深さを特定する電荷生成深さ演算部とを
備えたことを特徴とする。
According to a second aspect of the present invention, in the radiation measuring apparatus according to the first aspect of the present invention, the charge generation depth determining unit determines a discontinuous point of a signal gradient from a rising edge of the digital signal. A determination unit; and a charge generation depth calculation unit that separates an electron signal and a hole signal based on the discontinuity point from the discontinuity point determination unit and specifies a charge generation depth. .

【0012】請求項2の発明に係わる放射線測定装置で
は、請求項1の発明の作用に加え、電荷生成深さ決定部
の信号傾き不連続決定部により、デジタル信号の立上が
りから信号傾きの不連続点を求め、電荷生成深さ演算部
で不連続点決定部からの不連続点に基づいて電子信号と
正孔信号とを分別し電荷生成深さを特定する。
[0012] In the radiation measuring apparatus according to the second aspect of the present invention, in addition to the operation of the first aspect, the signal gradient discontinuity determining unit of the charge generation depth determining unit determines the discontinuity of the signal gradient from the rising edge of the digital signal. A point is obtained, and the charge generation depth is specified by separating the electron signal and the hole signal based on the discontinuous point from the discontinuous point determination unit in the charge generation depth calculation unit.

【0013】請求項3の発明に係わる放射線測定装置
は、請求項2の発明において、前記信号傾き不連続点決
定部は、前記デジタル信号の信号波形の2次微分値の最
小値から信号傾きの不連続点を求める、または前記デジ
タル信号の信号波形の1次微分値と予め定められたしき
い値との比較から信号傾きの不連続点を求めることを特
徴とする。
According to a third aspect of the present invention, in the radiation measuring apparatus according to the second aspect, the signal slope discontinuity determination unit determines a signal slope from a minimum value of a second derivative of a signal waveform of the digital signal. A discontinuous point is obtained, or a discontinuous point of a signal gradient is obtained by comparing a first-order differential value of the signal waveform of the digital signal with a predetermined threshold value.

【0014】請求項3の発明に係わる放射線測定装置で
は、請求項2の発明の作用に加え、デジタル信号の信号
波形を2次微分し、その2次微分値が最小値であるとき
を信号傾きの不連続点として求める。また、デジタル信
号の信号波形の1次微分し、その1次微分値と予め定め
られたしきい値とを比較し、しきい値のときに信号傾き
の不連続点として求める。
According to a third aspect of the present invention, in addition to the function of the second aspect of the present invention, the signal waveform of the digital signal is secondarily differentiated, and the signal gradient is determined when the second derivative value is the minimum value. As a discontinuous point of. Further, the signal waveform of the digital signal is first-order differentiated, the first-order differential value is compared with a predetermined threshold value, and when the threshold value is reached, the signal gradient is determined as a discontinuous point.

【0015】請求項4の発明に係わる放射線測定装置
は、請求項2の発明において、前記電荷生成深さ演算部
は、電子信号の波高値と正孔信号の波高値との比、電子
信号の立ち上がり時間または正孔信号の立上がり時間に
より電荷生成深さを特定することを特徴とする。
According to a fourth aspect of the present invention, in the radiation measuring apparatus according to the second aspect of the present invention, the charge generation depth calculator calculates a ratio between a peak value of the electron signal and a peak value of the hole signal, The charge generation depth is specified by the rise time or the rise time of the hole signal.

【0016】請求項4の発明に係わる放射線測定装置で
は、請求項2の発明の作用に加え、電子信号の波高値と
正孔信号の波高値との比により電荷生成深さを特定す
る。また、電子信号の立ち上がり時間または正孔信号の
立上がり時間により電荷生成深さを特定する。
In the radiation measuring apparatus according to a fourth aspect of the present invention, in addition to the function of the second aspect of the present invention, the charge generation depth is specified by the ratio between the peak value of the electron signal and the peak value of the hole signal. Further, the charge generation depth is specified by the rise time of the electron signal or the rise time of the hole signal.

【0017】請求項5の発明に係わる放射線測定装置
は、請求項1の発明において、前記正孔信号補正部は、
前記電荷生成深さ決定部で特定された電荷生成深さでの
電子による信号波高値および正孔による信号波高値の測
定値分布に基づいて正孔による信号波高値の理論値を求
める正孔波高理論値演算部と、前記正孔波高理論値演算
部で求めた正孔による信号波高値の理論値に基づいて電
荷生成深さに応じて正孔による信号波高値の減衰を補正
する正孔減衰補正演算部とを備えたことを特徴とする。
According to a fifth aspect of the present invention, in the radiation measuring apparatus according to the first aspect, the hole signal correction unit includes:
The hole height to obtain the theoretical value of the signal peak value due to holes based on the measured value distribution of the signal peak value due to electrons and the signal peak value due to holes at the charge generation depth specified by the charge generation depth determination unit. A theoretical value calculating unit, and a hole decay unit that corrects the attenuation of the signal peak value due to holes based on the charge generation depth based on the theoretical value of the signal peak value due to holes obtained by the hole peak theoretical value calculating unit. And a correction operation unit.

【0018】請求項5の発明に係わる放射線測定装置で
は、請求項1の発明の作用に加え、正孔信号補正部の正
孔波高理論値演算部により、電荷生成深さ決定部で特定
された電荷生成深さでの電子による信号波高値および正
孔による信号波高値の測定値分布に基づいて正孔による
信号波高値の理論値を求め、正孔減衰補正演算部によ
り、正孔波高理論値演算部で求めた正孔による信号波高
値の理論値に基づいて電荷生成深さに応じて正孔による
信号波高値の減衰を補正する。
In the radiation measuring apparatus according to the fifth aspect of the present invention, in addition to the operation of the first aspect of the present invention, the charge generation depth determining unit specifies the charge generation depth determining unit by the theoretical hole height calculating unit of the hole signal correcting unit. The theoretical value of the signal peak value due to holes is obtained based on the measured value distribution of the signal peak value due to electrons at the charge generation depth and the signal peak value due to holes. The attenuation of the signal peak value due to holes is corrected according to the charge generation depth based on the theoretical value of the signal peak value due to holes obtained by the calculation unit.

【0019】請求項6の発明に係わる放射線測定装置
は、請求項5の発明において、前記正孔波高理論値演算
部は、電子による信号波高値が支配的な信号分布領域か
ら理想曲線を求め正孔による信号波高値の理論値を求め
ることを特徴とする。
In the radiation measuring apparatus according to a sixth aspect of the present invention, in the fifth aspect of the present invention, the theoretical hole crest value calculating section obtains an ideal curve from a signal distribution region in which the signal crest value of electrons is dominant. It is characterized in that the theoretical value of the signal peak value due to the hole is obtained.

【0020】請求項6の発明に係わる放射線測定装置で
は、請求項5の発明の作用に加え、電子による信号波高
値が支配的な信号分布領域から理想曲線を求め正孔によ
る信号波高値の理論値を求める。
In the radiation measuring apparatus according to the sixth aspect of the present invention, in addition to the operation of the fifth aspect, an ideal curve is obtained from a signal distribution region in which the signal peak value due to electrons is dominant, and the theoretical value of the signal peak value due to holes is obtained. Find the value.

【0021】請求項7の発明に係わる放射線測定装置
は、請求項1乃至請求項6のいずれか1項の発明におい
て、複数のアナログ入力レンジに応じて複数のA/D変
換部を設けたことを特徴とする。
According to a seventh aspect of the present invention, in the radiation measuring apparatus according to any one of the first to sixth aspects, a plurality of A / D converters are provided according to a plurality of analog input ranges. It is characterized by.

【0022】請求項7の発明に係わる放射線測定装置で
は、請求項1乃至請求項6のいずれか1項の発明の作用
に加え、複数のA/D変換部でそれぞれのアナログ入力
レンジでA/D変換する。これにより、広いアナログ入
力レンジに対して精度を確保する。
In the radiation measuring apparatus according to the seventh aspect of the present invention, in addition to the function of any one of the first to sixth aspects of the present invention, a plurality of A / D converters can be used to control an A / D signal in each analog input range. D-convert. This ensures accuracy over a wide analog input range.

【0023】請求項8の発明に係わる放射線測定装置
は、請求項1乃至請求項6のいずれか1項の発明におい
て、前記A/D変換部は複数のアナログ入力レンジを有
し、一定時間毎にアナログ入力レンジを切り替えること
を特徴とする。
According to an eighth aspect of the present invention, in the radiation measuring apparatus according to any one of the first to sixth aspects, the A / D conversion section has a plurality of analog input ranges and is provided at regular intervals. The analog input range is switched.

【0024】請求項8の発明に係わる放射線測定装置で
は、請求項1乃至請求項6のいずれか1項の発明の作用
に加え、複数のアナログ入力レンジを一定時間毎にアナ
ログ入力レンジを切り替えてA/D変換する。これによ
り、広いアナログ入力レンジに対して精度を確保する。
[0024] In the radiation measuring apparatus according to the invention of claim 8, in addition to the operation of any one of the inventions of claims 1 to 6, a plurality of analog input ranges can be switched at predetermined time intervals. A / D conversion is performed. This ensures accuracy over a wide analog input range.

【0025】請求項9の発明に係わる放射線測定装置
は、請求項1乃至請求項8のいずれか1項の発明におい
て、前記全信号補正部は、前記正孔信号補正部で補正さ
れた正孔による信号波高値に基づいて電荷生成深さを指
定し、その電荷生成深さから前記常温半導体検出器での
検出位置の深さを抽出することを特徴とする。
According to a ninth aspect of the present invention, in the radiation measuring apparatus according to any one of the first to eighth aspects, the all-signal correcting section includes a hole corrected by the hole signal correcting section. The charge generation depth is designated based on the signal peak value obtained by the above method, and the depth of the detection position in the room-temperature semiconductor detector is extracted from the charge generation depth.

【0026】請求項9の発明に係わる放射線測定装置で
は、請求項1乃至請求項8のいずれか1項の発明の作用
に加え、正孔信号補正部で補正された正孔による信号波
高値に基づいて電荷生成深さを指定する。そして、その
電荷生成深さから常温半導体検出器での検出位置の深さ
を抽出する。これにより、常温半導体検出器の物理的な
厚さより薄い任意の厚さの検出器を模擬し、広いエネル
ギーレンジの放射線を測定する。
In the radiation measuring apparatus according to the ninth aspect of the present invention, in addition to the function of any one of the first to eighth aspects, the signal peak value due to the holes corrected by the hole signal correcting section is obtained. The charge generation depth is specified based on this. Then, the depth of the detection position in the room temperature semiconductor detector is extracted from the charge generation depth. This simulates a detector having an arbitrary thickness smaller than the physical thickness of the room-temperature semiconductor detector, and measures radiation in a wide energy range.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は、本発明の第1の実施の形態に係わる放射
線検出装置の構成図である。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of the radiation detection apparatus according to the first embodiment of the present invention.

【0028】常温半導体検出器1はCdTeやCZTなどで形
成され、その検出信号は、電荷有感型のプリアンプ2で
増幅されA/D変換部3でディジタイズされる。A/D
変換部3でデジタル変換されたデジタル信号は信号処理
部4の電荷生成深さ決定部5に入力され、そのデジタル
信号から電荷生成深さが求められる。
The room-temperature semiconductor detector 1 is made of CdTe, CZT or the like, and its detection signal is amplified by a charge-sensitive preamplifier 2 and digitized by an A / D converter 3. A / D
The digital signal digitally converted by the conversion unit 3 is input to the charge generation depth determination unit 5 of the signal processing unit 4, and the charge generation depth is obtained from the digital signal.

【0029】電荷生成深さ決定部5で求められた電荷生
成深さは正孔信号補正部6に入力され、電荷生成深さに
応じた正孔信号の補正がなされる。そして、全信号補正
部7では、補正された正孔信号と電子信号とから真の波
高値が算出される。
The charge generation depth determined by the charge generation depth determination unit 5 is input to a hole signal correction unit 6, where the hole signal is corrected according to the charge generation depth. Then, the true signal peak value is calculated from the corrected hole signal and electronic signal in the all-signal correcting unit 7.

【0030】図2は、電荷生成深さ決定部5の構成図で
ある。電荷生成深さ決定部5では、A/D変換部3でデ
ジタル変換されたデジタル信号を信号傾き不連続点決定
部8に入力し、デジタル信号の立上がり部から信号の傾
きの不連続点が求められる。そして、電荷生成深さ演算
部9は、その信号の傾きの不連続点から電荷生成深さを
演算し電荷生成深さが決定される。
FIG. 2 is a configuration diagram of the charge generation depth determining unit 5. The charge generation depth determination unit 5 inputs the digital signal digitally converted by the A / D conversion unit 3 to the signal gradient discontinuity point determination unit 8 and obtains the discontinuity of the signal gradient from the rising edge of the digital signal. Can be Then, the charge generation depth calculator 9 calculates the charge generation depth from the discontinuous point of the slope of the signal to determine the charge generation depth.

【0031】図3は、信号傾き不連続点決定部8での信
号処理の説明図である。図3(a)は、A/D変換部3
でデジタル変換されたデジタル信号の信号レベルの特性
図である。
FIG. 3 is an explanatory diagram of signal processing in the signal gradient discontinuous point determination section 8. FIG. 3A shows the A / D converter 3
FIG. 4 is a characteristic diagram of a signal level of a digital signal digitally converted in FIG.

【0032】多くの場合、電子の移動度は正孔の移動度
よりも大きいため、ディジタイズされたデジタル信号
は、図3(a)のように、先ず電子の移動による速い立
ち上がり成分Xが観測され、これに続き正孔の移動によ
る遅い成分Yが現われる。図3(a)の信号波高は電極
に収集された電荷に比例しており、放射線の入射によっ
て生じたすべての電荷が収集された場合は、信号波高は
入射した放射線のエネルギーに比例する。
In many cases, the mobility of electrons is larger than the mobility of holes. Therefore, in the digitized digital signal, a fast rising component X due to the movement of electrons is first observed as shown in FIG. Then, a slow component Y due to the movement of holes appears. The signal height in FIG. 3A is proportional to the charge collected on the electrode, and when all charges generated by the incidence of radiation have been collected, the signal height is proportional to the energy of the incident radiation.

【0033】図3(a)の信号傾きの不連続点Zは、図
3(b)に示すように、デジタル信号を2次微分して信
号立上がり後に最小値Rを取る点を信号傾きの不連続点
Zとする。または、図3(c)に示すように、デジタル
信号の1次微分値と予め算出された傾きのしきい値Sと
の比較から不連続点Zを求める。この信号傾きの不連続
点Zを求めることにより、信号の立上がりを電子の移動
による信号成分Xと正孔の移動による信号成分Yとに分
別することができる。
As shown in FIG. 3B, the discontinuous point Z of the signal gradient is a point at which the digital signal is secondarily differentiated and has a minimum value R after the signal rises, as shown in FIG. 3B. Let it be a continuous point Z. Alternatively, as shown in FIG. 3C, the discontinuous point Z is obtained by comparing the first derivative of the digital signal with a previously calculated threshold value S of the slope. By calculating the discontinuous point Z of the signal gradient, the rising of the signal can be separated into the signal component X due to the movement of electrons and the signal component Y due to the movement of holes.

【0034】次に、電荷生成深さ演算部9での信号処理
を説明する。図4は電荷生成深さ演算部9での信号処理
の説明図である。図4(a)は常温半導体検出器1から
の検出信号をA/D変換器3で変換したデジタル信号の
特性図、図4(b)は常温半導体検出器1の結晶模式
図、図4(c)は図4(b)の位置A、Bで発生した電
子対の信号の特性図である。
Next, signal processing in the charge generation depth calculator 9 will be described. FIG. 4 is an explanatory diagram of signal processing in the charge generation depth calculation unit 9. 4A is a characteristic diagram of a digital signal obtained by converting a detection signal from the room temperature semiconductor detector 1 by the A / D converter 3, FIG. 4B is a schematic diagram of a crystal of the room temperature semiconductor detector 1, and FIG. FIG. 4C is a characteristic diagram of the signal of the electron pair generated at the positions A and B in FIG.

【0035】信号立上がりを電子の移動による信号成分
と正孔の移動による信号成分とに分別し、図4(a)の
電子による信号波高値SXおよび正孔による信号波高値
SY、電子信号Xの立ち上がり時間TXおよび正孔信号
の立ち上がり時間TYに着目する。
The signal rise is separated into a signal component caused by the movement of electrons and a signal component caused by the movement of holes, and the signal peak value SX due to electrons, the signal peak value SY due to holes, and the electronic signal X in FIG. Attention is paid to the rise time TX and the rise time TY of the hole signal.

【0036】正孔信号Yの欠損がないとすると、図4
(b)のように位置Aおよび位置Bで電荷が生成された
場合、電子は陽極へ正孔は陰極へ移動し、電子および正
孔の移動によって信号が発生する。
Assuming that there is no loss of the hole signal Y, FIG.
When electric charges are generated at the positions A and B as shown in (b), electrons move to the anode and holes move to the cathode, and a signal is generated by movement of the electrons and holes.

【0037】図4(c)で位置Aで発生した電子対信号
SAは、点aで電子が陽極に達し、点dで正孔が陰極に
達したことを表している。一方、位置Bで発生した電子
対信号SBは、図4(c)の点bで電子が陽極に達し、
点cで正孔が陰極に達したことを表している。
The electron pair signal SA generated at the position A in FIG. 4C indicates that the electron reaches the anode at the point a and the hole reaches the cathode at the point d. On the other hand, the electron pair signal SB generated at the position B indicates that the electrons reach the anode at the point b in FIG.
The point c indicates that the holes have reached the cathode.

【0038】電子による信号波高値SXA、SXBと正
孔による信号波高値SYA、SYBとは、電子および正
孔の移動距離と比例している。従って、電子による信号
波高値SXA、SXBと正孔による信号波高値SYA、
SYBとの比は電荷生成深さに対応するため、電荷生成
深さを電子による信号波高値と正孔による信号波高値と
の比から特定することができる。例えば、電子による信
号波高値と正孔による信号波高値が等しいとき、両電極
間の中点で電荷が生成したことになり、すべてが電子信
号の場合は陽極付近で、すべてが正孔信号の場合は陰極
付近で電荷が生成したことになる。
The signal peak values SXA and SXB due to electrons and the signal peak values SYA and SYB due to holes are proportional to the moving distance of electrons and holes. Therefore, the signal peak values SXA, SXB due to electrons and the signal peak values SYA, due to holes,
Since the ratio to SYB corresponds to the charge generation depth, the charge generation depth can be specified from the ratio between the signal peak value of electrons and the signal peak value of holes. For example, when the signal peak value due to electrons is equal to the signal peak value due to holes, an electric charge is generated at the midpoint between the two electrodes. In this case, electric charges are generated near the cathode.

【0039】図4(c)では、位置A、Bで、同じエネ
ルギーの放射線が入射した場合で説明しているがが、入
射した放射線のエネルギーが異なっていても、電子によ
る信号波高値SXと正孔による信号波高値SYとの比を
とれば任意のエネルギーの放射線に対して適用できる。
ただし、陽極付近で生成した電荷は正孔の捕獲が無視で
きないため、正孔信号が欠損し実際の電荷生成深さは算
出されないが、正孔の波高欠損の補正には影響を与えな
い。実際の電荷生成深さは、正孔の波高欠損補正後に求
めることができる。
In FIG. 4C, the case where the radiation having the same energy is incident at the positions A and B is described. However, even if the energy of the incident radiation is different, the signal peak value SX of the electron and If the ratio to the signal peak value SY due to holes is taken, the present invention can be applied to radiation of arbitrary energy.
However, since the charge generated near the anode can not ignore the capture of holes, the hole signal is lost and the actual charge generation depth is not calculated, but does not affect the correction of the hole crest loss. The actual charge generation depth can be obtained after correcting the peak loss of the holes.

【0040】次に、図4(a)の電子信号Xの立ち上が
り時間TXおよび正孔信号の立ち上がり時間TYに着目
する。電子信号立ち上がり時間TXおよび正孔信号立上
がり時間TYは、図4(c)に示すように、電子が電極
間を移動する時間TX0(移動距離)および正孔が電極
間を移動する時間TY0(移動距離)に比例している。
Next, attention is paid to the rise time TX of the electronic signal X and the rise time TY of the hole signal in FIG. As shown in FIG. 4C, the electron signal rise time TX and the hole signal rise time TY are, as shown in FIG. 4C, a time TX0 (moving distance) in which electrons move between the electrodes and a time TY0 (moving distance) in which holes move between the electrodes. Distance).

【0041】このため、電子が電極間を移動する時間T
X0および正孔が電極間を移動する時間TY0を予め求
めておけば、(電子の信号の立上がり時間)/(電子が電
極間を移動する時間) 、(正孔の信号の立上がり時間)/
(正孔が電極間を移動する時間)が電荷生成深さに対応す
るため、電子または正孔の信号の立上がり時間から電荷
生成深さを特定することができる。信号の立上がり時間
(常温半導体中を電子または正孔が移動する時間)は欠損
とは無関係であるため補正なしでも正しい電荷生成深さ
を求めることができる。
Therefore, the time T during which the electrons move between the electrodes is T
If X0 and the time TY0 during which the holes move between the electrodes are obtained in advance, (rise time of the electron signal) / (time when the electrons move between the electrodes), (rise time of the hole signal) /
Since (the time when holes move between the electrodes) corresponds to the charge generation depth, the charge generation depth can be specified from the rise time of the electron or hole signal. Signal rise time
Since (time required for electrons or holes to move in a semiconductor at room temperature) is not related to loss, a correct charge generation depth can be obtained without correction.

【0042】次に、図5は正孔信号補正部6の構成図で
ある。電荷生成深さ決定部5で特定された電荷生成深さ
は、正孔信号補正部6の正孔波高理論値演算部10に入
力され、正孔波高理論値演算部10では、電荷生成深さ
決定部5で特定された電荷生成深さでの電子による信号
波高値および正孔による信号波高値の測定値分布に基づ
いて正孔による信号波高値の理論値を求める。そして、
正孔減衰補正演算部11により、正孔波高理論値演算部
10で求めた正孔による信号波高値の理論値に基づいて
電荷生成深さに応じて正孔による信号波高値の減衰を補
正する。
FIG. 5 is a block diagram of the hole signal correction section 6. The charge generation depth specified by the charge generation depth determination unit 5 is input to the theoretical hole wave height calculation unit 10 of the hole signal correction unit 6, and the charge generation depth is calculated by the theoretical hole wave height calculation unit 10. The theoretical value of the signal peak value due to holes is obtained based on the measured value distribution of the signal peak value due to electrons and the signal peak value due to holes at the charge generation depth specified by the determination unit 5. And
The hole attenuation correction operation unit 11 corrects the attenuation of the signal peak value due to the holes in accordance with the charge generation depth based on the theoretical value of the signal peak value due to the holes obtained by the theoretical hole peak value operation unit 10. .

【0043】図6は、正孔信号補正部6の信号処理の説
明図である。図6(a)は、正孔波高理論値演算部10
により正孔による信号波高値の理論値を求める場合の説
明図である。図6(a)において、横軸に電子の信号波
高値、縦軸に正孔の信号波高値をとり、電子による信号
波高値および正孔による信号波高値の測定値をプロット
した測定値分布である。
FIG. 6 is an explanatory diagram of the signal processing of the hole signal correction unit 6. FIG. 6A illustrates a theoretical theoretical value of the hole crest value.
FIG. 4 is an explanatory diagram in a case where a theoretical value of a signal peak value due to holes is obtained by using FIG. In FIG. 6A, the signal peak value of electrons is plotted on the horizontal axis, the signal peak value of holes is plotted on the vertical axis, and the measured values of the signal peak value of electrons and the signal peak value of holes are plotted. is there.

【0044】電子による信号波高値および正孔による信
号波高値の測定値分布は、入射した放射線の全エネルギ
ーが吸収された場合の光電効果による分布M1と、入射
した放射線のエネルギーの一部が吸収された場合のコン
プトン散乱による分布M2との2つの分布が表れる。
The measured value distributions of the signal peak value due to electrons and the signal peak value due to holes are a distribution M1 due to the photoelectric effect when all the energy of the incident radiation is absorbed, and a part of the energy of the incident radiation is absorbed. And the distribution M2 due to Compton scattering in the case where the distribution is performed.

【0045】いま、光電効果による分布M1に着目す
る。図6(a)のグラフで右にある分布ほど電子信号が
支配的であることから、電子信号が支配的な分布領域と
なる。この電子信号が支配的な分布領域から光電効果に
よる分布の理想曲線f2を求める。また、実際の分布の
近似曲線f1と理想曲線f2とから電荷生成深さxを関
数とした補正関数を求める。そして、これらから波高欠
損を補正する。
Attention is now focused on the distribution M1 due to the photoelectric effect. Since the electronic signal is more dominant in the distribution on the right side in the graph of FIG. 6A, the distribution region is where the electronic signal is dominant. From the distribution region where the electronic signal is dominant, an ideal curve f2 of the distribution due to the photoelectric effect is obtained. Further, a correction function using the charge generation depth x as a function is obtained from the approximate curve f1 and the ideal curve f2 of the actual distribution. Then, the crest loss is corrected from these.

【0046】具体的には、電荷生成深さをx、近似曲線
をf1(x)、理想曲線をf2(x)、正孔の信号波高
値をS、補正後の正孔の信号波高値をS’とすると、
S’=S×f2(x)/f1(x)という式で正孔の信
号を補正できる。
Specifically, the charge generation depth is x, the approximate curve is f1 (x), the ideal curve is f2 (x), the hole signal peak value is S, and the corrected hole signal peak value is S '
The hole signal can be corrected by the equation S ′ = S × f2 (x) / f1 (x).

【0047】これは、図6(a)の光電ピークをもつ放
射線にのみ有効である。これをあらゆるエネルギーの放
射線に対して適用するには、図6(a)の横軸を(電子
の信号波高値)/(全信号波高値)にする必要がある。図
6(a)の光電ピークの分布について、横軸に(電子の
信号波高値)/(全信号波高値)、縦軸に補正前の正孔に
よる信号の波高値と図6(a)から補正した正孔による
信号の波高値をプロットすると、図6(b)のような分
布となる。
This is effective only for radiation having the photopeak shown in FIG. To apply this to radiation of any energy, the horizontal axis in FIG. 6A needs to be (electron signal peak value) / (total signal peak value). With respect to the distribution of the photoelectric peaks in FIG. 6A, the horizontal axis represents (electron signal peak value) / (total signal peak value), and the vertical axis represents the signal peak value due to holes before correction and FIG. 6A. When the peak value of the signal due to the corrected holes is plotted, a distribution as shown in FIG. 6B is obtained.

【0048】この2つの分布を曲線近似して正孔による
信号波高値を補正し、補正により求められた正孔による
信号波高値と、電子による信号波高値とを加算すれば、
入射した放射線のエネルギーに比例した波高値が求ま
る。具体的には、(電子の信号波高値)/(全信号波高値)
をx、補正前の正孔の分布の近似曲線をg1(x)、補
正後の正孔の分布の近似曲線をg2(x)、補正前の正
孔の信号波高値をS、補正後の正孔の信号波高値をS’
とすると、S’= S×g2(x)/g1(x)という
式で正孔の信号を補正できる。
The two distributions are approximated by a curve to correct the signal peak value of holes, and the signal peak value of holes obtained by the correction and the signal peak value of electrons are added.
A peak value proportional to the energy of the incident radiation is obtained. Specifically, (electron signal peak value) / (total signal peak value)
Is x, the approximate curve of the hole distribution before correction is g1 (x), the approximate curve of the hole distribution after correction is g2 (x), the signal peak value of the hole before correction is S, and the value after correction is S. The signal peak value of the hole is S '
Then, the signal of the hole can be corrected by the equation S ′ = S × g2 (x) / g1 (x).

【0049】次に、本発明の第2の実施の形態を説明す
る。図7は本発明の第2の実施の形態に係わる放射線測
定装置の構成図であり、図7(a)は入力レンジが異な
る複数のA/D変換部3を設けたもの、図7(b)は複
数の入力レンジを有したA/D変換部3を設け切り換え
るようにしたものを示している。
Next, a second embodiment of the present invention will be described. FIG. 7 is a configuration diagram of a radiation measuring apparatus according to the second embodiment of the present invention. FIG. 7A shows a configuration in which a plurality of A / D converters 3 having different input ranges are provided, and FIG. The parentheses indicate an A / D converter 3 having a plurality of input ranges and switching.

【0050】図7(a)に示すように、常温半導体検出
器1の信号はプリアンプ2で増幅され、それぞれアナロ
グ入力電圧レベルの異なる複数のA/D変換部3に入力
される。これにより、広いアナログ入力電圧レベルに対
してビット精度を確保することができる。また、図7
(b)に示すように、複数の入力レンジを有したA/D
変換部3の入力レンジを一定時間毎に切り替えることに
より、同様に、広いアナログ入力電圧レベルに対してビ
ット精度を確保する。
As shown in FIG. 7A, the signal of the normal temperature semiconductor detector 1 is amplified by the preamplifier 2 and input to a plurality of A / D converters 3 having different analog input voltage levels. Thereby, bit accuracy can be ensured for a wide analog input voltage level. FIG.
A / D having a plurality of input ranges as shown in FIG.
By switching the input range of the conversion unit 3 at regular intervals, bit accuracy is similarly secured for a wide analog input voltage level.

【0051】次に、常温半導体検出器1の物理的な厚さ
より薄い任意の厚さの検出器を模擬するために、信号処
理部4の全信号補正部7では、正孔信号補正部6で補正
された正孔による信号波高値に基づいて電荷生成深さを
指定する。そして、その電荷生成深さから常温半導体検
出器1での検出位置の深さを抽出し、常温半導体検出器
1の物理的な厚さより薄い任意の厚さの検出器を模擬す
る。
Next, in order to simulate a detector having an arbitrary thickness smaller than the physical thickness of the normal temperature semiconductor detector 1, the entire signal correction unit 7 of the signal processing unit 4 uses the hole signal correction unit 6. The charge generation depth is designated based on the corrected signal peak value of the holes. Then, the depth of the detection position in the room temperature semiconductor detector 1 is extracted from the charge generation depth, and a detector having an arbitrary thickness smaller than the physical thickness of the room temperature semiconductor detector 1 is simulated.

【0052】図8は、常温半導体検出器1の任意の深さ
の信号を抽出する場合の説明図である。横軸に電子によ
る信号波高値、縦軸に正孔信号補正部6により補正され
た正孔による信号波高値をプロットすると、図8のよう
な分布となる。
FIG. 8 is an explanatory diagram for extracting a signal at an arbitrary depth from the ordinary temperature semiconductor detector 1. When the signal peak value of electrons is plotted on the horizontal axis and the signal peak value of holes corrected by the hole signal correction unit 6 is plotted on the vertical axis, the distribution is as shown in FIG.

【0053】図8から、以下のようにして電荷生成深さ
を特定する。例えば、図8上で直線y=xは常温半導体
の結晶全体の厚さの半分の深さとなる。この直線より下
の領域が陰極側半分、上の領域が陽極側半分となる。従
って、陰極から常温半導体結晶全体の厚さの1/2の厚
みの部分で発生した信号のみを抽出するためには、直線
y=xより下にある信号を抽出すればよい。
From FIG. 8, the charge generation depth is specified as follows. For example, in FIG. 8, the straight line y = x has a depth that is half the thickness of the entire normal temperature semiconductor crystal. The area below this straight line is the cathode-side half, and the area above this line is the anode-side half. Therefore, in order to extract only the signal generated from the cathode at a portion having a thickness of の of the entire thickness of the normal-temperature semiconductor crystal, a signal below the straight line y = x may be extracted.

【0054】いま、結晶の厚さをt、陰極からの電荷生
成深さをd(0<d<t)とすると、陰極から深さdま
での部分で発生した信号を抽出するには、直線y={d
/(t−d)}xより下にある信号を抽出すればよい。
例えば、陰極から常温半導体結晶全体の厚さの1/5の
厚みの部分で発生した信号のみを抽出するためには、d
=t/5として、直線y={d/(t−d)}x=x/
4より下にある信号を抽出すればよい。この方法によ
り、実際の結晶厚さより薄い任意の厚さの結晶が模擬で
きる。
Now, assuming that the thickness of the crystal is t and the depth of charge generation from the cathode is d (0 <d <t), a signal generated from the cathode to the depth d is extracted by a straight line. y = {d
The signal below / (t−d)} x may be extracted.
For example, in order to extract only a signal generated from the cathode at a portion having a thickness of 1/5 of the thickness of the entire normal temperature semiconductor crystal, d
= T / 5, the straight line y = {d / (t−d)} x = x /
Signals below 4 need only be extracted. By this method, a crystal having an arbitrary thickness smaller than the actual crystal thickness can be simulated.

【0055】[0055]

【発明の効果】以上説明したように、本発明によれば、
簡易なディジタル処理で常温半導体検出器のエネルギー
分解能およびピーク/コンプトン比の向上が実現でき、
実用的に極めて有効である。また複数のアナログ入力レ
ンジを設けることで、常温半導体検出器の測定エネルギ
ーレンジの拡大が実現でき、実用的に極めて有効であ
る。また、大面積の厚い検出器を用いて薄い検出器と同
等の精度を持って放射線を検出できる。
As described above, according to the present invention,
Simple digital processing can improve the energy resolution and peak / Compton ratio of a semiconductor detector at room temperature.
It is extremely effective practically. Further, by providing a plurality of analog input ranges, it is possible to expand the measurement energy range of the room temperature semiconductor detector, which is extremely effective practically. In addition, radiation can be detected using a large-area thick detector with the same accuracy as a thin detector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係わる放射線検出
装置の構成図。
FIG. 1 is a configuration diagram of a radiation detection apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態における電荷生成深
さ決定部の構成図。
FIG. 2 is a configuration diagram of a charge generation depth determining unit according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態における信号傾き不
連続点決定部での信号処理の説明図。
FIG. 3 is an explanatory diagram of signal processing in a signal gradient discontinuous point determination unit according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態における電荷生成深
さ演算部での信号処理の説明図。
FIG. 4 is an explanatory diagram of signal processing in a charge generation depth calculation unit according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態における正孔信号補
正部の構成図。
FIG. 5 is a configuration diagram of a hole signal correction unit according to the first embodiment of the present invention.

【図6】本発明の第1の実施の形態における正孔信号補
正部の信号処理の説明図。
FIG. 6 is an explanatory diagram of signal processing of a hole signal correction unit according to the first embodiment of the present invention.

【図7】本発明の第2の実施の形態に係わる放射線測定
装置の構成図。
FIG. 7 is a configuration diagram of a radiation measuring apparatus according to a second embodiment of the present invention.

【図8】常温半導体検出器の任意の深さの信号を抽出す
る処理の説明図。
FIG. 8 is an explanatory diagram of a process of extracting a signal at an arbitrary depth of the room-temperature semiconductor detector.

【図9】従来例の構成図。FIG. 9 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1…常温半導体検出器、2…電荷有感型プリアンプ、3
…A/D変換部、4…信号処理部、5…電荷生成深さ決
定部、6…正孔信号補正部、7…全信号補正部、8…信
号傾き不連続点決定部、9…電荷生成深さ演算部、10
…正孔波高理論値演算部、11…正孔減衰補正演算部
1: normal temperature semiconductor detector, 2: charge-sensitive preamplifier, 3
... A / D converter, 4 ... signal processor, 5 ... charge generation depth determiner, 6 ... hole signal corrector, 7 ... all signal corrector, 8 ... signal gradient discontinuous point determiner, 9 ... charge Generation depth calculation unit, 10
... Hole peak height calculation unit, 11 ... Hole attenuation correction calculation unit

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 照射された放射線に比例して発生した電
子および正孔の電荷量を検出する常温半導体検出器と、
前記常温半導体検出器で検出された電荷量をデジタル信
号に変換するA/D変換部と、前記A/D変換部からの
デジタル信号に基づいて放射線エネルギーを求める信号
処理部とを備えた放射線測定装置において、前記信号処
理部は、前記A/D変換部でデジタル信号に変換された
電子信号および正孔信号に基づいて電荷生成深さを特定
する電荷生成深さ決定部と、前記電荷生成深さ決定部で
特定された電荷生成深さに応じて正孔信号の波高欠損を
補正する正孔信号補正部と、前記正孔信号補正部で補正
された正孔信号と前記常温半導体検出器で検出された電
子信号とから真の電荷の波高値を求め放射線エネルギー
を求める全信号補正部とを備えたことを特徴とする放射
線測定装置。
A room-temperature semiconductor detector for detecting the amount of charge of electrons and holes generated in proportion to the applied radiation;
Radiation measurement comprising: an A / D converter for converting an amount of electric charge detected by the room temperature semiconductor detector into a digital signal; and a signal processor for obtaining radiation energy based on the digital signal from the A / D converter. In the apparatus, the signal processing unit includes a charge generation depth determination unit that specifies a charge generation depth based on the electronic signal and the hole signal converted into digital signals by the A / D conversion unit, and the charge generation depth. A hole signal correction unit that corrects the peak height loss of the hole signal according to the charge generation depth specified by the determination unit; and a hole signal corrected by the hole signal correction unit and the room-temperature semiconductor detector. A radiation measuring apparatus comprising: a full signal correction unit that obtains a peak value of a true charge from a detected electronic signal and obtains radiation energy.
【請求項2】 前記電荷生成深さ決定部は、前記デジタ
ル信号の立上がりから信号傾きの不連続点を求める信号
傾き不連続点決定部と、前記不連続点決定部からの不連
続点に基づいて電子信号と正孔信号とを分別し電荷生成
深さを特定する電荷生成深さ演算部とを備えたことを特
徴とする請求項1に記載の放射線測定装置。
2. The charge generation depth determination unit according to claim 1, wherein the signal gradient discontinuity determining unit determines a signal gradient discontinuity from a rise of the digital signal, and a discontinuous point from the discontinuity determination unit. The radiation measurement apparatus according to claim 1, further comprising: a charge generation depth calculation unit configured to separate an electron signal and a hole signal to specify a charge generation depth.
【請求項3】 前記信号傾き不連続点決定部は、前記デ
ジタル信号の信号波形の2次微分値の最小値から信号傾
きの不連続点を求める、または前記デジタル信号の信号
波形の1次微分値と予め定められたしきい値との比較か
ら信号傾きの不連続点を求めることを特徴とする請求項
2に記載の放射線測定装置。
3. The signal gradient discontinuous point determination unit determines a discontinuous point of a signal gradient from a minimum value of a second derivative of a signal waveform of the digital signal, or a first derivative of a signal waveform of the digital signal. 3. The radiation measuring apparatus according to claim 2, wherein a discontinuous point of the signal inclination is obtained from a comparison between the value and a predetermined threshold value.
【請求項4】 前記電荷生成深さ演算部は、電子信号の
波高値と正孔信号の波高値との比、電子信号の立ち上が
り時間または正孔信号の立上がり時間により電荷生成深
さを特定することを特徴とする請求項2に記載の放射線
測定装置。
4. The charge generation depth calculation unit specifies a charge generation depth based on a ratio between a peak value of an electronic signal and a peak value of a hole signal, a rise time of an electron signal or a rise time of a hole signal. The radiation measuring apparatus according to claim 2, wherein:
【請求項5】 前記正孔信号補正部は、前記電荷生成深
さ決定部で特定された電荷生成深さでの電子による信号
波高値および正孔による信号波高値の測定値分布に基づ
いて正孔による信号波高値の理論値を求める正孔波高理
論値演算部と、前記正孔波高理論値演算部で求めた正孔
による信号波高値の理論値に基づいて電荷生成深さに応
じて正孔による信号波高値の減衰を補正する正孔減衰補
正演算部とを備えたことを特徴とする請求項1に記載の
放射線測定装置。
5. The hole signal correction unit according to claim 5, wherein the hole signal correction unit determines a positive value based on a measured value distribution of a signal peak value of electrons and a signal peak value of holes at the charge generation depth specified by the charge generation depth determining unit. A theoretical hole height calculating unit for calculating a theoretical value of the signal peak value due to the holes, and a positive value corresponding to the charge generation depth based on the theoretical value of the signal peak value of the holes determined by the theoretical hole height calculating unit. The radiation measurement apparatus according to claim 1, further comprising a hole attenuation correction calculation unit that corrects the attenuation of the signal peak value due to the holes.
【請求項6】 前記正孔波高理論値演算部は、電子によ
る信号波高値が支配的な信号分布領域から理想曲線を求
め正孔による信号波高値の理論値を求めることを特徴と
する請求項5に記載の放射線測定装置。
6. The theoretical hole peak value calculating section calculates an ideal curve from a signal distribution region in which a signal peak value of electrons is dominant and obtains a theoretical value of a signal peak value of holes. 6. The radiation measuring device according to 5.
【請求項7】 複数のアナログ入力レンジに応じて複数
のA/D変換部を設けたことを特徴とする請求項1乃至
請求項6のいずれか1項に記載の放射線測定装置。
7. The radiation measuring apparatus according to claim 1, wherein a plurality of A / D converters are provided according to a plurality of analog input ranges.
【請求項8】 前記A/D変換部は複数のアナログ入力
レンジを有し、一定時間毎にアナログ入力レンジを切り
替えることを特徴とする請求項1乃至請求項6のいずれ
か1項に記載の放射線測定装置。
8. The A / D converter according to claim 1, wherein the A / D converter has a plurality of analog input ranges, and switches the analog input range at regular time intervals. Radiation measurement device.
【請求項9】 前記全信号補正部は、前記正孔信号補正
部で補正された正孔による信号波高値に基づいて電荷生
成深さを指定し、その電荷生成深さから前記常温半導体
検出器での検出位置の深さを抽出することを特徴とする
請求項1乃至請求項8のいずれか1項に記載の放射線測
定装置。
9. The all-signal correction unit specifies a charge generation depth based on a signal peak value of a hole corrected by the hole signal correction unit, and determines the charge generation depth from the charge generation depth. The radiation measurement apparatus according to claim 1, wherein a depth of the detection position is extracted.
JP2000056608A 2000-03-02 2000-03-02 Radiation measuring device Withdrawn JP2001242257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056608A JP2001242257A (en) 2000-03-02 2000-03-02 Radiation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056608A JP2001242257A (en) 2000-03-02 2000-03-02 Radiation measuring device

Publications (1)

Publication Number Publication Date
JP2001242257A true JP2001242257A (en) 2001-09-07

Family

ID=18577521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056608A Withdrawn JP2001242257A (en) 2000-03-02 2000-03-02 Radiation measuring device

Country Status (1)

Country Link
JP (1) JP2001242257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347328A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Radiographic apparatus
JP2006234661A (en) * 2005-02-25 2006-09-07 Toshiba Corp Radiation incident position detector, and radiation incident position detecting method
US9581619B2 (en) 2010-11-18 2017-02-28 Kromek Limited Radiation detection
KR20190038967A (en) * 2017-10-02 2019-04-10 서강대학교산학협력단 Method for correction pile up signal in medical imaging device using multi-threshold voltage and medical imaging device thereof
JP2019058780A (en) * 2012-12-04 2019-04-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for image correction of x-ray image information

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347328A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Radiographic apparatus
JP2006234661A (en) * 2005-02-25 2006-09-07 Toshiba Corp Radiation incident position detector, and radiation incident position detecting method
US9581619B2 (en) 2010-11-18 2017-02-28 Kromek Limited Radiation detection
JP2019058780A (en) * 2012-12-04 2019-04-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for image correction of x-ray image information
KR20190038967A (en) * 2017-10-02 2019-04-10 서강대학교산학협력단 Method for correction pile up signal in medical imaging device using multi-threshold voltage and medical imaging device thereof
KR101979391B1 (en) 2017-10-02 2019-05-16 서강대학교산학협력단 Method for correction pile up signal in medical imaging device using multi-threshold voltage and medical imaging device thereof

Similar Documents

Publication Publication Date Title
AU2012292250A1 (en) Photon counting imaging method and device with instant retrigger capability
CN104838288B (en) For the method and apparatus of the image rectification of X-ray image information
JP2010536021A (en) Radiation monitoring device
Al-Adili et al. On the Frisch–Grid signal in ionization chambers
US8227759B2 (en) Semiconductor radiation detection apparatus
US7372035B2 (en) Radiological imaging apparatus
CN111965691A (en) Time migration correction method in PET
JP2001242257A (en) Radiation measuring device
Azmoun et al. Design studies for a TPC readout plane using zigzag patterns with multistage GEM detectors
US9826182B2 (en) Method for determining and correcting the stability of response of a semi-conductor matrix detector
CN210294391U (en) Current measurement circuit based on I-F conversion
Cussonneau et al. Test of the spatial resolution of MICROMEGAS detectors
JP2018506023A (en) Processing unit, X-ray inspection apparatus, determination method, program element, and storage medium
Otfinowski et al. Comparison of allocation algorithms for unambiguous registration of hits in presence of charge sharing in pixel detectors
Kim et al. Readout of TPC tracking chambers with GEMs and pixel chip
CN110389372B (en) Portal calculation method and system
JP3740315B2 (en) X-ray sensor signal processing circuit, X-ray CT apparatus using the same, and X-ray sensor signal processing method
Lim et al. Comparison of time corrections using charge amounts, peak values, slew rates, and signal widths in leading-edge discriminators
Genolini et al. Pulse shape discrimination at low energies with a double sided, small-pitch strip silicon detector
Peña et al. A simulation model of front-end electronics for high-precision timing measurements with low-gain avalanche detectors
JP7391752B2 (en) Radiation measurement device
WO2019072319A1 (en) A method to determine the type of ionising radiation using a semiconductor diode and a circuit for carrying out this method
JP6159133B2 (en) Radiation detector, radiation detection method, and computer program
KR101924482B1 (en) Radiation detection device including spiral grid electrode
Halder et al. Performance studies of the Belle II silicon vertex detector

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605