JP2001242071A - Surface plasmon resonance angle microscope - Google Patents

Surface plasmon resonance angle microscope

Info

Publication number
JP2001242071A
JP2001242071A JP2000053111A JP2000053111A JP2001242071A JP 2001242071 A JP2001242071 A JP 2001242071A JP 2000053111 A JP2000053111 A JP 2000053111A JP 2000053111 A JP2000053111 A JP 2000053111A JP 2001242071 A JP2001242071 A JP 2001242071A
Authority
JP
Japan
Prior art keywords
light
semi
thin film
metal thin
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000053111A
Other languages
Japanese (ja)
Inventor
Haruo Tajima
晴雄 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Laser and Electronics Lab
Original Assignee
Nippon Laser and Electronics Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Laser and Electronics Lab filed Critical Nippon Laser and Electronics Lab
Priority to JP2000053111A priority Critical patent/JP2001242071A/en
Publication of JP2001242071A publication Critical patent/JP2001242071A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Abstract

PROBLEM TO BE SOLVED: To provide a surface plasmon resonance microscope always irradiating parallel light to a glass substrate for accurately detecting a resonance angle to a plane and widening a light turning angle range for precisely detecting a resonance angle of a various kinds of body to be detected. SOLUTION: A semicylindrical prism with a dimension sufficient for covering the whole of a microscopic area of a metal thin film at least is tightly abutted to the glass substrate on the opposite side to the metal thin film. A light emitting device, which emits light beams so that light from a light source becomes parallel light flux over the whole of the microscopic area toward the light incident side of the semicylindrical prism inside the semicylindrical prism, is supported rotationally within a predetermined angle along the outer circumferential face on the light incident side of the semicylindrical prism. A light receiving device receiving the parallel light flux reflected in the microscopic area on the metal thin film and passed through the semicylindrical prism so as to output an electric signal complying with the reflected light intensity from the whole detection area is supported synchronously rotationally in the opposite direction to the turning direction of the light emitting device along the outer circumferential face of the light outgoing side of the semicylindrical prism. A resonance angle of the whole sample in the microscopic area can be detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、表面プラズモン
共鳴角顕微鏡(以下、SPR顕微鏡という)に関する。
The present invention relates to a surface plasmon resonance angle microscope (hereinafter, referred to as an SPR microscope).

【0002】[0002]

【発明が解決しようとする課題】例えば細胞、ウィル
ス、バクテリア等の蛋白質、糖、酵素やDNA等の特性
を検出する方法として表面プラズモン共鳴角検出法(以
下、SPR法という)が知られている。
For example, a surface plasmon resonance angle detection method (hereinafter referred to as SPR method) is known as a method for detecting characteristics of proteins, such as cells, viruses, bacteria, etc., sugars, enzymes and DNA. .

【0003】このSPR法は、被検出体が固定される金
属薄膜が製膜されたガラス基板に対し、プリズムを介し
てレーザ光を所定の角度幅で照射してガラス基板からの
反射光強度が最小、従って被検出体への吸光度が最大に
なるレーザ光の入射角(反射角)に基づいて被検出体の
特性を検出している。
In the SPR method, a glass substrate on which a metal thin film to which an object to be detected is fixed is formed is irradiated with a laser beam through a prism at a predetermined angular width, and the intensity of light reflected from the glass substrate is reduced. The characteristics of the object to be detected are detected based on the incident angle (reflection angle) of the laser beam which is minimum, and thus the absorbance to the object is maximum.

【0004】近年、このSPR法の応用としてガラス基
板上における所定面積の検出領域全体にわたる幅の平行
光を照射しながらプリズムに対する光の照射角度を可変
して検出領域全体における各検出体の共鳴角を検出して
該検出領域に固定された被検出体の特性を検鏡するSP
R顕微鏡が提案されている。
In recent years, as an application of this SPR method, while irradiating parallel light having a width over the entire detection area of a predetermined area on a glass substrate, the irradiation angle of light on the prism is changed to change the resonance angle of each detector in the entire detection area. SP for detecting the characteristic of the object fixed to the detection area by detecting
An R microscope has been proposed.

【0005】しかしながら、SPR法のプリズムとして
は三角プリズムを使用しているため、SPR顕微鏡にお
いても同様の三角プリズムを使用した場合、該三角プリ
ズムの外周に沿う円弧上にて光源を回動させると、プリ
ズム面に対する光の入射角度が絶えず変化して検出領域
に照射される光の中心が大きくずれてしまい、検出領域
からの反射光を光源と反対方向へ同期回動する受光部材
に受光させることができなかった。
However, since a triangular prism is used as a prism in the SPR method, when a similar triangular prism is used in an SPR microscope, a light source is rotated on an arc along the outer periphery of the triangular prism. In this case, the angle of incidence of light on the prism surface is constantly changed, and the center of the light irradiated on the detection area is largely shifted, and the light reflected from the detection area is received by the light-receiving member which rotates synchronously in the opposite direction to the light source. Could not.

【0006】この欠点は、プリズムに対するレーザ光の
入射角度を、平均共鳴角を中心に小さい角度幅で可変す
ることにより多少解決することができるが、平均共鳴角
を中心とした光の強弱による検鏡データしか得られず、
検出領域に固定された試料を正確に検鏡できなかった。
This disadvantage can be solved to some extent by varying the angle of incidence of the laser beam on the prism with a small angle width around the average resonance angle. Only mirror data is available,
The specimen fixed in the detection area could not be correctly examined.

【0007】本発明は、上記した従来の欠点を解決する
ために発明されたものであり、その課題とする処は、検
出領域に照射される平行光を大きな角度で可変して検出
領域に固定された試料を正確に検鏡することができるS
PR顕微鏡を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks. The object of the present invention is to change the parallel light irradiated on the detection area at a large angle and fix it on the detection area. S that can accurately observe the sample
An object of the present invention is to provide a PR microscope.

【0008】[0008]

【課題を解決するための手段】本発明は、ガラス基板上
に製膜された金属薄膜における所定の検鏡領域全体に光
を照射し、該金属薄膜における検出領域からの反射光強
度が最小になる共鳴角に基づいて試料特性を検鏡する表
面プラズモン共鳴角顕微鏡において、金属薄膜と反対側
のガラス基盤に密着され、少なくとも金属薄膜の検鏡領
域全体を覆う大きさの半円柱プリズムと、半円柱プリズ
ムの光入射側の外周面に沿った所定の角度で回動可能に
支持され、半円柱プリズムの光入射側に対して光源から
の光が半円柱プリズム内にて検鏡領域の全体にわたって
平行光束になるように光を照射する光照射装置と、半円
柱プリズムの光出射側の外周面に沿って光照射装置の回
動方向と反対方向へ同期回動可能に支持され、金属箔膜
における検鏡領域から反射して半円柱プリズムを透過し
た平行光束を受光して検出領域全体からの反射光強度に
応じた電気信号を出力する受光装置とからなり、検鏡領
域における試料の共鳴角を検鏡可能にしたことを特徴と
する。
SUMMARY OF THE INVENTION The present invention illuminates a predetermined speculum area of a metal thin film formed on a glass substrate with light, and minimizes the intensity of light reflected from the detection area in the metal thin film. In a surface plasmon resonance angle microscope for microscopically examining a sample characteristic based on a resonance angle, a semi-cylindrical prism that is in close contact with a glass substrate opposite to the metal thin film and has a size that covers at least the entire microscopic region of the metal thin film; It is supported rotatably at a predetermined angle along the outer peripheral surface on the light incident side of the cylindrical prism, and the light from the light source is applied to the light incident side of the semi-cylindrical prism in the semi-cylindrical prism over the entire inspection area. A light irradiating device for irradiating light so as to form a parallel light beam, and a metal foil film supported so as to be synchronously rotatable in a direction opposite to the rotation direction of the light irradiating device along the outer peripheral surface on the light emitting side of the semi-cylindrical prism; Speculum area in A light receiving device that receives the parallel light beam reflected from the semi-cylindrical prism and outputs an electric signal according to the intensity of the reflected light from the entire detection area, and can inspect the resonance angle of the sample in the microscopic area It is characterized by the following.

【0009】[0009]

【発明の実施形態】以下、本発明の実施形態を図に従っ
て説明する。図1はSPR顕微鏡の概略を示す正面説明
図、図2は検出領域に対する光の照射状態を示す平面説
明図、図3は断面説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. 1 is an explanatory front view schematically showing an SPR microscope, FIG. 2 is an explanatory plan view showing an irradiation state of light on a detection area, and FIG. 3 is an explanatory sectional view.

【0010】SPR顕微鏡1のセンサーチップ3を構成
するガラス基板5上面には金薄膜又は銀薄膜等の金属薄
膜(図示せず)が製膜され、該金属薄膜には所定の大き
さの平面長方形からなる検出領域5a(図2に破線で示
す)が設定されている。そして検出領域5a内の金属薄
膜上には固定される細胞、バクテリアやウィルス等の試
料に応じた抗体や試薬(図示せず)が予め吸着されてい
る。なお、上記したガラス基板5は吸着される抗体や試
薬の種類毎に予め用意され、検出しようとする試料の種
類に応じて適宜交換される。
A metal thin film (not shown) such as a gold thin film or a silver thin film is formed on the upper surface of a glass substrate 5 constituting the sensor chip 3 of the SPR microscope 1, and the metal thin film has a flat rectangular shape of a predetermined size. (Indicated by a broken line in FIG. 2) is set. An antibody or a reagent (not shown) corresponding to a sample such as a cell, a bacterium, or a virus to be fixed is adsorbed in advance on the metal thin film in the detection region 5a. The glass substrate 5 is prepared in advance for each type of antibody or reagent to be adsorbed, and is appropriately replaced according to the type of sample to be detected.

【0011】金属薄膜側のガラス基板5上にはセンサー
チップ3の一部を構成するセルブロック7が、マッチン
グオイル、シリコンゴムシート、O−リング等を介して
密着されている。金属薄膜に相対するセルブロック7の
下面にはフローセル9が、検出領域5aに一致する大き
さで、かつ深さ約100μmで形成されている。
A cell block 7 constituting a part of the sensor chip 3 is adhered to the glass substrate 5 on the metal thin film side via a matching oil, a silicon rubber sheet, an O-ring or the like. On the lower surface of the cell block 7 facing the metal thin film, a flow cell 9 is formed with a size corresponding to the detection area 5a and a depth of about 100 μm.

【0012】フローセル9の供給側に位置するセルブロ
ック7には第1及び第2供給流路11・13が、またフ
ローセル9の排出側に位置するセルブロック7には排出
流路15がフローセル9内と夫々連通するように形成さ
れている。
The cell block 7 located on the supply side of the flow cell 9 has first and second supply channels 11 and 13, and the cell block 7 located on the discharge side of the flow cell 9 has a discharge channel 15. It is formed so as to communicate with the inside.

【0013】第1供給流路11は金属薄膜上に固定され
る、例えば細胞、バクテリアやウィルスを含んだ試料溶
液をフローセル9内に供給する。また、第第2供給流路
13は金属薄膜上に固定された細胞、バクテリアやウィ
ルス等の試料に結合される蛋白質、糖、酵素やDNA等
の反応物質を含有した反応物質溶液をフローセル9内に
供給する。更に、排出流路15はフローセル9内の余剰
な試料溶液や反応物質溶液を回収する。
The first supply channel 11 supplies a sample solution fixed on a metal thin film, for example, containing cells, bacteria and viruses into the flow cell 9. In addition, the second supply channel 13 is used to supply a reactant solution containing reactants such as proteins, sugars, enzymes, and DNA bound to a sample of cells, bacteria, viruses, and the like immobilized on the metal thin film in the flow cell 9. To supply. Further, the discharge channel 15 collects the excess sample solution and the reactant solution in the flow cell 9.

【0014】金属薄膜と反対側のガラス基板5下面に
は、直径がガラス基板5の長手方向幅以上で、軸線長さ
が少なくとも検出領域5aの幅以上からなる半円柱形プ
リズム17が、マッチングオイル、シリコンゴムシー
ト、O−リング等により密着されている。
On the lower surface of the glass substrate 5 opposite to the metal thin film, a semi-cylindrical prism 17 having a diameter equal to or greater than the width of the glass substrate 5 in the longitudinal direction and having an axial length equal to or greater than the width of the detection area 5a is provided. , A silicone rubber sheet, an O-ring and the like.

【0015】そして半円柱形プリズム17の図示する左
外周側には光照射装置19が、また図示する右側外周側
には受光装置21が、夫々半円柱形プリズム17の外周
面に沿って互いに反対方向へ同一角度幅で同期回動する
ように設けられている。
A light irradiating device 19 is provided on the left outer peripheral side of the semi-cylindrical prism 17 and a light receiving device 21 is provided on the right outer peripheral side of the semi-cylindrical prism 17 along the outer peripheral surface of the semi-cylindrical prism 17. It is provided so as to be synchronously rotated in the same direction at the same angular width.

【0016】光照射装置19は、例えば赤色レーザ光、
緑色レーザ光等の光を出力する光源23と、光源23か
らの光を集光する第1レンズ25と、第1レンズ25の
集光位置に配置され、レーザ光を所定のビーム径で通過
させるピンホールを有したピンホール部材27と、ピン
ホール部材27を通過した光を平行光にする第2レンズ
29と、第2レンズ29を透過した光を少なくとも検出
領域5aの領域長さ及び軸線幅に一致する光束に形成し
て半円柱形プリズム17に入射させる半円柱レンズ31
とから構成される。 半円柱形プリズム17に入射され
る光束は半円柱形プリズム17が有する屈折率により常
に検出領域5aの全体にわたって照射可能な平行光束に
なるように屈折される。
The light irradiation device 19 includes, for example, a red laser beam,
A light source 23 for outputting light such as green laser light, a first lens 25 for condensing light from the light source 23, and a light condensing position of the first lens 25 for passing laser light with a predetermined beam diameter A pinhole member 27 having a pinhole, a second lens 29 for converting light passing through the pinhole member 27 into parallel light, and converting the light transmitted through the second lens 29 into at least the region length and axis width of the detection region 5a. A semi-cylindrical lens 31 which is formed into a light beam which coincides with and is incident on the semi-cylindrical prism 17
It is composed of The light beam incident on the semi-cylindrical prism 17 is refracted by the refractive index of the semi-cylindrical prism 17 so as to always become a parallel light beam that can be irradiated over the entire detection area 5a.

【0017】なお、半円柱レンズ31から半円柱形プリ
ズム17に至る光路途中には検出領域5aの軸線方向幅
と一致する長さのスリット33aを有したスリット板3
3が配置され、外乱光の影響を遮断している。
A slit plate 3 having a slit 33a having a length equal to the axial width of the detection area 5a is provided in the optical path from the semi-cylindrical lens 31 to the semi-cylindrical prism 17.
3 are arranged to block the influence of disturbance light.

【0018】受光装置21はガラス基板5から反射した
検出領域5aの領域長さ及び軸線方向幅に一致する光束
を集光する半円柱レンズ35と、該半円柱レンズ35か
らの光を平行光にする第3レンズ37と、第3レンズ3
7からの平行光を受光して電気信号を出力するCCD、
フォトダイオードアレイ等の受光部材39とから構成さ
れている。
The light receiving device 21 has a semi-cylindrical lens 35 for condensing a light beam that matches the area length and the axial width of the detection area 5a reflected from the glass substrate 5, and converts the light from the semi-cylindrical lens 35 into parallel light. The third lens 37 and the third lens 3
CCD which receives parallel light from 7 and outputs an electric signal;
And a light receiving member 39 such as a photodiode array.

【0019】次に、SPR顕微鏡1による検鏡作用を説
明する。図4は検出領域に対する光の照射可変状態を示
す説明図である。
Next, the microscopic action of the SPR microscope 1 will be described. FIG. 4 is an explanatory diagram showing a variable irradiation state of light to the detection area.

【0020】検出領域5aに固定された試料に対する反
応物質の結合状態及び解離状態を検鏡する場合を例とし
て説明すると、光照射装置19は半円柱形プリズム17
の外周面に対し、例えば215°の位置に、また受光装
置21は325°の位置に夫々待機している。
The case where the state of binding and dissociation of the reactant with respect to the sample fixed to the detection area 5a is examined by a microscope will be described as an example.
The light receiving device 21 is waiting at a position of, for example, 215 ° and a position of 325 ° with respect to the outer peripheral surface of the light emitting device.

【0021】この状態にて光源23からレーザ光が出力
されると、該レーザ光は第1レンズ25、ピンホール部
材27、第2レンズ29及び半円柱レンズ31を透過し
た後に半円柱形プリズム17の屈折作用により検出領域
5aの全領域にわたる長さ及び幅の平行光束に形成され
て検出領域5aの領域全体に応じたガラス基板5と金属
箔膜との境界に照射される。そして検出領域5aに応じ
たガラス基板5と金属薄膜との境界から反射したレーザ
光の平行光束は半円柱レンズ35、第3レンズ37によ
り検出領域5aの全領域に亘る平行光に形成されて受光
部材39に受光される。
When laser light is output from the light source 23 in this state, the laser light passes through the first lens 25, the pinhole member 27, the second lens 29, and the semi-cylindrical lens 31 and then passes through the semi-cylindrical prism 17 Is formed into a parallel light flux having a length and a width over the entire area of the detection area 5a, and is applied to the boundary between the glass substrate 5 and the metal foil film corresponding to the entire area of the detection area 5a. The parallel light flux of the laser light reflected from the boundary between the glass substrate 5 and the metal thin film corresponding to the detection area 5a is formed by the semi-cylindrical lens 35 and the third lens 37 into parallel light over the entire area of the detection area 5a and received. The light is received by the member 39.

【0022】この状態にて例えば第1供給流路11から
例えば試料としての細胞を含んだ試料溶液をフローセル
9内に供給すると共に該フローセル9内からオーバフロ
ーした試料溶液を排出流路15を介して回収しながら半
円柱形プリズム17の外周面に沿って光照射装置19を
上記215°位置から260°位置へ、また受光装置2
1を上記325°位置から280°位置へ互いに反対方
向へ45°の回動幅で同期回動させる。
In this state, a sample solution containing, for example, cells as a sample is supplied from the first supply channel 11 into the flow cell 9, and the sample solution overflowing from the flow cell 9 is discharged through the discharge channel 15. While collecting, the light irradiation device 19 is moved from the 215 ° position to the 260 ° position along the outer peripheral surface of the semi-cylindrical prism 17 and the light receiving device 2
1 is synchronously rotated from the 325 ° position to the 280 ° position in a direction opposite to each other with a rotation width of 45 °.

【0023】これにより検出領域5aの領域全体に照射
される平行光束は検出領域5aに対して反射角度を可変
させながら受光装置21に受光されることにより検出領
域5aの領域全体に固定される細胞に対する共鳴角を検
出する。
As a result, the parallel luminous flux applied to the entire area of the detection area 5a is received by the light receiving device 21 while changing the reflection angle with respect to the detection area 5a, so that the cells are fixed to the entire area of the detection area 5a. Is detected.

【0024】この検出作業時に検出領域5aからの反射
光により検出される共鳴角が変動している場合には検出
領域5a上に吸着された抗体や試薬に対して試料が完全
に固定されていないと判断して第1供給流路11から試
料溶液の供給を続ける。反対して、検出領域5aからの
反射光により検出される共鳴角がほぼ一定化したときに
は検出領域5aの抗体や試薬に試料がほぼ固定されたと
判断し、試料溶液の供給を中断する。
If the resonance angle detected by the reflected light from the detection area 5a fluctuates during this detection operation, the sample is not completely fixed to the antibody or reagent adsorbed on the detection area 5a. Therefore, the supply of the sample solution from the first supply channel 11 is continued. On the contrary, when the resonance angle detected by the reflected light from the detection area 5a is substantially constant, it is determined that the sample is almost fixed to the antibody or the reagent in the detection area 5a, and the supply of the sample solution is interrupted.

【0025】そして固定された試料に対する反応物質の
結合状態を検鏡するには、検出領域5aの領域全体に試
料が固定された状態で第2供給流路11から反応物質溶
液をフローセル9内に供給すると共に該フローセル9か
らオーバフローした反応物質溶液を、排出流路15を介
して回収しながら上記と同様に半円柱形プリズム17の
外周面に沿って光照射装置19及び受光装置21を夫々
の初期位置から互いに反対方向へ同期回動させる。
In order to observe the binding state of the reactant to the fixed sample, the reactant solution is supplied from the second supply channel 11 into the flow cell 9 with the sample fixed in the entire detection area 5a. The light irradiating device 19 and the light receiving device 21 are respectively supplied along the outer peripheral surface of the semi-cylindrical prism 17 while supplying and collecting the reactant solution overflowing from the flow cell 9 through the discharge channel 15 in the same manner as described above. Synchronously rotate in opposite directions from the initial position.

【0026】この作業時に検出領域5aの領域全体に固
定された試料に対する反応物質の結合が不完全の場合に
は、上記光照射装置19及び受光装置21の同期回動に
伴って検出される共鳴角は試料と反応物質との結合が変
化して吸光度(共鳴角)が一定せず、反対に両者の結合
が飽和状態に達して安定化したときには検出される共鳴
角が一定化する。これにより検出領域5aに固定された
試料と反応物質との結合状態を検鏡することができる。
In this operation, if the binding of the reactant to the sample fixed in the entire area of the detection area 5a is incomplete, the resonance detected with the synchronous rotation of the light irradiation device 19 and the light receiving device 21 When the bond between the sample and the reactant changes, the absorbance (resonance angle) does not become constant. Conversely, when the bond between the two reaches a saturated state and is stabilized, the detected resonance angle becomes constant. Thereby, the binding state between the sample fixed to the detection region 5a and the reactant can be inspected.

【0027】また、検出領域5aの領域全体に固定され
た試料に結合された反応物質の解離状態を検鏡するに
は、第2供給流路13を介してフローセル9内に緩衝液
を供給して試料から反応物質を解離させながら上記と同
様に半円柱形プリズム17の外周面に沿って光照射装置
19及び受光装置21を互いに反対方向へ同期回動させ
て検出領域5aの領域全体における共鳴角の変化を検出
する。
In order to observe the dissociation state of the reactant bound to the sample fixed on the entire area of the detection area 5a, a buffer solution is supplied into the flow cell 9 through the second supply channel 13. As described above, the light irradiation device 19 and the light receiving device 21 are synchronously rotated in opposite directions along the outer peripheral surface of the semi-cylindrical prism 17 while dissociating the reactant from the sample, thereby causing resonance in the entire detection region 5a. Detect changes in angle.

【0028】今、試料から反応物質が完全に解離されて
いない状態にあっては、光照射装置19及び受光装置2
1の回動に伴って検出される検出領域5aの領域全体に
おける共鳴角が一定しない。反対に試料から反応物質が
完全に解離されると、検出領域5aの領域全体から検出
される共鳴角が一定化する。これにより検出領域5a全
体の共鳴角の変動に基づいて試料に対する反応物質の解
離状態を検鏡することができる。
Now, when the reactants are not completely dissociated from the sample, the light irradiation device 19 and the light receiving device 2
The resonance angle in the entire detection region 5a detected with the rotation of 1 is not constant. Conversely, when the reactant is completely dissociated from the sample, the resonance angle detected from the entire detection region 5a becomes constant. Thus, the dissociation state of the reactant with respect to the sample can be inspected based on the change in the resonance angle of the entire detection region 5a.

【0029】本実施形態は、プリズムに半円柱プリズム
17を使用することにより該半円柱プリズム17の外周
面に沿って光照射装置19を大きな角度幅て回動させて
共鳴角を検出する結果、検出領域5aの領域全体に固定
された試料の状態を正確に検鏡することができる。
In the present embodiment, the use of the semi-cylindrical prism 17 as the prism causes the light irradiation device 19 to rotate over a large angular width along the outer peripheral surface of the semi-cylindrical prism 17 to detect the resonance angle. The state of the sample fixed over the entire detection region 5a can be accurately inspected.

【0030】[0030]

【発明の効果】本発明は、検出領域に照射される平行光
を大きな角度で可変して検出領域に固定された試料を正
確に検鏡することができる。
According to the present invention, the specimen fixed to the detection area can be accurately inspected by changing the parallel light applied to the detection area at a large angle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SPR顕微鏡の概略を示す正面説明図である。FIG. 1 is an explanatory front view schematically showing an SPR microscope.

【図2】検出領域に対する光の照射状態を示す平面説明
図である。
FIG. 2 is an explanatory plan view showing a light irradiation state on a detection area.

【図3】SPR顕微鏡の断面説明図である。FIG. 3 is an explanatory sectional view of an SPR microscope.

【図4】検出領域に対する光の照射可変状態を示す説明
図である。
FIG. 4 is an explanatory diagram showing a variable irradiation state of light to a detection area.

【符号の説明】[Explanation of symbols]

1−SPR顕微鏡、3−センサーチップ、5−ガラス基
板、5a−検出領域、17−半円柱プリズム、19−光
照射装置、21−受光装置、23−光源
1-SPR microscope, 3-sensor chip, 5-glass substrate, 5a-detection area, 17-semi-cylindrical prism, 19-light irradiation device, 21-light receiving device, 23-light source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラス基板上に製膜された金属薄膜におけ
る所定の検鏡領域全体に光を照射し、該金属薄膜におけ
る検出領域からの反射光強度が最小になる共鳴角に基づ
いて試料特性を検鏡する表面プラズモン共鳴角顕微鏡に
おいて、金属薄膜と反対側のガラス基盤に密着され、少
なくとも金属薄膜の検鏡領域全体を覆う大きさの半円柱
プリズムと、半円柱プリズムの光入射側の外周面に沿っ
た所定の角度で回動可能に支持され、半円柱プリズムの
光入射側に対して光源からの光が半円柱プリズム内にて
検鏡領域の全体にわたって平行光束になるように光を照
射する光照射装置と、半円柱プリズムの光出射側の外周
面に沿って光照射装置の回動方向と反対方向へ同期回動
可能に支持され、金属箔膜における検鏡領域から反射し
て半円柱プリズムを透過した平行光束を受光して検出領
域全体からの反射光強度に応じた電気信号を出力する受
光装置とからなり、検鏡領域における試料の共鳴角を検
鏡可能にした表面プラズモン共鳴角顕微鏡。
1. A method for irradiating a predetermined speculum area of a metal thin film formed on a glass substrate with light, and obtaining a sample characteristic based on a resonance angle at which the intensity of reflected light from the detection area of the metal thin film becomes minimum. In a surface plasmon resonance angle microscope for microscopy, a semi-cylindrical prism that is in close contact with the glass substrate on the opposite side of the metal thin film and covers at least the entire inspection area of the metal thin film, and the outer periphery of the semi-cylindrical prism on the light incident side It is supported so as to be rotatable at a predetermined angle along the surface, and the light from the light source is directed to the light incident side of the semi-cylindrical prism so that the light from the light source becomes a parallel luminous flux over the entire inspection area in the semi-cylindrical prism. The light irradiating device to irradiate and, supported along the outer peripheral surface on the light emission side of the semi-cylindrical prism so as to be synchronously rotatable in a direction opposite to the rotation direction of the light irradiating device, are reflected from the speculum region in the metal foil film Semi-cylindrical prism Transmitted consists of a light receiving device for outputting an electrical signal corresponding parallel light fluxes in the reflected light intensity from the entire detection area by receiving the surface plasmon resonance angle microscope the resonance angle of the sample in speculum region allowed microscopic examination.
JP2000053111A 2000-02-29 2000-02-29 Surface plasmon resonance angle microscope Pending JP2001242071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053111A JP2001242071A (en) 2000-02-29 2000-02-29 Surface plasmon resonance angle microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053111A JP2001242071A (en) 2000-02-29 2000-02-29 Surface plasmon resonance angle microscope

Publications (1)

Publication Number Publication Date
JP2001242071A true JP2001242071A (en) 2001-09-07

Family

ID=18574536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053111A Pending JP2001242071A (en) 2000-02-29 2000-02-29 Surface plasmon resonance angle microscope

Country Status (1)

Country Link
JP (1) JP2001242071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112808A (en) * 2004-10-12 2006-04-27 Fujikura Ltd Surface plasmon sensor
CN107843558A (en) * 2017-09-21 2018-03-27 丁利 A kind of prism-type surface plasma resonance spectrometer angle modulated mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112808A (en) * 2004-10-12 2006-04-27 Fujikura Ltd Surface plasmon sensor
CN107843558A (en) * 2017-09-21 2018-03-27 丁利 A kind of prism-type surface plasma resonance spectrometer angle modulated mechanism

Similar Documents

Publication Publication Date Title
US6710870B1 (en) Method and device for measuring luminescence
EP1079225A1 (en) Surface plasmon sensor for analyzing liquid sample or humid atmosphere
JPH01308946A (en) Method and apparatus for detecting low- concentration biochemical component existing in test medium using surface plasmon resonance
KR960038386A (en) Optical detection device for chemical analysis measurement
KR20000053341A (en) Analytical apparatus
US20200003688A1 (en) Surface Plasmon Resonance Fluorescence Analysis Device And Surface Plasmon Resonance Fluorescence Analysis Method
CN102519914B (en) Wavelength modulation surface plasmon resonance detector based on laser confocal imaging
US7728980B2 (en) Optical unit
WO2016170967A1 (en) Method of manufacturing sensing chip and sensing chip
JP2001242071A (en) Surface plasmon resonance angle microscope
US7012692B2 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis apparatus for carrying out the method
JP3578188B2 (en) Surface plasmon sensor
JP2000065729A (en) Sensor chip for surface plasmon resonance angle detection device
EP1293768A3 (en) Sensor utilizing attenuated total reflection
JP4173725B2 (en) Sensors using evanescent waves
JP2007155477A (en) Surface plasmon resonance sensor
JPH0220053B2 (en)
JP2000055805A (en) Sensor device
JP2004061286A (en) Surface plasmon resonance angle sensor
JP2009204484A (en) Sensing device
JP3871415B2 (en) Spectral transmittance measuring device
JP2003083886A (en) Surface plasmon microscope and dark ring image data acquisition method under the same
JP2009063402A (en) Apparatus for manufacturing sensing element, method of manufacturing sensing element, and sensing device with sensing element
WO2016098653A1 (en) Detecting method and detecting device
WO2016125614A1 (en) Detection method, detection device, and chip

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023