JP2001241986A - Heating resistor type flow rate measurement device - Google Patents

Heating resistor type flow rate measurement device

Info

Publication number
JP2001241986A
JP2001241986A JP2001020342A JP2001020342A JP2001241986A JP 2001241986 A JP2001241986 A JP 2001241986A JP 2001020342 A JP2001020342 A JP 2001020342A JP 2001020342 A JP2001020342 A JP 2001020342A JP 2001241986 A JP2001241986 A JP 2001241986A
Authority
JP
Japan
Prior art keywords
flow
passage
sub
temperature
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020342A
Other languages
Japanese (ja)
Other versions
JP3593042B2 (en
Inventor
Shinya Igarashi
信弥 五十嵐
Chihiro Kobayashi
千尋 小林
Yasunori Mori
康典 毛利
Hitoshi Ishikawa
人志 石川
Kaoru Uchiyama
内山  薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2001020342A priority Critical patent/JP3593042B2/en
Publication of JP2001241986A publication Critical patent/JP2001241986A/en
Application granted granted Critical
Publication of JP3593042B2 publication Critical patent/JP3593042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an accurate heating resistor type flow rate measurement device discriminating normal or reverse directions of fluid flow in constant flow and pulsation flow with or without reverse flow and outputting signals corresponding to the flow. SOLUTION: At least two thermostatic resistors placed closely upstream side and downstream side are provided in a first flow path. A subsidiary flow path is constituted with a second flow path wherein most part of the fluid having flown in the first flow path from the normal direction and a third flow path for guiding the reverse flow to the thermostatic resistors. The inlet of the first flow path is made a tray shape and the outlet of the second path is made parallel to the main flow and a projection of the eaves shape is placed upstream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体通路の流体が
順方向と逆方向に変化する流れを有する時にその流れ方
向を判別するとともにその流量に応じた信号を出力する
発熱抵抗式流量測定装置に係り、特に内燃機関の吸入空
気流量を測定するのに適する発熱抵抗式空気流量測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating resistance type flow rate measuring device for judging a flow direction of a fluid in a fluid passage having a flow changing in a forward direction and a reverse direction and outputting a signal corresponding to the flow rate. More particularly, the present invention relates to a heating resistance type air flow measurement device suitable for measuring an intake air flow rate of an internal combustion engine.

【0002】[0002]

【従来の技術】従来の装置としては、例えば特開昭62−
812 号記載の熱線式空気流量計がある。この公知例に
は、順方向及び逆方向の流れを検出するための感温抵抗
体の素子構造や、方向判別,流量信号の出力回路構成な
らびにその検出メカニズムについて具体的に記載されて
いるが、その通路構成は主通路中に検出素子を副通路を
設けずに設置したものと、単純な円管路中に設置したも
ののみが記載されている。このように、定常流から逆流
を伴う脈動流まで全域で精度良く流量検出するために
は、まず第1に逆流が生じた場合の流量測定装置のプラ
ス誤差を低減するために、順方向の流量から逆方向の流
量を差し引いた流量検出を行う必要がある。特開昭62−
812 号に記載の技術は、順方向と逆方向の両方の流量信
号を出力可能としたものであり、この誤差の低減につい
てはすでに配慮されている。
2. Description of the Related Art A conventional apparatus is disclosed in, for example,
There is a hot wire type air flow meter described in 812. In this known example, the element structure of the temperature-sensitive resistor for detecting the forward and reverse flow, the direction discrimination, the output circuit configuration of the flow rate signal, and the detection mechanism thereof are specifically described. As for the passage configuration, only those in which a detection element is installed in a main passage without providing a sub-passage and those in which a detection element is installed in a simple circular pipe passage are described. As described above, in order to accurately detect the flow rate in the entire region from the steady flow to the pulsating flow accompanied by the backflow, first, in order to reduce the positive error of the flow measurement device when the backflow occurs, the flow rate in the forward direction is reduced. It is necessary to detect the flow rate by subtracting the flow rate in the opposite direction from. JP-A-62-
The technique described in Japanese Patent No. 812 is capable of outputting both forward and reverse flow signals, and the reduction of this error has already been considered.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、発熱
抵抗式流量測定装置は、測定流体が脈動すると出力信号
はマイナス誤差を示す。これは、発熱抵抗体の放熱特性
の非線形性と応答遅れによるものであり、順方向の流れ
が脈動となることにより生じるものであるため、逆方向
の流量を計測することでは解決できない問題であった。
According to the above prior art, in the heating resistance type flow rate measuring device, when the measurement fluid pulsates, the output signal shows a minus error. This is due to the non-linearity of the heat radiation characteristic of the heating resistor and the response delay, which is caused by the pulsation of the forward flow, and cannot be solved by measuring the flow rate in the reverse direction. Was.

【0004】本発明の目的は、逆流を伴う脈動流のよう
に順方向と逆方向の流れが混在する流体の流量を適正に
検出することができる発熱抵抗式流量測定装置を提供す
ることにある。
[0004] It is an object of the present invention to provide a heating resistance type flow measurement device capable of properly detecting the flow rate of a fluid in which forward and reverse flows coexist, such as a pulsating flow accompanied by a reverse flow. .

【0005】[0005]

【課題を解決するための手段】本発明では、流量を検出
する感温抵抗体を副通路内に設け、副通路に流入した順
方向の流れが脈動時に主通路の流れよりも高い慣性効果
を持つように、副通路の順方向流れに対する流路長さを
主通路の同一部分の長さより長くして前記マイナス誤差
を相殺する構成とし、また、前記の逆方向の流れの流量
計測も達成できるように、感温抵抗体に逆方向の流れを
導く流路を設けた副通路を構成したものである。
According to the present invention, a temperature-sensitive resistor for detecting a flow rate is provided in a sub-passage so that a forward flow flowing into the sub-passage has a higher inertia effect than a flow in the main passage when pulsating. The length of the flow passage for the forward flow of the sub passage is made longer than the length of the same portion of the main passage so as to cancel out the negative error, and the flow measurement of the reverse flow can also be achieved. As described above, the sub-passage having the flow passage for guiding the flow in the opposite direction to the temperature-sensitive resistor is formed.

【0006】さらに、定常流から脈動流,逆流と変化す
る流れに対しては、その流速分布の変化についても考慮
する必要がある。定常流においては、流体通路の上流の
形状により種々の異なる偏流が生じる。例えば、上流に
長い直管路があれば、流路の中心が速く壁面付近が遅い
放物線形の流速分布が生じ、また、上流が曲がり管路と
なっていれば、曲がりの外側が速く内側が遅くなる流速
分布となる。これが脈動流になると、平坦に近い流速分
布を生じ易く、逆流を伴う脈動流では逆流の流速分布の
変化によって再び偏流を引き起こすことが多い。従っ
て、主通路の流れをできるだけ平均的に測定する必要が
あり、主通路の極小さな一部の流れにより全流量を代表
して計測する発熱抵抗式流量測定装置においては、この
流速分布による計測誤差が問題となる。本発明は、感温
抵抗体を副通路内に設け、副通路の入口を広範囲の流れ
を副流路内に取り込むことが可能なように受皿状に形成
し、さらに、出口の上流の流速と入口の上流の流速の各
々の平均流速からの差を互いに相殺し合うように、出口
を主流に対して平行な面に開口し、その上流、あるい
は、上下流両方にひさし状の突起を形成した副通路を構
成したものである。
Further, for a flow that changes from a steady flow to a pulsating flow or a backflow, it is necessary to consider the change in the flow velocity distribution. In a steady flow, various different drifts occur due to the upstream shape of the fluid passage. For example, if there is a long straight pipe upstream, a parabolic flow velocity distribution where the center of the flow path is fast and the vicinity of the wall surface is slow occurs, and if the upstream is a bent pipe, the outside of the bend is fast and the inside is fast. The flow velocity distribution becomes slow. When this becomes a pulsating flow, a nearly flat flow velocity distribution is likely to occur, and in a pulsating flow accompanied by a reverse flow, a drift is often caused again by a change in the flow velocity distribution of the reverse flow. Therefore, it is necessary to measure the flow in the main passage as evenly as possible. In a heating resistance type flow measurement device that measures the entire flow by representing a very small part of the flow in the main passage, the measurement error due to the flow velocity distribution is measured. Is a problem. According to the present invention, a temperature-sensitive resistor is provided in a sub-passage, and the inlet of the sub-passage is formed in a saucer shape so that a wide range of flow can be taken into the sub-flow passage. The outlet was opened in a plane parallel to the main flow, and eave-shaped protrusions were formed upstream or both upstream and downstream so that the difference between the average flow velocity and the upstream flow velocity at the inlet was offset each other. This constitutes a sub-passage.

【0007】[0007]

【作用】順方向と逆方向の流れ方向を判別するととも
に、流量の計測を行う発熱抵抗式流量測定装置は、前記
のように公知の技術であるが、その作用効果を維持しな
がら脈動流によるマイナスの計測誤差を回避する技術に
ついては開示されておらず、本発明は、その対策を実施
したものである。
The heating resistance type flow rate measuring device which determines the flow direction in the forward direction and the reverse direction and measures the flow rate is a known technique as described above. A technique for avoiding a negative measurement error is not disclosed, and the present invention implements a countermeasure.

【0008】発熱抵抗式流量測定装置の流量に対する出
力は発熱体から流体への放熱の物理現象により非直線の
特性を示す。このため、脈動流の計測に際しては、放熱
特性あるいは制御回路による検出遅れからその計測値は
マイナス誤差を生じてしまう。そこで、脈動流によるマ
イナス誤差を相殺するように、脈動流により計測値を持
ち上げる副通路構造を用いる。流量を検出する感温抵抗
体を副通路内に配置し、副通路の全長を同一部分の主通
路長さより長く形成すると、主通路に生じる脈動流に対
して副通路内の脈動流は主通路より大きな慣性効果を有
するようになる。このため、副通路内の脈動流の平均流
速が持ち上げられるため、計測値にプラス誤差を生じさ
せることができ、前記のマイナス誤差を相殺することが
できる。しかし、上記のプラス誤差を生じる副通路は逆
方向の流れを十分に感温抵抗体に導くことができない。
このため、副通路を、感温抵抗体の配置される第1の流
路と、順方向の流れに対し副通路の全長が長くなるよう
に順方向の流れの大部分が流通する第2の通路と、逆方
向の流れが流通し感温抵抗体に逆方向の流れを導く第3
の流路の3つの流路を組み合わせた構造としている。
The output with respect to the flow rate of the heating resistance type flow rate measuring device exhibits a non-linear characteristic due to the physical phenomenon of heat radiation from the heating element to the fluid. For this reason, when measuring the pulsating flow, a negative error occurs in the measured value due to heat radiation characteristics or detection delay by the control circuit. Therefore, a sub-passage structure is used in which the measured value is raised by the pulsating flow so as to cancel the negative error caused by the pulsating flow. If the temperature-sensitive resistor for detecting the flow rate is disposed in the sub-passage, and the total length of the sub-passage is formed longer than the length of the main passage in the same portion, the pulsation flow in the sub-passage becomes larger than the pulsation flow generated in the main passage. It has a greater inertia effect. For this reason, since the average flow velocity of the pulsating flow in the auxiliary passage is raised, a positive error can be generated in the measured value, and the above-mentioned negative error can be canceled. However, the sub-passage that causes the above-described plus error cannot sufficiently guide the flow in the reverse direction to the temperature-sensitive resistor.
For this reason, the second passage through which most of the flow in the forward direction flows through the sub-passage so that the total length of the sub-passage becomes longer than the flow in the forward direction. The third direction in which the flow in the opposite direction flows through the passage and guides the flow in the opposite direction to the temperature-sensitive resistor.
And three channels are combined.

【0009】例えば、感温抵抗体を内部に備えた第1の
流路を主流とほぼ平行に配置し、第2の流路は、第1の
流路とほぼ直角に交わう主流とほぼ垂直な流路とし、第
1の流路と第2の流路でL字形の副流路を形成すれば、
まず主通路の長さよりも長く慣性効果の大きい副通路が
構成される。また、第3の流路を感温抵抗体の直下流で
副通路の壁を貫通する主流とほぼ平行な流路とすれば感
温抵抗体に逆方向の流れを導入するための流路となる。
ここで、順方向から副通路に流入した流れは、その大部
分が第2の流路を流通するように第2の流路の断面積
(流路面積)に比べて第3の流路の面積を小さくする必
要がある。第3の流路の面積が小さい程、順方向の流れ
は第2の流路を流れ易く前記のマイナス誤差を低減する
が、小さすぎると逆方向の流れの導入量が少なくなるた
め流れ方向の判別及び逆方向の流量検出が劣ることにな
る。従って、第3の流路の内径を感温抵抗体の受感部長
さとほぼ同じとすると総合的な精度を改良できる。さら
に、第3の流路を順方向の流れに対して広がり管路とな
るノズル状にすれば順方向の流れの通気抵抗が大きく逆
方向の流れは導入し易くなり、第3の流路を副通路の内
壁より感温抵抗体に向けて突出すると、第1の流路と第
2の流路の曲がり部の面積を確保しながら第3の流路と
感温抵抗体の間隔を短くできるため、逆方向の流れが第
3の流路から吹き出した後の拡散が小さい状態で感温抵
抗体に導入できるため本発明の副通路の構成をより効果
的にできる。
For example, a first flow path having a temperature-sensitive resistor therein is disposed substantially in parallel with the main flow, and the second flow path is substantially perpendicular to the main flow which crosses the first flow path at a substantially right angle. If the first flow path and the second flow path form an L-shaped sub flow path,
First, a sub passage having a longer inertia effect than the length of the main passage is formed. Further, if the third flow path is a flow path substantially parallel to the main flow penetrating the wall of the sub-passage immediately downstream of the temperature-sensitive resistor, a flow path for introducing a flow in the opposite direction to the temperature-sensitive resistor is provided. Become.
Here, the flow that has flowed into the sub-passage from the forward direction is larger than the cross-sectional area (flow-path area) of the second flow passage so that most of the flow flows through the second flow passage. It is necessary to reduce the area. As the area of the third flow path is smaller, the forward flow is more likely to flow through the second flow path and reduces the above-mentioned negative error. The determination and the detection of the flow rate in the reverse direction are inferior. Therefore, if the inner diameter of the third flow path is substantially the same as the length of the sensing portion of the temperature-sensitive resistor, the overall accuracy can be improved. Furthermore, if the third flow path is formed in a nozzle shape that expands with respect to the flow in the forward direction and becomes a duct, the flow resistance of the flow in the forward direction is large, and the flow in the reverse direction is easy to be introduced. By protruding from the inner wall of the sub-passage toward the temperature-sensitive resistor, it is possible to shorten the interval between the third channel and the temperature-sensitive resistor while securing the area of the bent portion of the first channel and the second channel. Therefore, the flow in the opposite direction can be introduced into the temperature-sensitive resistor in a state in which the diffusion after blowing out from the third flow path is small, so that the configuration of the sub-passage of the present invention can be made more effective.

【0010】また、流速分布の変化に対しては、副通路
の入口を受皿状に掘り込み、流れによる受圧面を広範囲
に拡大すること、また掘り込み部分からの流れを副通路
内に流入することにより、副通路に広範囲の流れを取り
込むことによって平均的な流速を検出できるようにして
いる。受皿状の底面を傾斜させると広範囲空気を取り込
む効率を一層上げられる。さらに、第2の流路の出口開
口面を主流と平行に開口し、その上流側にひさし状の突
起を設けると、出口の負圧がその上流の流速に応じて変
化するため、入口上流の流速と出口上流の流速で副通路
に流入する流量を平均化できる。
In order to cope with a change in the flow velocity distribution, the entrance of the sub-passage is dug in a saucer shape to widen the pressure receiving surface due to the flow, and the flow from the dug portion flows into the sub-passage. Thus, the average flow velocity can be detected by taking in a wide range of flows into the sub-passage. By inclining the saucer-like bottom surface, the efficiency of taking in a wide range of air can be further increased. Furthermore, if the outlet opening surface of the second flow path is opened in parallel with the main flow, and an eave-shaped projection is provided on the upstream side, the negative pressure at the outlet changes according to the flow velocity at the upstream side. The flow rate flowing into the sub-passage can be averaged between the flow rate and the flow rate upstream of the outlet.

【0011】上記の副通路を構成するには、流体通路と
なる主通路と一体に形成すれば部品点数を削減できる。
また、副通路構成部材を単体で形成し、回路モジュール
と一体化すれば交換時等の取り扱い性に優れるととも
に、既存の流体通路の一部に取付用の穴や取付面を設け
ればそこに装着可能となり、流量測定装置の主通路を別
に設ける必要が無くなる。
In order to form the sub-passage, the number of parts can be reduced by forming the sub-passage integrally with the main passage which is a fluid passage.
In addition, if the sub-passage component is formed as a single unit and integrated with the circuit module, it will be easy to handle at the time of replacement, etc., and if a mounting hole or mounting surface is provided in a part of the existing fluid passage, it will be there. Mounting is possible, and it is not necessary to separately provide a main passage of the flow measurement device.

【0012】[0012]

【実施例】以下、本発明の実施例を図1〜図14により
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0013】図1は本発明の一実施例の横断面図であ
り、図2はその上流側(左側)から見た外観図である。
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is an external view as viewed from the upstream side (left side).

【0014】ベース部材7の上面には、電子回路8及び
回路ハウジング9が固定され、外部機器と電気的に接続
するためのコネクタ11は回路ハウジング9に一体化さ
れ、回路ハウジング9の上面はカバー10によって覆わ
れている。流量検出と流れ方向判別のための発熱抵抗体
1と流体温度検出用の感温抵抗体2は電子回路8と電気
的に接続されてホルダ19に固定されている。発熱抵抗
体1は、板状基板面に少なくとも2つの感温抵抗体を上
流側と下流側に形成したものである。副流路3は、ベー
ス部材7と垂直な面に開口する入口開口面301と,入
口開口面からベース部材と平行に延びる第1通路302
と,ベース部材と垂直な方向に延びる第1通路の約2倍
の長さを有する第2通路304と,ベース部材と垂直な
面に開口する出口開口面305及び第1通路302と第
2通路304の交点部分にあたる直角曲がり部303に
よって構成されるL字形の流路に、逆方向の流れを導入
するための第3通路309を発熱抵抗体の受感部の直下
流に第1通路とほぼ平行に形成したものであり、発熱抵
抗体1が第1通路302内に、感温抵抗体2が直角曲が
り部303内に位置するように、副流路構成部材4がベ
ース部材7に固定される。
An electronic circuit 8 and a circuit housing 9 are fixed on the upper surface of the base member 7, and a connector 11 for electrically connecting to an external device is integrated with the circuit housing 9, and the upper surface of the circuit housing 9 is covered with a cover. Covered by 10. The heating resistor 1 for detecting the flow rate and the flow direction and the temperature-sensitive resistor 2 for detecting the fluid temperature are electrically connected to the electronic circuit 8 and fixed to the holder 19. The heating resistor 1 has at least two temperature-sensitive resistors formed on the plate-like substrate surface on the upstream side and the downstream side. The sub flow path 3 includes an inlet opening surface 301 that opens in a plane perpendicular to the base member 7, and a first passage 302 that extends from the inlet opening surface in parallel with the base member.
A second passage 304 having a length approximately twice as long as the first passage extending in a direction perpendicular to the base member; an outlet opening surface 305 opening in a plane perpendicular to the base member; a first passage 302; A third passage 309 for introducing a flow in the opposite direction into the L-shaped flow passage constituted by the right-angled bent portion 303 corresponding to the intersection of the 304 is provided almost immediately downstream of the sensing portion of the heating resistor with the first passage. The sub-flow path forming member 4 is fixed to the base member 7 so that the heating resistor 1 is located in the first passage 302 and the temperature-sensitive resistor 2 is located in the right-angle bend 303. You.

【0015】一方、主流路5を構成する流量計ボディ6
の壁面には、副流路構成部材4を差し込むための挿入穴
14及びベース部材7を取り付ける取付固定面15が設
けられている。この流量計ボディ6に、副流路3の第1
通路302が主流路5の流れ方向17と平行になるよう
に副流路構成部材4を挿入穴14から主流路5内に差し
込み、挿入穴14の周囲がシールされるように取付固定
面15とベース部材7の底面の間にゴムパッキン16を
はさんでベース部材7が主流路外壁にネジ18により固
定されている。
On the other hand, a flow meter body 6 constituting the main flow path 5
An insertion hole 14 for inserting the sub-flow path constituting member 4 and an attachment fixing surface 15 for attaching the base member 7 are provided on the wall surface. The flowmeter body 6 is provided with the first
The sub flow path component member 4 is inserted into the main flow path 5 through the insertion hole 14 so that the passage 302 is parallel to the flow direction 17 of the main flow path 5, and the mounting fixing surface 15 is so formed that the periphery of the insertion hole 14 is sealed. The base member 7 is fixed to the outer wall of the main flow channel by screws 18 with a rubber packing 16 interposed between the bottom surfaces of the base member 7.

【0016】上記実施例に対して、さらに種々の制度向
上を図った構成及び副流路構成部材とベース部材の固定
法を具体化した実施例の横断面図を図3に、その上流側
(左側)から見た外観図を図4に、さらに、図3の第1
通路と第3通路部分の拡大図を図5に示す。
FIG. 3 is a cross-sectional view of an embodiment in which a structure for further improving the accuracy and a method of fixing the sub-flow path constituting member and the base member are further improved. FIG. 4 is an external view seen from the left side), and FIG.
An enlarged view of the passage and the third passage portion is shown in FIG.

【0017】ターミナル13がホルダ19の内部を貫通
するようにターミナル13をホルダ19と一体化し、ベ
ース部材7の穴部を通してベース部材7とホルダ19が
固定される。電子回路8は、ベース部材7あるいはホル
ダ19の上面に固定され、ターミナル13とワイヤ等の
導電性部材22を介して電気的に接続される。また、回
路ハウジング9もベース部材7の上面に固定され、回路
ハウジング9の上面はカバー10を固定することによっ
て覆われる。
The terminal 13 is integrated with the holder 19 so that the terminal 13 passes through the inside of the holder 19, and the base member 7 and the holder 19 are fixed through the hole of the base member 7. The electronic circuit 8 is fixed to the upper surface of the base member 7 or the holder 19 and is electrically connected to the terminal 13 via a conductive member 22 such as a wire. The circuit housing 9 is also fixed to the upper surface of the base member 7, and the upper surface of the circuit housing 9 is covered by fixing the cover 10.

【0018】一方、ターミナル13の電子回路8の反対
端部には、発熱抵抗体1及び感温抵抗体2が各々2組上
下流に重なるように配置され電気的に接続固定される。
本実施例では、2本の感温抵抗体2を副流路3の直角曲
がり部303の内部でその内側コーナ近くに位置するよ
うに固定し、発熱抵抗体1は副流路3の第1通路302内
で感温抵抗体2よりもベース部材7に近い位置に2本が
近接して上下流に重なるように固定している。
On the other hand, at the opposite end of the electronic circuit 8 of the terminal 13, two sets of the heating resistor 1 and the temperature sensing resistor 2 are arranged so as to overlap each other in the upstream and downstream, and are electrically connected and fixed.
In this embodiment, the two temperature-sensitive resistors 2 are fixed inside the right-angled bent portion 303 of the sub-flow path 3 so as to be located near the inner corner thereof. In the passage 302, two are fixed at a position closer to the base member 7 than the temperature-sensitive resistor 2, and are fixed so as to overlap upstream and downstream.

【0019】副流路構成部材4には、前記第一の実施例
と同様に入口開口面301,第1通路302,直角曲が
り部303,第2通路304,出口開口面305から構
成されるL字形の流路に加えて、順方向の流れに対して
広がり管路となるノズル状の第3通路309が発熱抵抗
体方向に突出して設けられており、その最小内径を発熱
抵抗体1の受感部の長さとほぼ同じとしている。さら
に、副流路3内に取り込む空気を広範囲、特に主流路5
の中心付近から導くことを目的とした周囲に壁を残して
堀り込んだ受皿状入口306,出口部の流れを安定化す
ることを目的とした両側に壁のある傾斜面307とその
傾斜面の先端を出口開口面305より下方に出張らせた
出口庇308、及び、ホルダ19を挿入する穴401と
ホルダ19との接合面402が副通路構成部材4に形成
されている。また、副流路3の第1通路302は、発熱
抵抗体1の固定位置を第1通路302の中心よりもベー
ス部材7に近付く方向として、第3通路309も発熱抵
抗体1の設置位置と同軸状にして直角曲がり部303の
外側コーナ方向へずらして順方向の流れが第3通路を流
入しにくくしている。そのため、第1通路302の流れ
と垂直な断面中で流速が比較的速く流れの安定した範囲
を発熱抵抗体1の固定部に持ってくるために、半円形と
長方形を合わせた断面形状とし、受皿状入口306の底
面と第1通路302の作るコーナと直角曲がり部303
の内側コーナの間隔に対して前記両コーナをつなぐ第1
通路302の内壁と発熱抵抗体1の間隔が1/2から1
(同間隔)となるようにしている。さらに、第2通路3
04と平行な肉盗み穴403を設け、副流路構成部材4
を均肉化しプラスチック成形のひけによる形状変化を防
止するとともに、材料費及び重量を低減している。
As in the first embodiment, the sub-flow path member 4 has an inlet opening 301, a first passage 302, a right-angled bent portion 303, a second passage 304, and an outlet opening 305. In addition to the U-shaped flow path, a nozzle-shaped third passage 309 which is widened in the forward flow and serves as a duct is provided so as to protrude in the direction of the heating resistor. It is almost the same as the length of the sensing part. Further, the air taken into the sub flow path 3 can be wide-ranged, especially the main flow path 5.
Pan-shaped inlet 306 excavated leaving a wall around the center for the purpose of guiding from near the center of the wall, and inclined surfaces 307 with walls on both sides for the purpose of stabilizing the flow at the outlet An outlet eave 308 having the tip of the lower part traveled below the outlet opening surface 305, and a joint surface 402 between the hole 401 for inserting the holder 19 and the holder 19 are formed in the sub-passage constituting member 4. In addition, the first passage 302 of the sub flow path 3 sets the fixing position of the heating resistor 1 in a direction closer to the base member 7 than the center of the first passage 302, and the third passage 309 also has the same position as the installation position of the heating resistor 1. The coaxial shape is shifted toward the outer corner of the right-angled bent portion 303 so that the forward flow is less likely to flow into the third passage. Therefore, in order to bring the range where the flow velocity is relatively high and the flow is stable in the cross section perpendicular to the flow of the first passage 302 to the fixed portion of the heating resistor 1, the cross section shape is a combination of a semicircle and a rectangle, A corner formed by the bottom of the saucer-shaped inlet 306 and the first passage 302 and a right-angled bent portion 303.
The first connecting the two corners to the space between the inner corners
The distance between the inner wall of the passage 302 and the heating resistor 1 is か ら to 1
(Same intervals). Further, the second passage 3
And a sub-channel hole 403 in parallel with
The thickness of the material is reduced to prevent a change in shape due to sink in plastic molding, and the material cost and weight are reduced.

【0020】この副流路構成部材4は、ホルダ挿入穴4
01にホルダ19を差し込み、接合面402でホルダ1
9と接着固定される。ここで、ホルダ19に設けた段差
と副流路構成部材の接合面402により溝部404が形
成される。この溝部404はOリング20の装着溝であ
り、Oリング20により主流路壁面の挿入穴14がシー
ルされる構成となっている。上記により、回路部と副流
路部及び挿入穴シール用のOリングが一体化したモジュ
ールが構成される。
The sub-flow path constituting member 4 has a holder insertion hole 4
01 and the holder 1 at the joint surface 402.
9 and fixed. Here, a groove 404 is formed by the step provided on the holder 19 and the joint surface 402 of the sub-flow path component. The groove 404 is a mounting groove for the O-ring 20, and has a configuration in which the O-ring 20 seals the insertion hole 14 on the wall of the main flow path. As described above, a module is formed in which the circuit section, the sub-flow path section, and the O-ring for insertion hole sealing are integrated.

【0021】これを前記第一の実施例と同様に流量計ボ
ディ6に固定することにより、発熱抵抗式流量測定装置
が完成される。本実施例では挿入穴シール用のOリング
がモジュールに装着されているため、ゴムパッキンは不
要である。本実施例では、回路ハウジング9をベース部
材7とともにネジ18にて固定し回路ハウジングの固定
強度を増加したものを示しており、また、流量計ボディ
6の主流路5の入口面に整流格子21を装着し、さらに
計測精度を改善したものを示している。
By fixing this to the flow meter body 6 in the same manner as in the first embodiment, a heating resistance type flow measuring device is completed. In this embodiment, since the O-ring for sealing the insertion hole is mounted on the module, no rubber packing is required. In the present embodiment, the circuit housing 9 is fixed together with the base member 7 with screws 18 to increase the fixing strength of the circuit housing, and a rectifying grid 21 is provided on the inlet face of the main flow path 5 of the flowmeter body 6. Is shown, and the measurement accuracy is further improved.

【0022】図6は、本発明の他の実施例を示した発熱
抵抗式流量測定装置の横断面で、図7はその上流側(左
側)から見た外観図であり、図8は図5のA−A断面図
である。
FIG. 6 is a cross-sectional view of a heating resistance type flow rate measuring apparatus according to another embodiment of the present invention. FIG. 7 is an external view of the apparatus viewed from the upstream side (left side), and FIG. It is AA sectional drawing of.

【0023】本実施例では、副通路3を主通路5ととも
に流量計ボディ6に一体形成している。副通路3は、他
の実施例と同様に、第1通路302と第2通路304と
からなるL字形の流路と、逆方向の流れを導入する第3
通路により構成される。流量計ボディ6と一体に形成す
るため、副通路3は、主通路5の直径方向に第2通路を
溝状(下流側が開いた形状)として橋渡しした形状で形
成され、第2通路の下流側をふさぐバックプレート31
0を固定して副通路3が完成されるようにしている。従
って、第3通路309はバックプレート310と一体に
形成され、第2通路の出口開口部305は、第2通路の
両側に設けられている。この出口開口面305の上流に
はひさし状の突起308が両側に形成され、第1通路の
入口開口部301は受皿状の底面を傾斜させた形状とし
ている。また、第3通路の開口面も同様に傾斜底面を持
つ受皿状に形成している。発熱抵抗体1は円筒形ボビン
の上流面と下流面に膜状の感温抵抗体を形成したもので
順方向と逆方向の流れを検出でき、ターミナル13に固
定され電子回路8と電気的に接続している。従って、発
熱抵抗体1が副通路3の内部に位置するように、ホルダ
19を流量計ボディ6の挿入穴に差し込み回路ハウジン
グ9を流量計ボディ6に固定するこにより、発熱抵抗式
流量測定装置が完成される。
In this embodiment, the auxiliary passage 3 and the main passage 5 are formed integrally with the flow meter body 6. As in the other embodiments, the sub-passage 3 has an L-shaped flow path composed of the first passage 302 and the second passage 304 and a third passage for introducing a flow in the opposite direction.
It is constituted by a passage. To be formed integrally with the flow meter body 6, the sub-passage 3 is formed in a shape bridging the second passage in the diametric direction of the main passage 5 as a groove shape (a shape in which the downstream side is open), and the downstream side of the second passage. Back plate 31
0 is fixed so that the sub passage 3 is completed. Therefore, the third passage 309 is formed integrally with the back plate 310, and the outlet openings 305 of the second passage are provided on both sides of the second passage. Eaves-like projections 308 are formed on both sides upstream of the outlet opening surface 305, and the inlet opening 301 of the first passage has a saucer-shaped bottom surface inclined. Similarly, the opening surface of the third passage is formed in a saucer shape having an inclined bottom surface. The heating resistor 1 is formed by forming a film-shaped temperature-sensitive resistor on the upstream surface and the downstream surface of the cylindrical bobbin, and can detect the flow in the forward and reverse directions, and is fixed to the terminal 13 and electrically connected to the electronic circuit 8. Connected. Therefore, by inserting the holder 19 into the insertion hole of the flowmeter body 6 and fixing the circuit housing 9 to the flowmeter body 6 so that the heating resistor 1 is positioned inside the sub-passage 3, the heating resistance type flow measurement device is provided. Is completed.

【0024】図9はエンジンの吸入空気量をコントロー
ルするバルブ23を有するスロットルボディ24に図3
に示した実施例の回路部と副通路を一体化したモジュー
ルを挿入して成る発熱抵抗式空気流量測定装置を示した
ものである。流量計測部はバルブ上流に配置しており、
空気の順方向の流れは図示左側から右側へ流れる。副空
気通路を持つスロットルボディ一体形発熱抵抗式空気流
量計は、既に製品化されているが、副空気通路部材がス
ロットルボディと一体で構成されているか、又は、モジ
ュールの回路を覆うハウジング部材がスロットルボディ
と一体で構成されておりスロットルボディの構造がかな
り複雑化してしまう。これに対し、図9に示す本発明の
実施例によればハウジング部材及び副空気通路部材がモ
ジュールと一体化されているため、スロットルボディの
構造を簡素化することが可能となる。また、スロットル
バルブを持たない吸気系(例えばディーゼル車)ではモ
ジュールを直接インテークマニホールドへ装着すること
も可能である。
FIG. 9 shows a throttle body 24 having a valve 23 for controlling the intake air amount of the engine.
9 shows a heating resistance type air flow measuring device in which a module in which a circuit section and a sub-passage of the embodiment shown in FIG. The flow measurement unit is located upstream of the valve,
The forward flow of air flows from left to right in the figure. A throttle body integrated heating resistance air flow meter with a sub air passage is already commercialized, but the sub air passage member is formed integrally with the throttle body, or a housing member that covers the module circuit is provided. It is formed integrally with the throttle body, which considerably complicates the structure of the throttle body. On the other hand, according to the embodiment of the present invention shown in FIG. 9, since the housing member and the sub air passage member are integrated with the module, the structure of the throttle body can be simplified. Further, in an intake system without a throttle valve (for example, a diesel vehicle), the module can be directly mounted on the intake manifold.

【0025】図10は、エンジンルーム内に配置される
エアクリーナの一部に図3に示した実施例の回路部分を
副通路を一体化したモジュールを取り付けた実施例を示
したものである。エアクリーナは新規空気を取込むため
の導入ダクト25を有する上流側ケース部材26と吸気
ダクト30とエアクリーナを接続するためのダクト28
を有する下流側ケース部材27で空気中のダストを除去
するためのフィルタ部材29をはさみ込んで固定する構
造である。当然ではあるが空気の順方向の流れは図示矢
印の様に流れ、ダクト28にはフィルタ29によりダス
トが除去されたクリーンな空気が流れる。ここで、ダク
ト28の一部に発熱抵抗式空気流量測定装置の副空気通
路部を挿入するための挿入穴14があいており、これを
ネジ等を使ってダクト28とモジュールとを機械的に固
定する。これにより、前記した主空気通路を構成するボ
ディの代りにダクト28の様なエアクリーナの一部分を
使って主空気通路を構成することが可能となりボディを
必要としないモジュール単体での安価な発熱抵抗式空気
流量測定装置を提供することが可能となる。
FIG. 10 shows an embodiment in which a module in which a circuit portion of the embodiment shown in FIG. 3 is integrated with a sub-passage is attached to a part of an air cleaner disposed in an engine room. The air cleaner includes an upstream case member 26 having an introduction duct 25 for taking in fresh air, a duct 28 for connecting the intake duct 30 and the air cleaner.
A filter member 29 for removing dust in the air is sandwiched and fixed by the downstream case member 27 having As a matter of course, the forward flow of air flows as shown by the arrow in the figure, and clean air from which dust has been removed by the filter 29 flows through the duct 28. Here, a part of the duct 28 has an insertion hole 14 for inserting the sub air passage of the heating resistance type air flow measuring device, and this is mechanically connected to the duct 28 and the module by using a screw or the like. Fix it. This makes it possible to form the main air passage by using a part of an air cleaner such as the duct 28 instead of the body forming the main air passage described above. An air flow measuring device can be provided.

【0026】図11に示す例は基本的には図10と同様
にエアクリーナの一部に図3に示した実施例の回路部分
を副通路を一体化して示すモジュールを取付けた実施例
を示したものである。図10では下流側ケース部材27
の外側に設けたダクト28の一部に発熱抵抗式空気流量
測定装置のモジュール部を取り付けたが、図11では、
下流側ケース部材27の内側にダクト31が設けられて
おり、ダクト31の一部に挿入穴14を設けモジュール
を取付けた例を示したものである。尚、図にはダクト3
1の先端部分は空気の流れを整流化するためにベルマウ
ス状にしている。本構造の様に発熱抵抗式空気流量測定
装置のモジュールをエアクリーナ内部に入れることによ
り図10に示したダクト28に相当する部分の長さを短
くできるため、吸気系のコンパクト化を図ることが可能
である。尚図10に示したダクト28及び図11に示し
たダクト31は図示ではエアクリーナ下流側ケース部材
27と一体で記述したが各々別体で製作した後から機械
的強度を保つ様に固定してもかまわない。
The embodiment shown in FIG. 11 is basically the same as the embodiment shown in FIG. 10 except that a module showing the circuit portion of the embodiment shown in FIG. Things. In FIG. 10, the downstream case member 27 is provided.
The module part of the heating resistance type air flow measuring device was attached to a part of the duct 28 provided outside the
This shows an example in which a duct 31 is provided inside the downstream side case member 27, and an insertion hole 14 is provided in a part of the duct 31 to attach a module. The duct 3 is shown in the figure.
The tip of 1 is bell-mouthed in order to regulate the flow of air. By inserting the module of the heating resistance type air flow measuring device inside the air cleaner as in this structure, the length of the portion corresponding to the duct 28 shown in FIG. 10 can be shortened, so that the intake system can be made more compact. It is. Although the duct 28 shown in FIG. 10 and the duct 31 shown in FIG. 11 are shown integrally with the case member 27 on the downstream side of the air cleaner in the drawing, they may be separately manufactured and then fixed so as to maintain the mechanical strength. I don't care.

【0027】最後に、図12を使い電子燃料噴射方式の
内燃機関に本発明品を適用した一実施例を示す。
Finally, FIG. 12 shows an embodiment in which the product of the present invention is applied to an internal combustion engine of the electronic fuel injection system.

【0028】エアクリーナ100から吸入された吸入空
気101は、発熱抵抗式空気流量測定装置のボディ10
2,吸気ダクト103,スロットルボディ104及び燃
料が供給されるインジェクタ105を備えたマニホール
ド106を経て、エンジンシリンダ107に吸入され
る。一方エンジンシリンダで発生したガス108は排気
マニホールド109を経て排出される。
The intake air 101 sucked from the air cleaner 100 is supplied to the body 10 of the heating resistance type air flow measuring device.
2. The air is sucked into an engine cylinder 107 via a manifold 106 having an intake duct 103, a throttle body 104, and an injector 105 to which fuel is supplied. On the other hand, gas 108 generated in the engine cylinder is discharged through an exhaust manifold 109.

【0029】発熱抵抗式空気流量計の回路モジュール1
10から出力される空気流量信号,スロットル角度セン
サ111から出力されるスロットルバルブ開度信号,排
気マニホールド109に設けられた酸素濃度計112か
ら出力される酸素濃度信号及びエンジン回転速度計11
3から出力される回転速度信号を入力するコントロール
ユニット114はこれらの信号を演算して最適な燃料噴
射量とアイドルエアコントロールバルブ開度を求め、そ
の値を基に前記インジェクタ105及びアイドルエアコ
ントロールバルブ115を制御する。
Circuit module 1 of heating resistance type air flow meter
10, a throttle valve opening signal output from a throttle angle sensor 111, an oxygen concentration signal output from an oximeter 112 provided in an exhaust manifold 109, and an engine speed meter 11.
The control unit 114, which receives the rotational speed signal output from the control unit 3, calculates the optimum fuel injection amount and the opening degree of the idle air control valve by calculating these signals. Based on the calculated values, the injector 105 and the idle air control valve are used. 115 is controlled.

【0030】ここで、前記のように吸入空気がエアクリ
ーナ100からエンジンシリンダ107に向けて流れて
いれば、本発明のような逆方向の流れを検出する機能を
有する発熱抵抗式空気流量測定装置は不要であるが、ス
ロットルバルブ116の開度が大きくなるとエンジンシ
リンダ107に吸入される空気が時間的に一定ではなく
断続的であるために吸入空気は脈動流となり、特にその
吸気の脈動周期、すなわちエンジン回転数と吸気系の有
する固有振動数の共振により脈動流の振幅は非常に大き
くなり逆方向の流れを伴うほどになる。つまり、特定の
エンジン回転数でのみ逆流を生じる流れが発生するた
め、あらゆるエンジン運転条件でエンジンシリンダ10
7に吸入される空気流量を正確に測定するためには、本
発明のように順方向と逆方向の流量を検出し、定常流か
ら逆流を伴う脈動流まで正確に測定可能な発熱抵抗式空
気流量測定装置が必要となる。
Here, if the intake air flows from the air cleaner 100 toward the engine cylinder 107 as described above, the heating resistance type air flow measuring device having the function of detecting the reverse flow as in the present invention is used. Although unnecessary, when the opening of the throttle valve 116 is large, the air taken into the engine cylinder 107 is not constant over time but is intermittent, so that the intake air becomes a pulsating flow, and in particular, the pulsation cycle of the intake air, that is, Due to the resonance between the engine speed and the natural frequency of the intake system, the amplitude of the pulsating flow becomes very large, and the pulsating flow is accompanied by a flow in the opposite direction. That is, since a flow that causes a reverse flow occurs only at a specific engine speed, the engine cylinder 10
In order to accurately measure the flow rate of the air sucked into the suction pipe 7, a heating resistance type air which can detect the flow rate in the forward direction and the reverse direction and can accurately measure from a steady flow to a pulsating flow accompanied by a reverse flow as in the present invention. A flow measurement device is required.

【0031】[0031]

【発明の効果】前記の内燃機関の吸入空気流量の測定を
基に本発明の効果を説明する。図13は、従来の逆方向
の流量検出をしていない発熱抵抗式空気流量測定装置に
より測定された空気流量を縦軸にスロットルバルブ下流
の圧力を横軸にしてエンジン回転数をパラメータとして
測定した結果を示したものであり、図14は本発明の図
3〜図5に示した実施例により同じ測定をした結果を示
したものである。図3からわかるように、実際にエンジ
ンシリンダに吸入される空気流量は点線のようにほぼ直
線となるはずだが、従来品では、脈動流によるマイナス
誤差や逆方向流れによる大きなプラス誤差を生じてしま
う。一方、開発品では、マイナス誤差はほとんど無く、
プラス誤差も従来の1/10程度とすることが可能とな
る。
The effects of the present invention will be described based on the measurement of the intake air flow rate of the internal combustion engine. FIG. 13 is a graph in which the vertical axis represents the air flow rate measured by a conventional heating resistance type air flow rate measuring apparatus that does not detect the reverse flow rate, and the horizontal axis represents the pressure downstream of the throttle valve. FIG. 14 shows the results of the same measurements performed by the examples shown in FIGS. 3 to 5 of the present invention. As can be seen from FIG. 3, the air flow actually sucked into the engine cylinder should be substantially straight as shown by the dotted line, but in the conventional product, a minus error due to the pulsating flow and a large plus error due to the reverse flow occur. . On the other hand, with the developed product, there is almost no negative error,
The plus error can also be reduced to about 1/10 of the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す発熱抵抗式流量測定装
置の横断面図。
FIG. 1 is a cross-sectional view of a heating resistance type flow rate measuring device showing one embodiment of the present invention.

【図2】図1を上流側から見た外観図。FIG. 2 is an external view of FIG. 1 as viewed from the upstream side.

【図3】計測精度向上を目的とした一実施例を示す発熱
抵抗式流量測定装置の横断面。
FIG. 3 is a cross-sectional view of an exothermic resistance type flow rate measuring device showing an embodiment for improving measurement accuracy.

【図4】図3を上流側から見た外観図。FIG. 4 is an external view of FIG. 3 as viewed from the upstream side.

【図5】図3の発熱抵抗体部分の拡大図。FIG. 5 is an enlarged view of a heating resistor part of FIG. 3;

【図6】本発明の他の実施例を示す発熱抵抗式流量測定
装置の横断面図。
FIG. 6 is a cross-sectional view of a heating resistance type flow rate measuring device showing another embodiment of the present invention.

【図7】図5を上流側から見た外観図。FIG. 7 is an external view of FIG. 5 as viewed from the upstream side.

【図8】図5のA−A断面図。FIG. 8 is a sectional view taken along line AA of FIG. 5;

【図9】本発明の一実施例を示すスロットルボディ一体
形発熱抵抗式空気流量測定装置の横断面図。
FIG. 9 is a cross-sectional view of a throttle body-integrated heating resistance type air flow measuring device showing an embodiment of the present invention.

【図10】本発明の一実施例を示す発熱抵抗式空気流量
測定装置一体形エアクリーナの横断面図。
FIG. 10 is a cross-sectional view of an air cleaner integrated with a heating resistance type air flow measuring device showing an embodiment of the present invention.

【図11】本発明の一実施例を示す発熱抵抗式空気流量
測定装置内蔵形エアクリーナの横断面図。
FIG. 11 is a cross-sectional view of an air cleaner with a built-in heating resistance type air flow measuring device showing an embodiment of the present invention.

【図12】本発明を用いた内燃機関の制御システム図。FIG. 12 is a control system diagram of an internal combustion engine using the present invention.

【図13】従来品による内燃機関の吸入空気流量測定結
果。
FIG. 13 shows a measurement result of an intake air flow rate of an internal combustion engine using a conventional product.

【図14】本発明品による内燃機関の吸入空気流量測定
結果。
FIG. 14 shows a measurement result of an intake air flow rate of an internal combustion engine according to the present invention.

【符号の説明】[Explanation of symbols]

1…発熱抵抗体、2…感温抵抗体、3…副流路、4…副
流路構成部材、5…主流路、6…流量計ボディ、7…ベ
ース部材、8…電子回路、9…回路ハウジング、10…
カバー、11…コネクタ、13…ターミナル、14…挿
入穴、15…取付固定面、16…ゴムパッキン、17…
順方向流れ方向、18…ネジ、19…ホルダ、20…O
リング、21…整流格子、22…導電性部材、23…バ
ルブ、24,104…スロットルボディ、25…導入ダ
クト、26…上流側ケース部材、27…下流側ケース部
材、28…接続ダクト、29…フィルタ、30…吸気ダ
クト、31…ダクト、32…ボディ、33…取り付け
面、100…エアクリーナ、101…吸入空気、102
…発熱抵抗式空気流量測定装置、103…吸気ダクト、
105…インジェクタ、106…マニホールド、107
…エンジンシリンダ、108…ガス、109…排気マニ
ホールド、110…回路モジュール、111…スロット
ル角度センサ、112…酸素濃度計、113…回転速度
計、114…コントロールユニット、115…アイドル
エアコントロールバルブ、116…スロットルバルブ、
301…入口開口面、302…第1通路、303…直角
曲がり部、304…第2通路、305…出口開口面、3
06…受皿状入口、307…傾斜面、308…出口庇、
309…第3通路、310…バックプレート、401…
ホルダ挿入穴、402…接合面、403…肉盗み穴、4
04…溝部。
DESCRIPTION OF SYMBOLS 1 ... Heating resistor, 2 ... Temperature sensitive resistor, 3 ... Sub flow path, 4 ... Sub flow path constituent member, 5 ... Main flow path, 6 ... Flow meter body, 7 ... Base member, 8 ... Electronic circuit, 9 ... Circuit housing, 10 ...
Cover, 11 connector, 13 terminal, 14 insertion hole, 15 mounting surface, 16 rubber packing, 17
Forward flow direction, 18: screw, 19: holder, 20: O
Ring, 21 ... Rectifying grid, 22 ... Conductive member, 23 ... Valve, 24,104 ... Throttle body, 25 ... Introduction duct, 26 ... Upstream case member, 27 ... Downstream case member, 28 ... Connection duct, 29 ... Filter, 30: intake duct, 31: duct, 32: body, 33: mounting surface, 100: air cleaner, 101: intake air, 102
... heating resistance type air flow measurement device, 103 ... intake duct,
105: injector, 106: manifold, 107
... Engine cylinder, 108 ... Gas, 109 ... Exhaust manifold, 110 ... Circuit module, 111 ... Throttle angle sensor, 112 ... Oxygen meter, 113 ... Tachometer, 114 ... Control unit, 115 ... Idle air control valve, 116 ... Throttle valve,
Reference numeral 301: entrance opening surface, 302: first passage, 303: right-angled bent portion, 304: second passage, 305: exit opening surface, 3
06: saucer-shaped entrance, 307: inclined surface, 308: exit eaves,
309: third passage, 310: back plate, 401 ...
Holder insertion hole, 402: joining surface, 403: meat hole, 4
04 ... groove.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 千尋 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 毛利 康典 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 (72)発明者 石川 人志 茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 内山 薫 茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Chihiro Kobayashi 2520 Kataida-shi, Ibaraki Pref.Hitachi, Ltd.Automotive Equipment Division (72) Inventor Yasunori Mouri 2520 Kataita-Ota-Koba, Ibaraki Pref.Hitachi, Ltd. (72) Inventor Hitoshi Ishikawa, Katsuta-shi, Ibaraki Prefecture, 2477, Kashima-Yatsu, Odai, Takashi 3 Hitachi Automotive Engineering Co., Ltd. (72) Inventor, Kaoru Uchiyama 2520, Kataida, Kata-shi, Ibaraki Co., Ltd. Hitachi, Ltd. Automotive Equipment Division

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】流体通路内に少なくとも2個の感温抵抗体
を上流側と下流側に近接して設置し、上流側と下流側の
感温抵抗体の放熱量の差から流体の流れる方向が順方向
であるか逆方向であるかを判別するとともに、順方向と
逆方向に対応した信号を出力する発熱抵抗式流量測定装
置において、前記感温抵抗体が内部に設けられた第1の
流路と,順方向から前記第1の流路に流入した流体の大
部分が流通する第2の流路と,前記感温抵抗体に逆方向
の流れを導く第3の流路とからなる副通路を前記流体通
路内に形成したことを特徴とする発熱抵抗式流量測定装
置。
At least two temperature sensitive resistors are installed in the fluid passage near the upstream side and the downstream side, and the flow direction of the fluid is determined based on the difference in the amount of heat released between the upstream side and the downstream side. Is a forward direction or a reverse direction, and outputs a signal corresponding to the forward direction and the reverse direction. In the heating resistance type flow rate measuring device, the first temperature-sensitive resistor is provided inside. A flow path, a second flow path through which most of the fluid flowing into the first flow path from the forward direction flows, and a third flow path that guides the flow in the reverse direction to the temperature-sensitive resistor. A heating resistance type flow rate measuring device, wherein a sub passage is formed in the fluid passage.
【請求項2】内燃機関の吸気通路内に設けられる副通路
内に、少なくとも2個の感温抵抗体を上流側と下流側に
近接して設置し、上流側と下流側の感温抵抗体の放熱量
の差から空気の流れ方向が順方向であるか逆方向である
かを判別するともに、順方向と逆方向の流量に対応した
信号を出力する発熱抵抗式空気流量測定装置において、
前記副通路は前記感温抵抗体が内部に設けられた第1の
流路と,順方向から前記第1の流路に流入した空気の大
部分が流通する第2の流路と,前記感温抵抗体に逆方向
からの空気を導く第3の流路とを有することを特徴とす
る発熱抵抗式空気流量測定装置。
2. At least two temperature-sensitive resistors are installed adjacent to an upstream side and a downstream side in a sub-passage provided in an intake passage of an internal combustion engine, and the upstream and downstream temperature-sensitive resistors are provided. In the heating resistance type air flow measuring device that determines whether the air flow direction is the forward direction or the reverse direction from the difference in the amount of heat radiation and outputs a signal corresponding to the flow rate in the forward direction and the reverse direction,
The sub-passage has a first flow passage in which the temperature-sensitive resistor is provided, a second flow passage through which most of the air flowing into the first flow passage from the forward direction flows, and the second flow passage. And a third flow path for guiding air from the opposite direction to the temperature resistor.
【請求項3】請求項1または請求項2において、流量検
出用の感温抵抗体と流れ方向判別用の感温抵抗体を別々
に有し、前記副通路内には流量検出用の感温抵抗体を配
し、前記副通路の外部に流れ方向判別用の感温抵抗体を
配していることを特徴とする発熱抵抗式流量測定装置。
3. A temperature sensing resistor for flow rate detection and a temperature sensing resistor for flow direction discrimination according to claim 1 or 2, respectively. A heating resistance type flow rate measuring device, wherein a resistance element is disposed, and a temperature-sensitive resistance element for determining a flow direction is disposed outside the sub-passage.
【請求項4】請求項1ないし請求項3のいずれか1項に
おいて、前記第1の流路は主流方向に対してほぼ平行な
流路であり、前記感温抵抗体の下流でほぼ直角に曲がり
主流方向に対してほぼ垂直な第2の流路とによりL字形
の通路を形成し、前記感温抵抗体の直下流に前記第1の
流路とほぼ平行で前記第2の流路より断面積の小さな第
3の流路とからなる副通路を形成していることを特徴と
する発熱抵抗式流量測定装置。
4. The flow passage according to claim 1, wherein the first flow passage is a flow passage substantially parallel to a main flow direction, and is substantially perpendicular to the downstream of the temperature-sensitive resistor. An L-shaped passage is formed by the second flow passage substantially perpendicular to the main flow direction of the bend, and immediately downstream of the temperature-sensitive resistor, substantially parallel to the first flow passage and from the second flow passage. A heating resistance type flow measurement device, wherein a sub-passage including a third passage having a small cross-sectional area is formed.
【請求項5】請求項4において、前記第3の流路は、順
方向の流れに対して広がり管路となるノズル状流路とし
ていることを特徴とする発熱抵抗式流量測定装置。
5. A heating resistance type flow rate measuring apparatus according to claim 4, wherein said third flow path is a nozzle-like flow path which becomes a duct which expands with respect to a forward flow.
【請求項6】請求項5において、ノズル状の第3の流路
は副通路の内壁から感温抵抗体へ向けて突出した形状に
形成されていることを特徴とする発熱抵抗式流量測定装
置。
6. A heating resistance type flow rate measuring device according to claim 5, wherein the nozzle-shaped third flow path is formed to protrude from the inner wall of the sub-passage toward the temperature-sensitive resistor. .
【請求項7】請求項4ないし請求項6のいずれか1項に
おいて、前記第3の流路の最小内径は感温抵抗体の受感
部の長さとほぼ同じとなるように形成されていることを
特徴とする発熱抵抗式流量測定装置。
7. The temperature sensor according to claim 4, wherein a minimum inner diameter of the third flow path is substantially equal to a length of a sensing portion of the temperature sensing resistor. A heating resistance type flow rate measuring device, characterized in that:
【請求項8】請求項1ないし請求項7のいずれか1項に
おいて、順方向の流れの副通路への入口となる第1の流
路の開口面と,逆方向の流れを導入するための第3の流
路の逆方向側の開口面のどちらか一方、あるいは両方
が、周囲に壁を有して掘り下げた受皿状に形成されてい
ることを特徴とする発熱抵抗式流量測定装置。
8. The method according to claim 1, wherein an opening surface of the first flow path serving as an inlet to the sub-passage of the forward flow and a flow of the reverse flow are introduced. An exothermic resistance type flow rate measuring device, characterized in that one or both of the opening surfaces on the opposite side of the third flow path are formed in a saucer shape dug down with a wall around it.
【請求項9】請求項8において、前記受皿状の底面を傾
斜面としていることを特徴とする発熱抵抗式流量測定装
置。
9. A heating resistance type flow rate measuring apparatus according to claim 8, wherein said bottom surface of said saucer is an inclined surface.
【請求項10】請求項1ないし請求項9のいずれか1項
において、順方向の流れの副通路出口となる第2の通路
の開口面は、主流に対して平行に開口していることを特
徴とする発熱抵抗式流量測定装置。
10. The method according to claim 1, wherein an opening surface of the second passage serving as a secondary passage outlet of the forward flow opens in parallel with the main flow. Characteristic heating resistance type flow measurement device.
【請求項11】請求項10において、前記第2の流路の
開口面の上流側と下流側のどちらか一方、あるいは両方
にひさし状の突起を設けていることを特徴とする発熱抵
抗式流量測定装置。
11. A heating resistance type flow rate according to claim 10, wherein an eave-shaped projection is provided on one or both of the upstream side and the downstream side of the opening surface of the second flow path. measuring device.
【請求項12】請求項1ないし請求項11のいずれか1
項において、前記副通路は、前記流体通路の一部を構成
する主流路と一体に形成されていることを特徴とする発
熱抵抗式流量測定装置。
12. The method according to claim 1, wherein
In the paragraph, the sub-passage is formed integrally with a main flow passage that forms a part of the fluid passage.
【請求項13】請求項1ないし請求項11のいずれか1
項において、前記副通路を構成する部材は、前記感温抵
抗体と電気的に接続されて感温抵抗体の制御や出力変換
を行う電子回路を内装している回路モジュールと一体化
するように回路モジュールに固定されていることを特徴
とする発熱抵抗式流量測定装置。
13. The method according to claim 1, wherein:
In the above paragraph, the member constituting the sub-passage is integrated with a circuit module containing an electronic circuit which is electrically connected to the temperature-sensitive resistor and controls and converts output of the temperature-sensitive resistor. An exothermic resistance type flow measuring device fixed to a circuit module.
【請求項14】請求項12または請求項13において、
前記副通路を構成する部材は、プラスチックモールド製
であることを特徴とする発熱抵抗式流量測定装置。
14. The method according to claim 12, wherein
The member constituting the sub-passage is made of a plastic mold.
【請求項15】請求項13において、前記流体通路の一
部、例えば内燃機関の吸気系の場合、エアクリーナ,ス
ロットルボディ,インテークマニホールド等の外壁に前
記副通路を流体通路内に挿入するための穴を設け、前記
回路モジュールを固定して使用することを特徴とした発
熱抵抗式流量測定装置。
15. A hole for inserting the sub-passage into the fluid passage in a part of the fluid passage, for example, in the case of an intake system of an internal combustion engine, in an outer wall of an air cleaner, a throttle body, an intake manifold or the like. Wherein the circuit module is fixed and used.
【請求項16】請求項1ないし請求項15のいずれか1
項に記載の発熱抵抗式流量測定装置を用いて内燃機関の
制御を行うことを特徴とする内燃機関の制御システム。
16. The method according to claim 1, wherein:
A control system for an internal combustion engine, wherein the control of the internal combustion engine is performed by using the heating resistance type flow rate measuring device described in the section.
JP2001020342A 2001-01-29 2001-01-29 Heating resistance type flow measurement device Expired - Lifetime JP3593042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020342A JP3593042B2 (en) 2001-01-29 2001-01-29 Heating resistance type flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020342A JP3593042B2 (en) 2001-01-29 2001-01-29 Heating resistance type flow measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25180194A Division JP3193837B2 (en) 1994-10-18 1994-10-18 Heating resistance type flow measurement device

Publications (2)

Publication Number Publication Date
JP2001241986A true JP2001241986A (en) 2001-09-07
JP3593042B2 JP3593042B2 (en) 2004-11-24

Family

ID=18886060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020342A Expired - Lifetime JP3593042B2 (en) 2001-01-29 2001-01-29 Heating resistance type flow measurement device

Country Status (1)

Country Link
JP (1) JP3593042B2 (en)

Also Published As

Publication number Publication date
JP3593042B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
JP3193837B2 (en) Heating resistance type flow measurement device
EP0940657B1 (en) Air flow meter
JP4752472B2 (en) Air flow measurement device
US20010037678A1 (en) Air flow meter having turbulence reduction member
JP3260552B2 (en) Heating resistance type air flow measurement device
JPWO2020202722A1 (en) Physical quantity detector
JP3561219B2 (en) Heating resistance type flow measurement device
JP3593011B2 (en) Heating resistance type flow measurement device
JP3593042B2 (en) Heating resistance type flow measurement device
JP3782650B2 (en) Air flow measurement device
JP3189636B2 (en) Heating resistance type flow measurement device
JPH10281836A (en) Heating resistor type air flow rate measuring equipment
JP3716193B2 (en) Heat resistance type air flow measuring device
JP3106449B2 (en) Flowmeter
JP4512616B2 (en) Air flow measurement module
JP3793765B2 (en) Heat generation resistance type air flow measurement module
JP2981058B2 (en) Flowmeter
JP2001033288A (en) Air flow rate measuring device
JP4006463B2 (en) Flow rate measuring module and internal combustion engine control method
JP3867106B2 (en) Air flow measurement module
JP3014888B2 (en) Flowmeter
JP2000314646A (en) Heating resistance-type flow-rate measuring apparatus
JP2001317976A (en) Flow rate measuring apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

EXPY Cancellation because of completion of term