JP2001241607A - Method for load control on start-up of backup of feed- water pump backup - Google Patents

Method for load control on start-up of backup of feed- water pump backup

Info

Publication number
JP2001241607A
JP2001241607A JP2000056924A JP2000056924A JP2001241607A JP 2001241607 A JP2001241607 A JP 2001241607A JP 2000056924 A JP2000056924 A JP 2000056924A JP 2000056924 A JP2000056924 A JP 2000056924A JP 2001241607 A JP2001241607 A JP 2001241607A
Authority
JP
Japan
Prior art keywords
bfp
signal
water supply
generator output
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000056924A
Other languages
Japanese (ja)
Other versions
JP3772295B2 (en
Inventor
Mitsuo Tanaka
三雄 田中
Toshiyuki Ozeki
俊行 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2000056924A priority Critical patent/JP3772295B2/en
Publication of JP2001241607A publication Critical patent/JP2001241607A/en
Application granted granted Critical
Publication of JP3772295B2 publication Critical patent/JP3772295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize an operational condition of a plant, and improve availabil ity factor of the plant, in the event of emergency shutdown of at least one pump in the operation of two or more turbine driven BFP(boiler feed water pump). SOLUTION: In the event of emergency shutdown of one pump during operation of two turbine driven BFP, it is judged whether a motor driven BFP is on standby or not (801), then it is judged whether generator output is at least 60% or not (802). Further it is determined whether one pump during operation of two turbine driven BFP is stopped or not (803), and in the event of shutdown of one pump, a motor driven BFP is automatically started up (804), and further an MWD signal (generator output command signal) is switched to a signal on a water feed signal base (805). Next recovery of water-supply quantity is recognized (806), and a backup start-up of the motor driven BFP is completed (807). Then a generator output command value is controlled in accordance with insufficient amount of feed water due to startup of the motor driven BFP in order to minimize a reduction in the generator output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電所の給水
制御方法及び発電機出力制御方法に係り、特に、複数台
のボイラ給水ポンプ(BFP)を有する火力発電所にお
いて、発電機出力低下を最低限に抑制する給水ポンプバ
ックアップ起動時の負荷制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling water supply of a thermal power plant and a method for controlling generator output, and more particularly, to a method for controlling a decrease in generator output in a thermal power plant having a plurality of boiler feed pumps (BFP). The present invention relates to a load control method at the time of starting a water supply pump backup to be minimized.

【0002】[0002]

【従来の技術】従来、火力発電所の発電機出力制御方法
は、発電機出力指令値と発電機の実出力との偏差をター
ビン加減弁を開閉することにより実現している。また、
給水制御方法は、この発電機出力指令値(以下、MWD
信号と略す。)よりボイラーの静特性から給水流量値を
算出し、実際の給水流量との偏差を給水流量指令として
運転中のタービンBFP加減弁開度を開閉して、タービ
ンBFPの回転を増減することにより調整するか、運転
中のモータ駆動BFPの給水流量調整弁開度を開閉する
ことにより調整している。また、複数台のBFPで構成
されている火力発電所において、タービン駆動BFP2
台運転中に、1台が緊急停止した場合は、特開平8−2
00608号公報に記載の負荷ランバック時の給水制御
方式のように、発電機出力はタービン駆動BFP1台運
転で可能な出力値まで降下させて、給水安定化を図るこ
ととしている。
2. Description of the Related Art Conventionally, a generator output control method for a thermal power plant has realized a deviation between a generator output command value and an actual output of the generator by opening and closing a turbine control valve. Also,
The water supply control method uses the generator output command value (hereinafter referred to as MWD).
Abbreviated as signal. ) To calculate the feedwater flow rate from the boiler's static characteristics, and adjust the opening and closing of the operating turbine BFP opening / closing valve using the deviation from the actual feedwater flow rate as the feedwater flow rate command to increase or decrease the rotation of the turbine BFP. Alternatively, the adjustment is performed by opening and closing the opening of the feedwater flow rate adjustment valve of the motor-driven BFP during operation. In a thermal power plant composed of a plurality of BFPs, a turbine-driven BFP2
If one of the units is stopped in an emergency during the operation of the unit,
As in the water supply control method at the time of load runback described in Japanese Patent Application Laid-Open No. 60608, the generator output is reduced to an output value that can be operated by one turbine drive BFP to stabilize the water supply.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、ター
ビン駆動BFP2台運転中に1台緊急停止した場合に
は、継続して運転中のタービン駆動BFP1台の定格容
量で対応できるMWD信号まで低減させる負荷ランバッ
ク制御方式があった。また、負荷ランバック後に運転員
の判断によりモータ駆動BFPを起動し、給水制御の安
定を確認しながら、発電機出力を調整して行く対応は可
能であった。ところが、モータ駆動BFPを起動するま
でにはBFPのウオーミング等の起動前準備が必要なこ
とや、この間は発電機出力が50%に制限されることな
ど、運転員による対応が必要となる等の課題があった。
According to the prior art, when one of the turbine-driven BFPs is stopped in an emergency while the other two turbine-driven BFPs are operating, the MWD signal is reduced to a value that can be handled by the rated capacity of the continuously-operated turbine-driven BFP. There was a load run-back control method to be performed. Further, it was possible to start the motor drive BFP at the discretion of the operator after the load runback and adjust the generator output while confirming the stability of the water supply control. However, before starting the motor-driven BFP, preparations before starting, such as warming of the BFP, are required, and during this time the generator output is limited to 50%. There were challenges.

【0004】本発明の課題は、上記の課題を解決するた
めに、タービン駆動BFP2台以上運転中に1台以上が
緊急停止した場合に、プラントの運転状態を安定させ、
かつ、プラントの稼働率を向上させることにある。
An object of the present invention is to solve the above-mentioned problems by stabilizing the operation state of a plant when one or more turbine-driven BFPs are emergency stopped during the operation of two or more turbine-driven BFPs.
Another object is to improve the operation rate of the plant.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、タービン駆動BFP2台以上運転中に1台以上が緊
急停止した場合、バックアップ用モータ駆動BFPを自
動起動させ、発電機出力低下を最小とする。ここで、発
電機出力低下を最小とするための発電機出力指令値をバ
ックアップ用モータ駆動BFPの起動による給水不足量
に見合って抑制する。さらに、バックアップ用モータ駆
動BFP出口弁が全開し、給水量低下現象がなくなった
時点でタービン駆動BFP1台以上が緊急停止した前の
発電機出力値まで復旧させる。また、タービン駆動BF
P2台以上運転中に1台以上が緊急停止した場合には、
バックアップ用モータ駆動BFPを自動起動させ、発電
機出力低下を最小とするための発電機出力指令値をバッ
クアップ用モータ駆動BFPの起動による給水不足量に
見合って抑制するとともに、バックアップ用モータ駆動
BFP出口弁が全開し、給水量低下現象がなくなった時
点で運転中のタービン駆動BFPとバックアップ用モー
タ駆動BFPによって確保可能な発電機出力値まで復旧
させる。
In order to solve the above-mentioned problems, in the case where one or more turbine-driven BFPs are emergency-stopped while two or more turbine-driven BFPs are operating, the backup motor-driven BFP is automatically started to minimize the decrease in generator output. And Here, the generator output command value for minimizing the generator output decrease is suppressed in accordance with the water supply shortage caused by the activation of the backup motor drive BFP. Further, when the backup motor drive BFP outlet valve is fully opened and the water supply amount decrease phenomenon is eliminated, the generator output value is restored to the value before the emergency stop of one or more turbine drive BFPs. In addition, turbine drive BF
If one or more emergency stop occurs while driving two or more P,
The backup motor drive BFP is automatically started, and the generator output command value for minimizing the generator output decrease is suppressed in accordance with the water supply shortage caused by the start of the backup motor drive BFP, and the backup motor drive BFP outlet. When the valve is fully opened and the decrease in the amount of supplied water is stopped, the generator output value is restored to a value that can be secured by the operating turbine drive BFP and backup motor drive BFP.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態による給
水ポンプバックアップ起動時の負荷制御方法を実現する
構成を示す。火力発電所は、ボイラー2、タービン3、
発電機4とこれらを補助する補機から構成されている。
ボイラー2では、ボイラー3へ給水された水を燃料を燃
焼させて発生する熱エネルギーにより、高温、高圧の蒸
気を発生させ、タービン加減弁12の開度を調整してタ
ービン3へ送る蒸気量を調整する。タービン3では、高
温、高圧の蒸気を運動エネルギーへ変換し、さらにこの
運動エネルギーをタービン3と連結した発電機4で電気
エネルギーへ変換して火力発電所外部へ電気を送り出
す。タービン3で仕事をした蒸気は、一部は復水器11
へ戻り、海水等の冷却水によりボイラー用の給水へ再使
用され、一部はタービンBFP5,7の駆動用蒸気とし
て使用される。すなわち、タービン駆動A−BFP6
は、A−BFPタービン駆動用蒸気加減弁13によって
A−BFPタービン5への蒸気量を調整してA−BFP
タービン5の回転数を制御し、タービン駆動A−BFP
6の給水流量を調整する。同様に、タービン駆動B−B
FP8は、B−BFPタービン駆動用蒸気加減弁14に
よってB−BFPタービン7への蒸気量を調整してB−
BFPタービン7の回転数を制御し、タービン駆動B−
BFP8の給水流量を調整する。また、C−BFP用電
動モータ9は、モータ駆動C−BFP10を起動して一
定の起動時間後に定格回転数まで到達させ、さらにC−
BFP給水流調弁15を制御し、モータ駆動C−BFP
10の給水流量を調整する。復水器11からの水は、タ
ービン駆動A−BFP6とタービン駆動B−BFP8及
びモータ駆動C−BFP10によって昇圧され、A−B
FP出口弁16とB−BFP出口弁17及びC−BFP
給水流調弁15とC−BFP出口弁18を経由してボイ
ラー2へ給水される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration for realizing a load control method at the time of starting a water supply pump backup according to an embodiment of the present invention. The thermal power plant has boiler 2, turbine 3,
It is composed of a generator 4 and auxiliary equipment for assisting them.
In the boiler 2, high-temperature, high-pressure steam is generated by thermal energy generated by burning fuel supplied to the boiler 3, and the amount of steam sent to the turbine 3 is adjusted by adjusting the opening of the turbine control valve 12. adjust. In the turbine 3, high-temperature, high-pressure steam is converted into kinetic energy, and the kinetic energy is converted into electric energy by a generator 4 connected to the turbine 3, and electricity is sent out of the thermal power plant. Part of the steam that worked in the turbine 3
Then, the cooling water such as seawater is reused for boiler feed water, and a part is used as steam for driving the turbines BFP5 and BFP7. That is, the turbine drive A-BFP 6
Adjusts the amount of steam to the A-BFP turbine 5 by the A-BFP turbine driving steam control valve 13 and
The number of rotations of the turbine 5 is controlled, and a turbine drive A-BFP
Adjust the feedwater flow of 6. Similarly, turbine drive BB
The FP 8 adjusts the amount of steam to the B-BFP turbine 7 by the steam control valve 14 for driving the B-BFP turbine, and
The rotation speed of the BFP turbine 7 is controlled, and the turbine drive B-
Adjust the feedwater flow rate of BFP8. In addition, the C-BFP electric motor 9 starts the motor drive C-BFP 10 to reach the rated rotation speed after a certain start-up time.
The BFP feed water flow control valve 15 is controlled, and the motor drive C-BFP
Adjust the water supply flow rate of 10. The water from the condenser 11 is boosted by the turbine drive A-BFP 6, the turbine drive B-BFP 8, and the motor drive C-BFP 10, and AB
FP outlet valve 16, B-BFP outlet valve 17, and C-BFP
Water is supplied to the boiler 2 via the feedwater flow regulating valve 15 and the C-BFP outlet valve 18.

【0007】制御装置1の制御回路について動作を説明
する。発電機出力指令信号(MWD)100と給水信号
19を図2において後述する補正後MWD信号作成回路
101により、補正後MWD信号を作成する。発電機出
力信号23と補正後MWD信号とを偏差演算器103に
よりMWD偏差信号を作成し、比例積分器104によっ
てタービン加減弁12の開度指令を作成する。また、補
正後MWD信号を関数発生器116により主蒸気圧力設
定信号を作成し、主蒸気圧力検出値24とを偏差演算器
105により主蒸気圧力偏差信号を作成し、比例積分器
106よって演算し、ボイラー入力指令信号(以下、B
ID信号と略す。)を作成する。BID信号をベースと
して、関数発生器107により給水流量の設定値を作成
して、給水流量検出値19と偏差演算器108によって
給水流量偏差信号を演算し、比例積分器109よってB
FPへの給水指令信号を作成する。給水指令信号とA−
BFP吸い込み流量検出器20の信号から偏差演算器1
10によりA−BFPの給水偏差を演算し、比例積分器
111でA−BFPタービン駆動用蒸気加減弁13を調
整してA−BFPの給水流量を制御する。同様にして、
給水指令信号とB−BFP吸い込み流量検出器21の信
号から偏差演算器112によりB−BFPの給水偏差を
演算し、比例積分器113でB−BFPタービン駆動用
蒸気加減弁14を調整してB−BFPの給水流量を制御
する。同様にして、給水指令信号とC−BFP吸い込み
流量検出器22の信号から偏差演算器114によりC−
BFPの給水偏差を演算し、比例積分器115でC−B
FP給水流調弁15を調整してC−BFPの給水流量を
制御する。
The operation of the control circuit of the control device 1 will be described. A corrected MWD signal is generated from the generator output command signal (MWD) 100 and the water supply signal 19 by a corrected MWD signal generation circuit 101 described later in FIG. A deviation calculator 103 creates an MWD deviation signal from the generator output signal 23 and the corrected MWD signal, and an opening command for the turbine control valve 12 is created by a proportional integrator 104. Further, the corrected MWD signal is used to create a main steam pressure setting signal by the function generator 116, the main steam pressure detection value 24 and the deviation calculator 105 are used to create a main steam pressure deviation signal, and are calculated by the proportional integrator 106. , A boiler input command signal (hereinafter, B
Abbreviated as ID signal. ) To create. Based on the BID signal, a set value of the water supply flow rate is created by the function generator 107, a water supply flow rate deviation signal is calculated by the water supply flow rate detection value 19 and the deviation calculator 108, and B is calculated by the proportional integrator 109.
Create a water supply command signal to the FP. Water supply command signal and A-
Deviation calculator 1 from signal of BFP suction flow rate detector 20
The A-BFP water supply deviation is calculated by 10 and the proportional integrator 111 adjusts the A-BFP turbine drive steam control valve 13 to control the A-BFP water supply flow rate. Similarly,
The deviation calculator 112 calculates the water supply deviation of the B-BFP from the water supply command signal and the signal of the B-BFP suction flow rate detector 21, and adjusts the B-BFP turbine drive steam control valve 14 by the proportional integrator 113 to obtain the B-BFP. -Control the feed water flow rate of the BFP. Similarly, a deviation calculator 114 calculates a C-BFP from the water supply command signal and the signal of the C-BFP suction flow rate detector 22.
The water supply deviation of the BFP is calculated, and the proportional integrator 115 calculates C-B
The FP feedwater flow control valve 15 is adjusted to control the feedwater flow rate of the C-BFP.

【0008】図2に、補正後MWD信号作成回路101
の詳細をを説明する。給水流量信号19は、切り替え前
値ホールド演算器1010においてホールド指令102
2にて信号をホールドする。偏差演算器1011は、給
水流量信号19と切り替え前値ホールド演算器1010
の出力値の偏差信号を演算し、関数発生器1012で給
水流量偏差信号をベースとしてMWD信号補正信号を作
成する。信号切替器1013は、MWD信号補正信号と
信号発生器1016の出力信号と給水偏差入信号102
6が成立した場合、MWD信号補正信号を選択する。信
号変化率制限器1014では、火力発電所の応答特性に
見合ってMWD信号補正信号の補正変化率を調整できる
ようにする。一方、MWD信号100は、切り替え前値
ホールド演算器1017においてホールド指令1022
が成立すると、信号をホールドする。信号加算器101
5は、MWD信号補正信号とMWDホールド信号とを加
算して補正後MWD信号を作成する。
FIG. 2 shows a corrected MWD signal generation circuit 101.
The details will be described. The feedwater flow signal 19 is supplied to a hold command 102 in a pre-switch value hold computing unit 1010.
2. Hold the signal. The deviation calculator 1011 includes a feedwater flow signal 19 and a pre-switching value hold calculator 1010.
Is calculated, and the function generator 1012 creates an MWD signal correction signal based on the feedwater flow rate deviation signal. The signal switch 1013 includes a MWD signal correction signal, an output signal of the signal generator 1016, and a feedwater deviation input signal 102.
When the condition 6 is satisfied, the MWD signal correction signal is selected. The signal change rate limiter 1014 enables the correction change rate of the MWD signal correction signal to be adjusted according to the response characteristics of the thermal power plant. On the other hand, the MWD signal 100 is supplied to the hold command 1022
Holds, the signal is held. Signal adder 101
5 generates a corrected MWD signal by adding the MWD signal correction signal and the MWD hold signal.

【0009】次に、ホールド指令1022の成立条件を
説明する。C−BFPバックアップ起動指令310が成
立すれば、ホールド指令1022は成立し、論理和演算
器1019でホールド指令1022を保持する。ホール
ド指令1022のリセット信号は、信号偏差検出器10
18で切り替え前値ホールド演算器1017の入力値と
出力値とを比較し、同一値にてMWD信号復旧信号を検
出し、この信号を信号反転器1020で演算し、論理積
演算器1021に入力し、ホールド指令1022をリセ
ットする。また、給水偏差入信号1026の成立条件を
説明する。モータ駆動のC−BFPバックアップ起動指
令310が成立すれば、給水偏差入1026は成立し、
論理和演算器1023で給水偏差入1026を保持す
る。給水偏差入1026のリセット信号は、C−BFP
出口弁全開信号400を信号反転器1024で演算し、
論理積演算器1025に入力し、給水偏差入1026を
リセットする。
Next, the conditions for establishing the hold command 1022 will be described. If the C-BFP backup activation command 310 is satisfied, the hold command 1022 is satisfied, and the logical sum calculator 1019 holds the hold command 1022. The reset signal of the hold command 1022 is output from the signal deviation detector 10.
At 18, the input value and the output value of the pre-switching value hold computing unit 1017 are compared, a MWD signal restoration signal is detected with the same value, and this signal is computed by the signal inverter 1020, and input to the logical product computing unit 1021. Then, the hold command 1022 is reset. The conditions for establishing the feedwater deviation input signal 1026 will be described. If the motor drive C-BFP backup start command 310 is satisfied, the water supply deviation input 1026 is satisfied,
The OR operation unit 1023 holds the feedwater deviation input 1026. The reset signal of water supply deviation input 1026 is C-BFP
The outlet valve fully open signal 400 is calculated by the signal inverter 1024,
The data is input to the logical product calculator 1025, and the water supply deviation input 1026 is reset.

【0010】図3を用いて、モータ駆動のC−BFPバ
ックアップ起動指令の成立条件を説明する。タービン駆
動BFPであるA−BFP運転中300とB−BFP運
転中301の条件のうち、A−BFP運転中300とB
−BFP運転中301を信号反転器304で演算した信
号を論理積演算器306に入力し、A−BFP1台運転
中の条件を作成する。同様に、B−BFP運転中301
とA−BFP運転中300を信号反転器305で演算し
た信号を論理積演算器307に入力し、B−BFP1台
運転中の条件を作成する。論理積演算器306の出力信
号と論理積演算器307の出力信号308を論理和演算
器308に入力し、タービン駆動BFP1台運転中信号
を作成する。次に、C−BFPスタンバイ状態302の
条件と、発電機出力60%以上の条件303とを論理和
演算器308の出力信号であるタービン駆動BFP1台
運転中信号に論理積演算器309で演算し、C−BFP
バックアップ起動指令310を作成する。
Referring to FIG. 3, conditions for establishing a motor-driven C-BFP backup start command will be described. Of the conditions of A-BFP operation 300 and B-BFP operation 301 which are the turbine drive BFP, A-BFP operation 300 and B
A signal obtained by calculating the signal 301 during the BFP operation by the signal inverter 304 is input to the AND operator 306, and conditions for operating one A-BFP are created. Similarly, during B-BFP operation 301
Then, a signal calculated by the signal inverter 305 during the A-BFP operation 300 is input to the logical product calculator 307, and conditions for operating one B-BFP are created. The output signal of the logical product calculator 306 and the output signal 308 of the logical product calculator 307 are input to the logical sum calculator 308 to generate a signal for operating one turbine drive BFP. Next, the condition of the C-BFP standby state 302 and the condition 303 of the generator output of 60% or more are calculated by the logical product calculator 309 with the operation signal of one turbine drive BFP which is the output signal of the logical sum calculator 308. , C-BFP
A backup start command 310 is created.

【0011】図4において、モータ駆動のC−BFP給
水止弁をC−BFPバックアップ起動指令310によっ
て全開させ、かつ、C−BFP給水流量調整弁15も一
旦全開させるC−BFP給水流調弁全開指令信号403
を作成する。また、C−BFP給水止弁全開信号400
を信号反転器401で演算し、論理積演算器402で演
算し、C−BFP給水流調弁全開指令信号403をリセ
ットするとともに、C−BFP給水流調弁全開信号40
3を信号反転器404でC−BFP給水流調弁15の自
動復帰指令とする。
In FIG. 4, the C-BFP feed water shutoff valve is fully opened by a C-BFP backup start command 310, and the C-BFP feed water flow control valve 15 is also fully opened once. Command signal 403
Create In addition, C-BFP water stop valve fully open signal 400
Is calculated by a signal inverter 401 and is calculated by a logical product calculator 402 to reset the C-BFP feedwater flow control valve fully open command signal 403 and to output the C-BFP feedwater flow control valve fully open signal 40.
3 is set as an automatic return command of the C-BFP feedwater flow control valve 15 by the signal inverter 404.

【0012】図5は、本発明の他の補正後MWD信号作
成回路101を示す。なお、図2と比較して相違点のみ
説明する。図5は、モータ駆動BFPの容量がタービン
の駆動BFPの容量より小さいプラントについて制限回
路を追加したところに特徴がある。信号発生器1027
には、タービンの駆動BFP1台の容量とバックアップ
するモータ駆動BFPの容量を加算した値を設定する。
信号発生器1028には、火力発電所の最大発電出力
(通常100%)を設定する。信号切替え器1029
は、MWD上限1032の選択条件が成立すると、信号
発生器1027側へ切り替わる。次に、信号上限制限値
1030は、切り替え前値ホールド演算器1017のホ
ールド信号と信号切替え器1029の信号の小さい値を
選択する。さらに、信号変化率制限器1031で火力発
電所の応答特性に見合ってMWD信号補正信号の補正変
化率を調整できるようにする。さらに、信号検出器10
18はMWD信号と変化率制限器1031の出力値とを
比較し、MWD信号100が切替え前の値か、タービン
駆動BFP1台の容量とバックアップするモータ駆動B
FPの容量を加算した値になったことを検出して、MW
D信号復旧条件を成立させる。さらに、MWD上限値1
033の選択条件は、給水流量の下降がなくなり、か
つ、モータ駆動BFPがバックアップした条件とすべ
く、C−BFPバックアップ起動指令310とC−BF
P出口弁全開信号400を論理積演算器1032にて演
算した信号とする。
FIG. 5 shows another corrected MWD signal generating circuit 101 according to the present invention. Only differences from FIG. 2 will be described. FIG. 5 is characterized in that a limiting circuit is added for a plant in which the capacity of the motor driving BFP is smaller than the capacity of the turbine driving BFP. Signal generator 1027
Is set to a value obtained by adding the capacity of one turbine drive BFP and the capacity of the motor drive BFP to be backed up.
For the signal generator 1028, the maximum power output (normally 100%) of the thermal power plant is set. Signal switch 1029
Is switched to the signal generator 1027 when the selection condition of the MWD upper limit 1032 is satisfied. Next, as the signal upper limit value 1030, a smaller value of the hold signal of the pre-switching value hold calculator 1017 and the signal of the signal switcher 1029 is selected. Further, the signal change rate limiter 1031 can adjust the correction change rate of the MWD signal correction signal in accordance with the response characteristics of the thermal power plant. Further, the signal detector 10
18 compares the MWD signal with the output value of the rate-of-change limiter 1031 and determines whether the MWD signal 100 is the value before switching or the motor drive B for backing up the capacity of one turbine drive BFP.
When the value obtained by adding the capacity of the FP becomes
The D signal restoration condition is satisfied. Furthermore, the MWD upper limit 1
The selection condition of 033 is that the C-BFP backup start command 310 and the C-BF are selected so that the water supply flow rate does not drop and the motor drive BFP backs up.
The P outlet valve fully open signal 400 is a signal calculated by the logical product calculator 1032.

【0013】図6は、給水ポンプバックアップ起動時の
プロセス挙動を示す。横軸は時間(秒)、縦軸は給水流
量(T/H)及びMWD信号(%)であり、601はB
−BFP給水流量、602はA−BFP給水流量、60
3はC−BFP給水流量、604は給水流量、605は
MWD指令信号を示す。タービン駆動BFPのB−BF
Pが緊急停止(B−BFPトリップ)したことで、B−
BFP給水流量601は2秒で500T/Hから0T/
Hへ減少する。B−BFPトリップと同時にC−BFP
が自動起動するが、C−BFP給水流量603はC−B
FP給水止弁18の全開時間とC−BFP用駆動モータ
9の起動時間により、30秒後に定格給水流量へ到達す
る。この間に、A−BFPは最大流量の600T/Hま
で一時的に給水流量を増加させ、さらにMWD信号60
5を給水流量604の減少に見合って減少させることに
より、プラント全体のバランスを確保しつつ、発電機出
力の減少を最低限に抑えてプラントを運転することがで
きる。
FIG. 6 shows the process behavior at the time of starting the water supply pump backup. The horizontal axis represents time (seconds), the vertical axis represents feedwater flow rate (T / H) and MWD signal (%).
-BFP water supply flow rate, 602 is A-BFP water supply flow rate, 60
Reference numeral 3 denotes a C-BFP feedwater flow rate, 604 denotes a feedwater flow rate, and 605 denotes an MWD command signal. B-BF of turbine driven BFP
The emergency stop (B-BFP trip) of P causes B-
BFP feedwater flow rate 601 can be changed from 500T / H to 0T /
H. C-BFP at the same time as B-BFP trip
Automatically starts, but the C-BFP feedwater flow rate 603 is
Due to the fully open time of the FP water supply stop valve 18 and the activation time of the C-BFP drive motor 9, the rated water supply flow rate is reached after 30 seconds. During this time, the A-BFP temporarily increases the feedwater flow rate up to the maximum flow rate of 600 T / H, and further increases the MWD signal 60
By reducing 5 in proportion to the decrease in the feedwater flow rate 604, the plant can be operated with a minimum decrease in generator output while ensuring the balance of the entire plant.

【0014】図7は、モータ駆動BFPの容量がタービ
ン駆動BFPより小さく、モータ駆動BFPを起動して
も発電機の最大負荷を確保できない場合の給水ポンプバ
ックアップ起動時のプロセス挙動を示す。横軸は時間
(秒)、縦軸は給水流量(T/H)及びMWD信号
(%)であり、601はB−BFP給水流量、602は
A−BFP給水流量、603はC−BFP給水流量、、
605はMWD指令信号を示す。タービン駆動BFPの
B−BFPが緊急停止(B−BFPトリップ)したこと
で、B−BFP給水流量601は2秒で500T/Hか
ら0T/Hへ減少する。B−BFPトリップと同時にC
−BFPが自動起動するが、C−BFP給水流量603
はC−BFP給水止弁18の全開時間とC−BFP用駆
動モータ9の起動時間により、25秒後に定格給水流量
へ到達する。しかし、B−BFPの定格容量500T/
Hまで確保できない。この間に、A−BFP給水流量6
02は最大流量の600T/Hまで一時的に増加させ、
さらにMWD信号605を給水流量604の減少に見合
って減少させることにより、プラント全体のバランスを
確保しつつ、発電機出力の減少を最低限に抑えてプラン
トを運転することができるが、給水流量604は発電機
の最大負荷を確保できるまでには到達せず、給水流量6
04はA−BFP給水流量602とC−BFP給水流量
603との合計となる。同じく、MWD指令値605も
給水流量604の復旧値に見合った値までとなる。
FIG. 7 shows a process behavior at the time of starting the water supply pump backup when the capacity of the motor drive BFP is smaller than that of the turbine drive BFP and the maximum load of the generator cannot be ensured even when the motor drive BFP is started. The horizontal axis represents time (seconds), the vertical axis represents feedwater flow rate (T / H) and MWD signal (%), 601 is B-BFP feedwater flow, 602 is A-BFP feedwater flow, 603 is C-BFP feedwater flow. ,
Reference numeral 605 denotes an MWD command signal. The emergency stop (B-BFP trip) of the B-BFP of the turbine drive BFP causes the B-BFP feedwater flow rate 601 to decrease from 500 T / H to 0 T / H in 2 seconds. C at the same time as B-BFP trip
-BFP starts automatically, but C-BFP water supply flow rate 603
Reaches the rated water supply flow rate after 25 seconds due to the fully open time of the C-BFP water supply stop valve 18 and the activation time of the C-BFP drive motor 9. However, the rated capacity of B-BFP is 500T /
H cannot be secured. During this time, the A-BFP water supply flow rate 6
02 temporarily increases to the maximum flow rate of 600 T / H,
Further, by reducing the MWD signal 605 in accordance with the decrease in the feedwater flow rate 604, the plant can be operated with a minimum decrease in the generator output while ensuring the balance of the entire plant. Does not reach the maximum load of the generator,
04 is the sum of the A-BFP feedwater flow rate 602 and the C-BFP feedwater flow rate 603. Similarly, the MWD command value 605 is also up to a value corresponding to the restoration value of the water supply flow rate 604.

【0015】図8は、本発明の機能フローを示す。80
0でスタートし、801でモータ駆動BFPがスタンバ
イ状態かを判定する。次に、802で発電機出力が60
%以上か判断する。更に、803でタービン駆動BFP
2台運転中1台停止したかどうかを確認する。タービン
駆動BFP2台運転中1台停止した場合、805でモー
タ駆動BFPを自動起動する。更に、805でMWD信
号を給水信号ベースの信号へ切り替える。次に、806
で給水流量が復旧したことを確認し、807でモータ駆
動BFPバッツアップ起動完了とし、808で終了す
る。
FIG. 8 shows a functional flow of the present invention. 80
At 0, it is determined at 801 whether the motor drive BFP is in a standby state. Next, at 802, the generator output is 60
% Is determined. Further, in 803, the turbine drive BFP
Check if one of the two units has stopped during operation. If one of the turbine-driven BFPs is stopped during operation, the motor-driven BFP is automatically started at 805. Further, at 805, the MWD signal is switched to a feedwater signal-based signal. Next, 806
Confirms that the water supply flow rate has been restored, determines that the motor-driven BFP butts-up activation has been completed in 807, and ends in 808.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
複数台のBFPで構成された火力発電所において、ター
ビン駆動BFP2台運転中に1台以上が緊急停止した場
合には、バックアップ用モータ駆動BFPを自動起動さ
せ、発電機出力の制限時間を最小とするとともに、バッ
クアップ用モータ駆動BFPの起動時間による給水流量
の低減に見合って発電機出力指令値(MWD)信号を抑
制するので、ボイラーとタービン・発電機のバランスを
確保でき、プラントの運転状態を安定させ、かつ、プラ
ントの稼働率を向上させることができる。
As described above, according to the present invention,
In the case of a thermal power plant composed of a plurality of BFPs, if one or more of the turbine-driven BFPs is stopped in an emergency while operating two turbine-driven BFPs, the backup motor-driven BFP is automatically started to minimize the generator output time limit. At the same time, the generator output command value (MWD) signal is suppressed in accordance with the reduction of the water supply flow rate due to the start-up time of the backup motor drive BFP, so that the balance between the boiler and the turbine / generator can be secured, and the plant operating condition can be secured. It can stabilize and improve the operation rate of the plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による給水ポンプバックア
ップ起動時の負荷制御方法を実現する構成図
FIG. 1 is a configuration diagram for realizing a load control method at the time of starting a water supply pump backup according to an embodiment of the present invention;

【図2】本発明の補正後MWD信号作成回路の詳細図FIG. 2 is a detailed diagram of a corrected MWD signal generation circuit according to the present invention.

【図3】本発明のモータ駆動のC−BFPバックアップ
起動指令の成立条件を説明する図
FIG. 3 is a diagram illustrating conditions for establishing a motor-driven C-BFP backup start command according to the present invention.

【図4】本発明のモータ駆動のC−BFP出口弁全開指
令を説明する図
FIG. 4 is a diagram illustrating a motor-driven C-BFP outlet valve fully open command according to the present invention.

【図5】本発明のモータ駆動のC−BFP容量がタービ
ン駆動のBFP容量より小さい場合の補正後MWD信号
作成回路の詳細図
FIG. 5 is a detailed diagram of a corrected MWD signal generation circuit when the motor-driven C-BFP capacity is smaller than the turbine-driven BFP capacity according to the present invention.

【図6】本発明の給水ポンプバックアップ起動時の主要
プロセスの挙動図
FIG. 6 is a behavior diagram of a main process at the time of starting a water supply pump backup according to the present invention.

【図7】本発明のモータ駆動のC−BFP容量がタービ
ン駆動のBFP容量より小さい場合の給水ポンプバック
アップ起動時の主要プロセスの挙動図
FIG. 7 is a behavior diagram of a main process at the time of starting the water supply pump backup when the motor-driven C-BFP capacity of the present invention is smaller than the turbine-driven BFP capacity.

【図8】本発明の機能フロー図FIG. 8 is a functional flow diagram of the present invention.

【符号の説明】[Explanation of symbols]

1…制御装置、2…ボイラ、3…タービン、4…発電
機、5…A−BFPタービン、6、タービン駆動A−B
FP、7…B−BFPタービン、8…タービン駆動B−
BFP、9…C−BFP用電動モータ、10…モータ駆
動C−BFP、11…覆水器、12…タービン加減弁、
13…A−BFPタービン駆動用蒸気加減弁、14…B
−BFPタービン駆動用蒸気加減弁、15…C−BFP
給水流調弁
DESCRIPTION OF SYMBOLS 1 ... Control device, 2 ... Boiler, 3 ... turbine, 4 ... Generator, 5 ... A-BFP turbine, 6, Turbine drive AB
FP, 7: B-BFP turbine, 8: Turbine drive B-
BFP, 9 ... C-BFP electric motor, 10 ... Motor drive C-BFP, 11 ... Water cover, 12 ... Turbine control valve,
13 ... A-BFP turbine drive steam control valve, 14 ... B
-BFP turbine drive steam control valve, 15 ... C-BFP
Water flow regulation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大関 俊行 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所火力・水力事業部内 Fターム(参考) 3H045 AA01 AA09 AA16 AA23 AA31 BA02 BA03 CA23 CA30 DA01 EA02 EA12 EA38 3L021 AA05 CA01 DA38 EA04 FA28 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiyuki Ozeki 3-1-1, Sakaimachi, Hitachi-shi, Ibaraki F-term in the Thermal and Hydropower Division, Hitachi, Ltd. (Reference) 3H045 AA01 AA09 AA16 AA23 AA31 BA02 BA03 CA23 CA30 DA01 EA02 EA12 EA38 3L021 AA05 CA01 DA38 EA04 FA28

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数台のボイラ給水ポンプ(以下、BF
Pと略す。)から構成され、通常運転中ではタービン駆
動BFP2台以上によって発電機最大出力を確保し、バ
ックアップ用としてモータ駆動BFP1台以上から構成
されている火力発電所において、タービン駆動BFP2
台以上運転中に1台以上が緊急停止した場合、バックア
ップ用モータ駆動BFPを自動起動させ、発電機出力低
下を最小とすることを特徴とする給水ポンプバックアッ
プ起動時の負荷制御方法。
1. A boiler feed pump (hereinafter referred to as BF)
Abbreviated as P. ), The maximum output of the generator is secured by two or more turbine-driven BFPs during normal operation, and in a thermal power plant including one or more motor-driven BFPs for backup, a turbine-driven BFP2 is used.
A load control method at the time of starting a water supply pump backup, characterized in that when one or more units are emergency stopped during operation of more than one unit, a backup motor drive BFP is automatically started to minimize a decrease in generator output.
【請求項2】 請求項1において、タービン駆動BFP
2台以上運転中に1台以上が緊急停止した場合には、バ
ックアップ用モータ駆動BFPを自動起動させ、発電機
出力低下を最小とするための発電機出力指令値をバック
アップ用モータ駆動BFPの起動による給水不足量に見
合って抑制することを特徴とする給水ポンプバックアッ
プ起動時の負荷制御方法。
2. The turbine drive BFP according to claim 1,
When one or more units are stopped in an emergency during the operation of two or more units, the backup motor drive BFP is automatically started, and the generator output command value for minimizing the generator output decrease is started. A load control method at the time of starting a water supply pump backup characterized by suppressing the water supply shortage caused by the water supply pump.
【請求項3】 請求項1において、タービン駆動BFP
2台以上運転中に1台以上が緊急停止した場合には、バ
ックアップ用モータ駆動BFPを自動起動させ、発電機
出力低下を最小とするための発電機出力指令値をバック
アップ用モータ駆動BFPの起動による給水不足量に見
合って抑制するとともに、バックアップ用モータ駆動B
FP出口弁が全開し、給水量低下現象がなくなった時点
でタービン駆動BFP1台以上が緊急停止した前の発電
機出力値まで復旧させることを特徴とする給水ポンプバ
ックアップ起動時の負荷制御方法。
3. The turbine drive BFP according to claim 1,
When one or more units are stopped in an emergency during the operation of two or more units, the backup motor drive BFP is automatically started, and the generator output command value for minimizing the generator output decrease is started. The water supply shortage caused by the
A load control method at the time of starting a water supply pump backup, wherein the FP outlet valve is fully opened to restore the generator output value before one or more turbine-driven BFPs have been emergency-stopped when the phenomenon of reduced water supply has disappeared.
【請求項4】 請求項1において、タービン駆動BFP
2台以上運転中に1台以上が緊急停止した場合には、バ
ックアップ用モータ駆動BFPを自動起動させ、発電機
出力低下を最小とするための発電機出力指令値をバック
アップ用モータ駆動BFPの起動による給水不足量に見
合って抑制するとともに、バックアップ用モータ駆動B
FP出口弁が全開し、給水量低下現象がなくなった時点
で運転中のタービン駆動BFPとバックアップ用モータ
駆動BFPによって確保可能な発電機出力値まで復旧さ
せることを特徴とする給水ポンプバックアップ起動時の
負荷制御方法。
4. The turbine drive BFP according to claim 1,
When one or more units are stopped in an emergency during the operation of two or more units, the backup motor drive BFP is automatically started, and the generator output command value for minimizing the generator output decrease is started. The water supply shortage caused by the
When the FP outlet valve is fully opened and the water supply amount decrease phenomenon is eliminated, the generator output value can be restored to a generator output value that can be secured by the operating turbine drive BFP and the backup motor drive BFP. Load control method.
JP2000056924A 2000-03-02 2000-03-02 Load control method at the time of water pump backup start-up Expired - Lifetime JP3772295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056924A JP3772295B2 (en) 2000-03-02 2000-03-02 Load control method at the time of water pump backup start-up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056924A JP3772295B2 (en) 2000-03-02 2000-03-02 Load control method at the time of water pump backup start-up

Publications (2)

Publication Number Publication Date
JP2001241607A true JP2001241607A (en) 2001-09-07
JP3772295B2 JP3772295B2 (en) 2006-05-10

Family

ID=18577796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056924A Expired - Lifetime JP3772295B2 (en) 2000-03-02 2000-03-02 Load control method at the time of water pump backup start-up

Country Status (1)

Country Link
JP (1) JP3772295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091327A (en) * 2021-04-06 2021-07-09 丁胜 Electric boiler system and electric boiler control method
CN113464416A (en) * 2021-05-25 2021-10-01 西安热工研究院有限公司 Initial parameter design method for emergency starting test of high-capacity electric pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873841A (en) * 2018-06-29 2018-11-23 中国神华能源股份有限公司 Control system, the method and apparatus of Unit Commitment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091327A (en) * 2021-04-06 2021-07-09 丁胜 Electric boiler system and electric boiler control method
CN113091327B (en) * 2021-04-06 2022-06-17 丁胜 Electric boiler system and electric boiler control method
CN113464416A (en) * 2021-05-25 2021-10-01 西安热工研究院有限公司 Initial parameter design method for emergency starting test of high-capacity electric pump
WO2022247038A1 (en) * 2021-05-25 2022-12-01 西安热工研究院有限公司 Initial parameter design method for emergency starting test of high-capacity electric pump

Also Published As

Publication number Publication date
JP3772295B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
US20170207628A1 (en) Method for operating a power plant, and power plant
JP5350076B2 (en) Power plant condensate system controller
JP2001241607A (en) Method for load control on start-up of backup of feed- water pump backup
CN216429699U (en) Compressed air energy storage system with dynamic load response function
JP2760053B2 (en) Fuel cell generator and driving method thereof
JP5562806B2 (en) Reactor water level control system
JP2698141B2 (en) Water supply control device for FCB of drum boiler
JP2918743B2 (en) Steam cycle controller
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JPH063491A (en) Equipment for water feeding for nuclear power plant
JP2849777B2 (en) Water supply pump automatic switching control method
JP2955383B2 (en) Water supply control device for combined cycle power plant
JPH09242508A (en) Method and device for stopping combined cycle plant
JPS6026921B2 (en) Boiler feed pump control device
JPS59201638A (en) Output controller of composite generating plant
JP4417868B2 (en) Water supply system, water supply control method and apparatus
CN117438119A (en) High-temperature gas cooled reactor transition reactor core machine pile interlocking control method and system
JP2008274819A (en) Operation control device for combined power plant steam turbine
JPH11343812A (en) Turbine control device
JPS6373889A (en) Starting control of pumping-up operation of variable speed induction machine
JP4709809B2 (en) Water supply control device, nuclear power plant, and water supply control method
JPH0792203B2 (en) Boiler water supply control method and device
KR20200049292A (en) Secondary control method for start-up equipment of gas turbine
JPS62196505A (en) Feedwater flow controller

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3772295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term