JP2001241486A - Viscous magnetic fluid flowing type electromagnetically vibration control device - Google Patents

Viscous magnetic fluid flowing type electromagnetically vibration control device

Info

Publication number
JP2001241486A
JP2001241486A JP2000051173A JP2000051173A JP2001241486A JP 2001241486 A JP2001241486 A JP 2001241486A JP 2000051173 A JP2000051173 A JP 2000051173A JP 2000051173 A JP2000051173 A JP 2000051173A JP 2001241486 A JP2001241486 A JP 2001241486A
Authority
JP
Japan
Prior art keywords
cylinder
piston
magnetorheological fluid
orifice
communication pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000051173A
Other languages
Japanese (ja)
Inventor
Hideo Fujitani
秀雄 藤谷
Katsuaki Sagota
勝昭 砂子田
Hiroshi Sodeyama
博 袖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Building Research Institute Ministry of Construction
Original Assignee
Sanwa Tekki Corp
Building Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp, Building Research Institute Ministry of Construction filed Critical Sanwa Tekki Corp
Priority to JP2000051173A priority Critical patent/JP2001241486A/en
Publication of JP2001241486A publication Critical patent/JP2001241486A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic viscous fluid flowing type vibration control device attaining reduction of a cost and improvement of reliability by a relative ly simple constitution also permitting very slow displacement to be capable of obtaining a proper damping effect relating to the other vibration. SOLUTION: This vibration control device is constituted by a cylinder 1, a piston rod 2, a piston 3, a communication pipe 4, and a reservoir 5. The cylinder 1 and the communication pipe 4 are charged with a magnetic viscous fluid, it is received to the reservoir 5. Circulation of the magnetic viscous fluid by very slow displacement of the piston 3 is performed in a side of the reservoir 5 by opening/closing action of a puppet valve 10, thermal displacement of a pipe or the like is permitted. Circulation of the magnetic viscous fluid by displacement of the piston 3 except the above is performed in a side of the communication pipe 4 through an orifice 11, viscosity of the fluid is increased in a magnetic field with the orifice 11 by an electromagnet 15, flow resistance is increased, vibration due to a wind, an earthquake, etc., is damped. The orifice 11 is formed by a pair of magnetic bodies 12, 12 provided to make a space changeable to be opposed to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁界がかかると粘
度が増して流動抵抗が高まる特性を有する磁気粘性流体
を用いて、振動に伴うピストンの移動により磁気粘性流
体を電磁石による磁界中に流通させてその流動抵抗によ
り振動を減衰させる磁気粘性流体流動型制振装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a magnetorheological fluid having a characteristic of increasing the viscosity and increasing the flow resistance when a magnetic field is applied, and flowing the magnetorheological fluid in a magnetic field by an electromagnet by moving a piston due to vibration. The present invention relates to a magneto-rheological fluid flow type vibration damping device for damping vibration by its flow resistance.

【0002】[0002]

【従来の技術】従来、支持体又は被支持体の一方にシリ
ンダが連結され、他方にはシリンダに出入り自在に挿入
したピストンロッドが連結され、このピストンロッド
に、シリンダ内を第1及び第2の隔室に区画するピスト
ンが固定され、シリンダの内部に磁気粘性流体が充填さ
れる。ピストンには電磁石が固定され、シリンダとの隙
間を通じて隔室間を磁気粘性流体が流通するようになっ
ている。そして、振動に伴うピストンの往復動により磁
気粘性流体が流動するが、電磁石の磁界により流動抵抗
が増して、振動が減衰する。この場合、電磁石により磁
界の強さを変化させることにより制振対象の振動に応じ
て減衰特性を変えることができる。
2. Description of the Related Art Conventionally, a cylinder is connected to one of a supporting member and a supported member, and a piston rod is inserted into the cylinder so as to be freely inserted into and removed from the cylinder. Is fixed, and the inside of the cylinder is filled with a magnetorheological fluid. An electromagnet is fixed to the piston, and a magnetorheological fluid flows between the compartments through a gap with the cylinder. Then, the magnetorheological fluid flows due to the reciprocation of the piston accompanying the vibration, but the flow resistance increases due to the magnetic field of the electromagnet, and the vibration is attenuated. In this case, the damping characteristic can be changed according to the vibration of the vibration damping target by changing the strength of the magnetic field by the electromagnet.

【0003】[0003]

【発明が解決しようとする課題】上記従来の制振装置に
おいては、シリンダ内に電磁石を設けるので、外部から
可動部に電力を供給しなければならないし、振動の程度
に応じて磁界を調整するための制御部も必要となり、装
置の構成が複雑になり、コストや信頼性の面で難があ
る。
In the above-mentioned conventional vibration damping device, since an electromagnet is provided in the cylinder, it is necessary to supply electric power to the movable portion from the outside, and the magnetic field is adjusted according to the degree of vibration. Control unit is required, the configuration of the device becomes complicated, and there are difficulties in terms of cost and reliability.

【0004】これに対して、電磁石に代えて永久磁石を
用いることとすれば、低速域の振動に対しても定格に近
い減衰荷重が働いてしまい、例えば制振対象として発電
所の配管等に適用すると、熱変化による極めて緩やかな
変位をも阻止して配管等の破損を招いてしまう。また、
設置状況に応じて減衰特性を変えることができない。
On the other hand, if permanent magnets are used in place of electromagnets, a damping load close to the rating will be applied to vibrations in a low-speed range. If applied, extremely gradual displacement due to thermal change is prevented, resulting in damage to piping and the like. Also,
The attenuation characteristics cannot be changed according to the installation situation.

【0005】さらに、電磁石の通電による発熱でシリン
ダ内に熱がこもり易く、磁気粘性流体の特性劣化をもた
らす。しかも、磁気粘性流体が劣化すると、基油と鉄粉
に分離し、液面付近に基油が上澄みとなって現れる現象
が生じて、装置の性能に悪影響を及ぼす。
Further, heat is easily stored in the cylinder due to heat generated by energization of the electromagnet, which causes deterioration of characteristics of the magnetorheological fluid. In addition, when the magnetorheological fluid deteriorates, it separates into base oil and iron powder, causing a phenomenon in which the base oil appears as a supernatant near the liquid surface, which adversely affects the performance of the apparatus.

【0006】そこで、本発明は、比較的簡単な構成でコ
ストの低廉化及び信頼性の向上を図ると共に、配管の熱
変位のような極めて緩慢な変位を許容するが、風や地震
などの振動を適切に減衰し、また設置状況に応じた減衰
特性を簡単に調整でき、さらに磁気粘性流体の劣化を防
止する一方、劣化の影響を少なく抑える電磁石式磁気粘
性流体流動型制振装置を提供することを課題としてい
る。
Accordingly, the present invention aims at reducing the cost and improving the reliability with a relatively simple structure, and allows extremely slow displacement such as thermal displacement of the piping. The present invention provides an electromagnet type magnetorheological fluid flow type vibration damping device that can appropriately attenuate the vibration and easily adjust the damping characteristics according to the installation condition, and furthermore, prevent the deterioration of the magnetorheological fluid and reduce the influence of the deterioration. That is the task.

【0007】[0007]

【課題を解決するための手段】本発明においては、上記
課題を解決するため、支持体又は被支持体の一方にシリ
ンダ1を連結して、その内部に磁気粘性流体を充填し、
他方にピストンロッド2を連結してシリンダ1に出入り
自在に挿入し、このピストンロッド2にシリンダ1内を
軸線方向に移動可能なピストン3を固定してシリンダ1
内を第1及び第2の隔室8,9に区画し、また第1及び
第2の隔室8,9に連通管4を連通させて内部に磁気粘
性流体を充填し、この連通管4の途上にオリフィス11
を設け、連通管4に電磁石15を固定してオリフィス1
1に磁界を形成して磁気粘性流体に流動抵抗を与え、ま
たシリンダ1の第1及び第2の隔室8,9に、ピストン
3の極めて緩慢な変位による磁気粘性流体の流通を許容
するポペット弁10を介して磁気粘性流体を収容したリ
ザーバ5を連通させ、ピストン3の極めて緩慢な相対変
位をリザーバ5側への磁気粘性流体の流通により許容す
るが、他の速度の相対変位に対して連通管4側への磁気
粘性流体の流通により抵抗を付与して振動を減衰するよ
うに電磁石式磁気粘性流体流動型制振装置を構成した。
According to the present invention, in order to solve the above-mentioned problems, a cylinder 1 is connected to one of a supporting member and a supported member, and a magnetic viscous fluid is filled therein.
A piston rod 2 is connected to the other end and inserted into the cylinder 1 so as to be able to move in and out of the cylinder 1.
The inside is partitioned into first and second compartments 8 and 9, and a communication pipe 4 is connected to the first and second compartments 8 and 9 to fill the inside with a magnetic viscous fluid. Orifice 11 on the way
And the electromagnet 15 is fixed to the communication pipe 4 so that the orifice 1
1 is a poppet that provides a flow resistance to the magnetorheological fluid by forming a magnetic field, and allows the first and second compartments 8 and 9 of the cylinder 1 to flow the magnetorheological fluid due to extremely slow displacement of the piston 3. The reservoir 5 containing the magnetorheological fluid is communicated through the valve 10 to allow a very slow relative displacement of the piston 3 by the flow of the magnetorheological fluid to the reservoir 5 side. An electromagnet type magnetorheological fluid flow type vibration damping device is configured so as to attenuate vibration by imparting resistance by the flow of the magnetorheological fluid to the communication pipe 4 side.

【0008】[0008]

【発明の実施の形態】本発明の実施の一形態を図面を参
照して説明する。図1は本発明に係る磁気粘性流体流動
型制振装置の縦断面図、図2は図1のII−II断面図であ
る。図1及び図2において、制振装置は、シリンダ1
と、このシリンダ1に軸線方向へ出入り自在に挿入され
たピストンロッド2と、ピストンロッド2上に固定され
たピストン3と、シリンダ1の下部に設けられた連通管
4と、シリンダ1の上部に設けられたリザーバ5とを備
えている。シリンダ1は図示しない構築物のような支持
体又は配管のような被支持体の一方に引手6を介して連
結され、ピストンロッド2は他方に引手7を介して連結
される。シリンダ1の内部はピストン3によって隔室
8,9に仕切られる。シリンダ1及び連通管4の内部に
は磁気粘性流体が充填されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a magnetic viscous fluid flow type vibration damping device according to the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG. 1 and 2, the vibration damping device is a cylinder 1
A piston rod 2 inserted into the cylinder 1 so as to be able to move in and out in the axial direction; a piston 3 fixed on the piston rod 2; a communication pipe 4 provided at a lower part of the cylinder 1; And a reservoir 5 provided. The cylinder 1 is connected to one of a support such as a construction (not shown) or a supported body such as piping via a pull 6, and the piston rod 2 is connected to the other via a pull 7. The interior of the cylinder 1 is partitioned by the piston 3 into compartments 8 and 9. The inside of the cylinder 1 and the communication pipe 4 is filled with a magnetorheological fluid.

【0009】リザーバ5は、ポペット弁10を介してシ
リンダ1の隔室8,9に夫々連通しており、その内部に
磁気粘性流体が収容されている。ポペット弁10は、ピ
ストン3の極めて緩慢な相対変位による磁気粘性流体の
流通のみを許容するように開閉動作を行う。即ち、ポペ
ット弁10は、側部に流通孔を有する弁体がばねによっ
て弁座から離れる方向に押されて構成されており、常時
は開放状態が維持されて僅かな流れを許容するが、ばね
力より高い圧力で弁を閉じる。
The reservoir 5 communicates with the compartments 8 and 9 of the cylinder 1 via a poppet valve 10, and contains a magnetorheological fluid therein. The poppet valve 10 opens and closes so as to allow only the flow of the magnetic viscous fluid due to the extremely slow relative displacement of the piston 3. That is, the poppet valve 10 is configured such that a valve body having a flow hole on a side portion is pushed by a spring in a direction away from a valve seat, and is always kept open to allow a slight flow. Close the valve at a pressure higher than the force.

【0010】連通管4の両端は、シリンダ1の隔室8,
9に連通している。連通管4はシリンダ1の下方に位置
し、略矩形の非磁性体で構成され、長手方向に断面円形
の流通路が貫通する。連通管4はその長手方向のほぼ中
央にオリフィス11を備えている。オリフィス11は、
連通管4に横方向から挿入された対向する一対の磁性体
12,12によって形成されている。磁性体12は、シ
リンダ1に固定された取付片14へのナットの締め込み
によるボルト13の固定位置によってオリフィス11の
間隔を調整できる。取付片14は磁性体で構成されてい
る。
The two ends of the communication pipe 4 are connected to the compartments 8 of the cylinder 1,
9 in communication. The communication pipe 4 is located below the cylinder 1 and is made of a substantially rectangular nonmagnetic material, and a flow passage having a circular cross section in the longitudinal direction penetrates. The communication pipe 4 has an orifice 11 substantially at the center in the longitudinal direction. The orifice 11
It is formed by a pair of opposing magnetic bodies 12 inserted into the communication pipe 4 from the lateral direction. The distance between the orifices 11 of the magnetic body 12 can be adjusted by the fixing position of the bolt 13 by tightening the nut to the mounting piece 14 fixed to the cylinder 1. The mounting piece 14 is made of a magnetic material.

【0011】連通管4には、取付片14を介してオリフ
ィス11に磁界を形成する電磁石15が固定されてい
る。電磁石15は、磁性体12,12及び取付片14と
共に磁路を形成する鉄心15aと、この鉄心15aの周
囲に巻き回される環状のコイル15bとを備えている。
コイル15bは図示しない外部電源に接続される。
An electromagnet 15 for forming a magnetic field in the orifice 11 is fixed to the communication pipe 4 via a mounting piece 14. The electromagnet 15 includes an iron core 15a that forms a magnetic path together with the magnetic bodies 12, 12 and the mounting piece 14, and an annular coil 15b wound around the iron core 15a.
The coil 15b is connected to an external power supply (not shown).

【0012】この制振装置は、例えば発電設備の配管の
支持に適用される。配管に熱変位が生じると、ピストン
3がシリンダ1に対して極めて緩慢に相対移動する。ピ
ストン3が移動すると隔室8,9の容積が変化するか
ら、その内部の磁気粘性流体がシリンダ1を出入りす
る。図1においてピストン3が左行(又は右行)する
と、ポペット弁10を通じて磁気粘性流体がピストン3
で隔室8(又は9)からリザーバ5側に押し出されると
共に、不足分がリザーバ5側から隔室9(又は8)に流
れ込む。従って、ピストン3の極めて緩慢な移動は妨げ
られず、減衰力を働かせることなく制振対象の変位が許
容される。
This vibration damping device is applied, for example, to support a pipe of a power generation facility. When thermal displacement occurs in the pipe, the piston 3 moves relatively slowly with respect to the cylinder 1. When the piston 3 moves, the volumes of the compartments 8 and 9 change, so that the magnetorheological fluid inside the compartments enters and exits the cylinder 1. When the piston 3 moves leftward (or rightward) in FIG.
And is pushed out from the compartment 8 (or 9) to the reservoir 5 side, and the shortage flows into the compartment 9 (or 8) from the reservoir 5 side. Therefore, extremely slow movement of the piston 3 is not hindered, and the displacement of the damping target is allowed without exerting a damping force.

【0013】一方、風や地震などにより制振対象に振動
が加わると、先の例より速い移動速度でピストン3が左
行(又は右行)し、磁気粘性流体がピストン3で隔室8
(又は9)から押し出される。このとき、ポペット弁1
0が閉じるので、磁気粘性流体はリザーバ5側への出入
りがなく、連通管4内を流通する。この磁気粘性流体は
オリフィス11で流れが絞られると共に、電磁石15の
磁界により粘度が増すので流動抵抗が高まり、自由な流
れが妨げられる。従って、ピストン3の移動に抵抗が生
じて振動を減衰させる。磁気粘性流体の流動抵抗は、オ
リフィス11の間隔や、オリフィス11における磁界強
度によって変化するので、減衰荷重は磁性体12,12
の固定位置を調整したり、コイル15bに流れる電流を
変更することによって調整することが可能である。特
に、オリフィス11の間隔は、ナットの締め込みによる
ボルト13の固定位置によって自由に変更することがで
きるので、隙間を微調整するような部材の精密な仕上げ
加工や組込み作業を必要としない。なお、電磁石15は
外部に露出しており、磁気粘性流体と接触していないの
で、通電による発熱によって磁気粘性流体が劣化するこ
とはない。また、磁気粘性流体が劣化して基油と鉄粉と
が分離し、基油が上澄み液の状態になったとしても、オ
リフィス11は下方位置にある正常な磁気粘性流体中に
没しているので、装置の性能に影響がない。
On the other hand, when vibration is applied to the vibration damping object due to a wind, an earthquake, or the like, the piston 3 moves leftward (or rightward) at a higher moving speed than the previous example, and the magnetic viscous fluid is moved by the piston 3 to the compartment 8
(Or 9). At this time, poppet valve 1
Since 0 is closed, the magnetorheological fluid does not enter or leave the reservoir 5 side, and flows through the communication pipe 4. The flow of this magnetorheological fluid is restricted by the orifice 11, and the viscosity increases due to the magnetic field of the electromagnet 15, so that the flow resistance increases and free flow is hindered. Accordingly, resistance is generated in the movement of the piston 3, and the vibration is attenuated. Since the flow resistance of the magnetorheological fluid changes depending on the distance between the orifices 11 and the magnetic field strength at the orifices 11, the damping load is reduced by the magnetic members 12, 12.
Can be adjusted by adjusting the fixing position of the coil or by changing the current flowing through the coil 15b. In particular, since the interval between the orifices 11 can be freely changed depending on the fixing position of the bolt 13 by tightening the nut, there is no need for precise finishing or assembling work of the member for finely adjusting the gap. Since the electromagnet 15 is exposed to the outside and is not in contact with the magnetorheological fluid, the magnetorheological fluid does not deteriorate due to heat generated by energization. Further, even if the magnetic viscous fluid deteriorates and the base oil and the iron powder are separated and the base oil becomes a supernatant, the orifice 11 is submerged in the normal magnetic viscous fluid at the lower position. Therefore, the performance of the apparatus is not affected.

【0014】[0014]

【発明の効果】以上のように、本発明においては、ピス
トンと電磁石とを別体にしてシリンダ外に磁気粘性流体
を流通させるので、比較的簡単な構成により、全体的に
コストの低廉化を図ることができる。また電磁石をシリ
ンダの外部に設けたので、電力供給が容易になるし、磁
界を変化させるための制御部が不要となり、装置の構成
が簡易化し、さらにコストの低減化、信頼性の向上を図
ることができる。例えば配管等の熱変化によるピストン
の極めて緩慢な相対変位を無理なく許容して機器の破損
を防止するが、風や地震などによる振動を確実に減衰さ
せることができ、性能、信頼性の向上を図ることができ
る。また、電磁石が発熱しても磁気粘性流体の特性を劣
化させることがない。
As described above, in the present invention, the piston and the electromagnet are separated and the magnetorheological fluid is circulated outside the cylinder, so that the cost can be reduced as a whole with a relatively simple structure. Can be planned. In addition, since the electromagnet is provided outside the cylinder, power supply becomes easy, a control unit for changing the magnetic field is not required, the configuration of the device is simplified, cost is reduced, and reliability is improved. be able to. For example, extremely slow relative displacement of the piston due to thermal changes in pipes and the like is reasonably permitted to prevent equipment damage, but it can reliably attenuate vibrations caused by wind and earthquakes, improving performance and reliability. Can be planned. Further, even if the electromagnet generates heat, the characteristics of the magnetorheological fluid do not deteriorate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気粘性流体流動型制振装置の縦
断面図である。
FIG. 1 is a longitudinal sectional view of a magnetic viscous fluid flow type vibration damping device according to the present invention.

【図2】図1のII−II断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 ピストンロッド 3 ピストン 4 連通管 5 リザーバ 8 隔室 9 隔室 10 ポペット弁 11 オリフィス 12 磁性体 13 ボルト 15 電磁石 DESCRIPTION OF SYMBOLS 1 Cylinder 2 Piston rod 3 Piston 4 Communication pipe 5 Reservoir 8 Compartment 9 Compartment 10 Poppet valve 11 Orifice 12 Magnetic body 13 Bolt 15 Electromagnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 砂子田 勝昭 東京都品川区南品川6丁目5番19号 三和 テッキ株式会社内 (72)発明者 袖山 博 栃木県河内郡河内町中岡本2703 三和テッ キ株式会社宇都宮工場内 Fターム(参考) 3J069 AA36 AA55 CC10 DD25 EE62 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Katsuaki Sunoda 6-5-19 Minamishinagawa, Shinagawa-ku, Tokyo Sanwa Tekki Co., Ltd. (72) Inventor Hiroshi Sodeyama 2703 Nakaokamoto Nakaokamoto, Kawachi-gun, Kawachi-gun Tochigi F-term in the Utsunomiya Plant of Tech Co., Ltd. (reference) 3J069 AA36 AA55 CC10 DD25 EE62

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 支持体又は被支持体の一方に連結され、
内部に磁気粘性流体を充填したシリンダと、 他方に連結され、前記シリンダに出入り自在に挿入され
たピストンロッドと、このピストンロッドに固定され、
前記シリンダ内を第1及び第2の隔室に区画し、シリン
ダ内を軸線方向に移動可能なピストンと、 前記シリンダの第1及び第2の隔室に、ピストンの緩慢
な相対変位による磁気粘性流体の流通を許容するポペッ
ト弁を介して連通し、磁気粘性流体を収容したリザーバ
と、 内部に磁気粘性流体を充填して第1及び第2の隔室に連
通し、オリフィスを途上に備えて磁気粘性流体を流通さ
せる連通管と、 この連通管に固定されてオリフィスに磁界を形成する電
磁石とを具備し、 前記ピストンの極めて遅い相対変位を許容するが、他の
速度の相対変位に抵抗を付与して振動を減衰することを
特徴とする電磁石式磁気粘性流体流動型制振装置。
Claims: 1. A method according to claim 1, further comprising:
A cylinder filled with a magnetorheological fluid, a piston rod connected to the other side and inserted into and out of the cylinder, and fixed to the piston rod;
A piston which divides the inside of the cylinder into first and second compartments, and which is movable in the cylinder in the axial direction, and a first and second compartments of the cylinder, each of which has a magnetic viscosity due to a slow relative displacement of the piston. A reservoir containing a magnetorheological fluid that communicates through a poppet valve that allows fluid to flow therethrough, and a magnetorheological fluid filled therein and communicates with the first and second compartments, and an orifice is provided on the way A communication pipe through which the magnetorheological fluid flows, and an electromagnet fixed to the communication pipe to form a magnetic field at the orifice, allowing extremely slow relative displacement of the piston, but resisting relative displacement at other speeds. An electromagnet type magnetorheological fluid flow type vibration damping device characterized in that vibration is attenuated by being applied.
JP2000051173A 2000-02-28 2000-02-28 Viscous magnetic fluid flowing type electromagnetically vibration control device Pending JP2001241486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051173A JP2001241486A (en) 2000-02-28 2000-02-28 Viscous magnetic fluid flowing type electromagnetically vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051173A JP2001241486A (en) 2000-02-28 2000-02-28 Viscous magnetic fluid flowing type electromagnetically vibration control device

Publications (1)

Publication Number Publication Date
JP2001241486A true JP2001241486A (en) 2001-09-07

Family

ID=18572848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051173A Pending JP2001241486A (en) 2000-02-28 2000-02-28 Viscous magnetic fluid flowing type electromagnetically vibration control device

Country Status (1)

Country Link
JP (1) JP2001241486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108591339A (en) * 2018-05-24 2018-09-28 太原科技大学 A kind of drop spring vibration isolation device and its vibration isolating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108591339A (en) * 2018-05-24 2018-09-28 太原科技大学 A kind of drop spring vibration isolation device and its vibration isolating method

Similar Documents

Publication Publication Date Title
CA2637511C (en) Fluid damper
US5232196A (en) Proportional solenoid controlled valve
US7364022B2 (en) Controllable magneto-rheological fluid devices for motion-damping
US5632361A (en) Vibration damper, in particular for motor vehicles
US6019201A (en) Magneto-rheological fluid damper
US6419057B1 (en) Power-off damping in MR damper
US4907680A (en) Semi-active damper piston valve assembly
JPS59211203A (en) Device for electromagnetically operating regulator
US20140015180A1 (en) Magnetic damper
US6823895B2 (en) Magnetorheological fluid device
CN106015420A (en) Semi-active vibration control eddy current damper
JP6924513B2 (en) Rotating damper
US5551540A (en) Vibration damper and a vibration damper with a valve actuation device
JP2002168283A (en) Magnetic viscous fluid flowing type damper
US8985149B2 (en) Adjustable valve with a transition region
JP2007303645A (en) Mr fluid valve
JP2001241486A (en) Viscous magnetic fluid flowing type electromagnetically vibration control device
JP4401254B2 (en) Magnetorheological fluid flow damping device
JP4728862B2 (en) Magnetorheological fluid damper
JP2001165229A (en) Magnetic viscous fluid flow type damping device
JP4094793B2 (en) Magnetorheological fluid flow damping device
KR20010062123A (en) Hydraulic shock absorber
JP2019173786A (en) Damper
KR19990028183A (en) Solenoid valve device
JPH028528A (en) Vibration damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104