JP2001241389A - Specific gravity adjusting vane in vane pump - Google Patents
Specific gravity adjusting vane in vane pumpInfo
- Publication number
- JP2001241389A JP2001241389A JP2000053235A JP2000053235A JP2001241389A JP 2001241389 A JP2001241389 A JP 2001241389A JP 2000053235 A JP2000053235 A JP 2000053235A JP 2000053235 A JP2000053235 A JP 2000053235A JP 2001241389 A JP2001241389 A JP 2001241389A
- Authority
- JP
- Japan
- Prior art keywords
- vane
- fiber
- composite material
- molded body
- specific gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rotary Pumps (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,ベーンポンプに用
いられるベーンに関する。The present invention relates to a vane used for a vane pump.
【0002】[0002]
【従来の技術】既存のベーンポンプに取り付けられてい
るベーンは,ベーンとロータとの摩耗性,摩擦性の問題
や,ロータの回転数,ロータのベーン溝取付け角度等の
諸要因により,比重の小さい合成樹脂製ベーンから比較
的比重の大きい焼結合金製や鉛等重金属を含有したベー
ン等,様々な比重のベーンが用いられている。既存のベ
ーンポンプに取り付けられているベーンの耐久寿命でベ
ーンを交換する際には,既存の材質を備えたベーンと交
換する方がベーンポンプの機能を維持する上で最適では
あるが,使用年数が経過したベーンポンプの場合には取
り付けられているベーンの生産が中止していることがあ
る。このような生産中止したベーンを交換する場合に
は,該ベーンに対応した比重調整や特性値を近似させる
ために様々な処方調整を施すのに高価な費用を必要とし
ている。一方,既存のアスベストや鉛等重金属を含有し
たベーンの交換する場合には,ベーンポンプ内の水や空
気などを汚染する一因となるために,環境保護問題で該
ベーンの交換ができず,やむ得ずベーンポンプ自体を取
り替えざるを得なくなり費用負担が大である。2. Description of the Related Art A vane mounted on an existing vane pump has a low specific gravity due to various factors such as abrasion and friction between the vane and the rotor, the number of rotations of the rotor, and the mounting angle of the vane groove of the rotor. Various specific gravities such as synthetic resin vanes, sintered alloys having a relatively large specific gravity, and vanes containing heavy metals such as lead are used. When replacing the vane with the endurance life of the vane attached to the existing vane pump, replacing the vane with an existing material is the best way to maintain the function of the vane pump. In the case of such a vane pump, the production of the attached vane may be stopped. When replacing such a vane whose production has been discontinued, expensive expenses are required to perform various prescription adjustments in order to adjust specific gravity and approximate characteristic values corresponding to the vane. On the other hand, when replacing vanes containing heavy metals such as asbestos or lead, the vanes cannot be replaced due to environmental protection problems, because they can contribute to the contamination of water and air inside the vane pump. The vane pump itself has to be replaced and the cost burden is large.
【0003】[0003]
【発明が解決しょうとする課題】本発明は,ベーンの比
重を自在に調整ができ,然もベーンポンプ内の水や空気
などを汚染することなく,且つ,各種ベーンポンプに対
応するベーンの強度および耐摩耗,耐摩擦性を維持し,
耐久性に優れた低コストで交換ができるベーンを提供す
るものである。SUMMARY OF THE INVENTION According to the present invention, the specific gravity of the vane can be freely adjusted, the water and air in the vane pump are not contaminated, and the strength and durability of the vane corresponding to various vane pumps are improved. Maintain wear and friction resistance,
An object of the present invention is to provide a vane which has excellent durability and can be replaced at a low cost.
【0004】[0004]
【課題を解決するための手段】前記のような現状に鑑み
鋭意研究を重ねた結果,ベーンポンプのベーン交換時に
ベーンポンプの種類に対応することができるように比重
を自在に調整ができ,然もベーンポンプ内の水や空気な
どを汚染することがなく,耐摩耗,摩擦性,耐久性に優
れた低コストのベーンを見出し本発明を達成した。すな
わち本発明は、ベーンポンプのベーンを繊維強化合成樹
脂複合材料からなる成形体1と,金属製部材2とで構成
し,該金属製部材2が,該繊維強化合成樹脂複合材料か
らなる成形体1の内部に埋没されて一体的に形成するこ
とにより所望の目的を達成することができた。As a result of intensive studies in view of the above situation, specific gravity can be freely adjusted so as to be compatible with the type of the vane pump at the time of vane replacement of the vane pump. The present invention has been achieved by finding a low-cost vane that does not contaminate water, air, and the like inside, and has excellent wear resistance, frictional properties, and durability. That is, according to the present invention, the vane of the vane pump is composed of a molded body 1 made of a fiber-reinforced synthetic resin composite material and a metal member 2, and the metal member 2 is formed of a molded body 1 made of the fiber-reinforced synthetic resin composite material. The desired purpose could be achieved by being buried inside and integrally formed.
【0005】[0005]
【発明の実施の形態】本発明によるベーンポンプの比重
調整ベーンは,繊維強化合成樹脂複合材料(以下単に複
合材料という)からなる成形体1と金属製部材2(以下
単に金属材という)とで構成されており、金属材2が成
形体1の内部に埋没され一体的に形成されているので,
本発明を構成している複合材料の種類と,金属材2の種
類とを各種組合せし,重量比を予め調整することで所望
の比重に設定した様々なベーンが簡易に製作することが
できる。BEST MODE FOR CARRYING OUT THE INVENTION A specific gravity adjusting vane of a vane pump according to the present invention comprises a molded body 1 made of a fiber-reinforced synthetic resin composite material (hereinafter simply referred to as a composite material) and a metal member 2 (hereinafter simply referred to as a metal material). Since the metal material 2 is buried inside the molded body 1 and integrally formed,
Various kinds of vanes set to a desired specific gravity can be easily manufactured by variously combining the type of the composite material constituting the present invention and the type of the metal material 2 and adjusting the weight ratio in advance.
【0006】本発明の比重調製ベーンを構成する複合材
料からなる成形体1に用いる合成樹脂はフェノール樹脂
が望ましく,他の熱硬化性樹脂,例えばエポキシ,ポリ
アミノ,ポリイミド,ポリアミドイミド樹脂等に比べ強
度,耐摩耗性,耐熱性ならびに成形性等の総合特性に優
れているが,その他の摺動特性を備えた熱硬化性樹脂を
用いても差し障りはない。また,複合材料からなる成形
体1に用いる繊維材は,炭素繊維(ピッチ系,PAN系
を含む),アラミド繊維,ガラス繊維,綿布繊維,叩解
された靱皮繊維の織布,不織布,単繊維を用いるが,各
種ベーンポンプの要求するベーンの総合特性により前記
繊維を単独あるいは複合繊維として用いることができ
る。[0006] The synthetic resin used for the molded article 1 comprising the composite material constituting the specific gravity adjusting vane of the present invention is desirably a phenol resin, and has a higher strength than other thermosetting resins such as epoxy, polyamino, polyimide, and polyamideimide resins. Although it has excellent overall properties such as wear resistance, heat resistance and moldability, it does not matter if a thermosetting resin having other sliding properties is used. The fiber material used for the molded article 1 made of a composite material includes carbon fiber (including pitch-based and PAN-based), aramid fiber, glass fiber, cotton cloth fiber, woven cloth, nonwoven cloth and single fiber of beaten bast fiber. Depending on the overall characteristics of the vane required by various vane pumps, the fiber can be used alone or as a composite fiber.
【0007】前述した比重調製ベーンを構成する複合材
料は,繊維材として織布ならびに不織布を用いた場合に
は,フェノール樹脂等の溶液状にした樹脂を塗布し(プ
リプレグ),金型で加圧,加熱を行い成形体1を形成す
る。一方,繊維材として単繊維を用いた場合には,フェ
ノール樹脂等の固形粉末あるいは溶液状にした樹脂と単
繊維とを混練し,金型で加圧,加熱を行い成形体1を形
成する。単繊維を用いた場合には,繊維長,繊維径,繊
維と樹脂の配合比により粉状,粒状,フレーク状を示す
がいずれの形状も金属製部材2を埋設,埋没することが
できる。また,前述した複合材料は,食品衛生試験(食
品衛生法,厚生省告示,第20号,第370号)に適合
しており,水や空気を汚染することがない。一方,金属
材2の材質には,比重の小さいマグネシュウム,アルミ
から比重の大きい鉄材,ステンレス,銅を用いているこ
とができ,各種ベーンポンプの要求するベーンの比重,
総合特性によって選択することができる。In the case of using a woven fabric or a non-woven fabric as the fiber material, the composite material constituting the above-described specific gravity adjusting vane is coated with a solution resin such as a phenol resin (prepreg) and pressurized with a mold. And heating to form a compact 1. On the other hand, when a single fiber is used as the fiber material, a solid powder such as a phenol resin or a resin in a solution state is kneaded with the single fiber, and the molded body 1 is formed by pressing and heating with a mold. When a single fiber is used, the metal member 2 can be embedded or buried in any shape depending on the fiber length, the fiber diameter, and the mixing ratio of the fiber and the resin. Further, the above-described composite material conforms to the food hygiene test (Food Sanitation Law, Notification of the Ministry of Health and Welfare, No. 20, 370), and does not pollute water or air. On the other hand, the material of the metal material 2 can be magnesium, which has a low specific gravity, iron, which has a high specific gravity, stainless steel, or copper. The specific gravity of the vane required by various vane pumps can be used.
It can be selected according to overall characteristics.
【0008】本発明のベーンポンプの比重調整ベーンに
ついて,金属材2が成形体1の内部に埋没されて一体的
に形成した実施例について添付図面により説明する。図
1〜図2は,ベーンポンプに用いた比重調整ベーンを例
示し,図1は,比重調整ベーンの代表的な斜視図を示
す。図2は,金属材2が成形体1の内部に埋没されて一
体的に形成した断面を示す。図2(1),(3),
(5),(7)は,図1のA−A断面図を示しており,
図2(2),(4),(6),(8)は,図1のB−B
断面図を示す。図2(1),(2)に用いた複合材料に
は,繊維材として一枚の織布状繊維11(以下単にプリ
プレグいう)を用いて成形した成形体1を示しており,
ベーンの側面は加圧されたプリプレグ11が回り込み,
金属材2の全面がプリプレグ11の中央位置に積層状に
捲き込んだ状態で埋没し一体的に形成されている。An embodiment of a specific gravity adjusting vane of the vane pump according to the present invention in which a metal material 2 is embedded in a molded body 1 and integrally formed will be described with reference to the accompanying drawings. 1 and 2 illustrate a specific gravity adjusting vane used for a vane pump, and FIG. 1 shows a typical perspective view of the specific gravity adjusting vane. FIG. 2 shows a cross section in which the metal material 2 is buried inside the molded body 1 and integrally formed. Fig. 2 (1), (3),
(5) and (7) are cross-sectional views taken along the line AA in FIG.
FIGS. 2 (2), (4), (6), and (8) show BB in FIG.
FIG. The composite material used in FIGS. 2 (1) and 2 (2) shows a molded article 1 molded by using one woven fiber 11 (hereinafter simply referred to as prepreg) as a fiber material.
The pressurized prepreg 11 wraps around the side of the vane,
The entire surface of the metal material 2 is buried in a laminated state at the center position of the prepreg 11 and is integrally formed.
【0009】図2(3),(4)に用いた複合材料に
は,繊維材として複数枚のプリプレグ12を用いて成形
した成形体1を示しており,ベーンの側面は加圧された
プリプレグ11が回り込み,金属材2の全面が積層状の
プリプレグ12の中央位置に埋没し一体的に形成されて
いる。図2(5),(6)に用いた複合材料には,繊維
材として粉状繊維13を用いて成形した成形体1を示し
ており,金属材2の全面は粉状繊維13の中央位置に埋
没し一体的に形成されている。図2(7),(8)に用
いた複合材料には,繊維材として一枚のプリプレグ11
と粉状繊維13を複合的に用いており,ベーンの中心部
に金属材2を一枚のプリプレグ11の中央位置に積層状
に捲き込んだ状態で配設し,ベーンの外周部に粉状繊維
13を配設し多層状に成形した成形体1を示している。
また,図示していないが,図2(1),(2)に示す一
枚のプリプレグ11で金属材2を包み込み,該プリプレ
グ11を折りたたんで成形し一体的に形成させることも
できるし,ベーンの表裏面にプリプレグ12を積層状に
配設し,内部側には粉状繊維13を配設し,該粉状繊維
13の中央位置に金属材2を埋没させて一体的に形成す
ることもできる。The composite material used in FIGS. 2 (3) and 2 (4) shows a molded body 1 formed by using a plurality of prepregs 12 as a fibrous material. 11, the entire surface of the metal material 2 is buried at the center position of the laminated prepreg 12 and is integrally formed. The composite material used in FIGS. 2 (5) and (6) shows a molded body 1 formed by using the powdery fiber 13 as a fiber material, and the entire surface of the metal material 2 is located at the center of the powdery fiber 13. It is buried in and integrally formed. In the composite material used in FIGS. 2 (7) and (8), one prepreg 11 was used as a fiber material.
And the powdery fiber 13 are used in a composite manner, and the metal material 2 is disposed in the center of the vane in a state of being rolled up in the form of a laminate at the center of one prepreg 11, and the powdery fiber is disposed on the outer periphery of the vane. 1 shows a molded article 1 in which fibers 13 are arranged and molded into a multilayer shape.
Although not shown, the metal material 2 can be wrapped by a single prepreg 11 shown in FIGS. 2A and 2B, and the prepreg 11 can be folded and formed to be integrally formed. The prepregs 12 are arranged in a laminated manner on the front and back surfaces of the above, the powdery fibers 13 are provided on the inner side, and the metal material 2 is buried in the center of the powdery fibers 13 to be integrally formed. it can.
【0010】本発明の比重調整ベーンを,比重調整した
中から代表的な比重調整例について述べる。実施例1
は,100mm×16.7mm×厚み4.0mmサイズ
のベーンに対して,金属材2には,面取り加工した90
mm×12.7mm×厚み1.0mmサイズのステンレ
ス鋼板(比重7.9)を用いており,複合材料には,図
2(1),(2)に示すように,見掛け密度を1.50
に調整した一枚の炭素繊維プリプレグ11を用いて該金
属材2を積層状に捲き込んで一体的に形成した,比重
2.60に調整した成形体1を作り得た。A typical example of specific gravity adjustment of the specific gravity adjustment vane of the present invention will be described. Example 1
In the case of a vane having a size of 100 mm × 16.7 mm × thickness of 4.0 mm, the metal material 2 is chamfered to 90 mm.
A stainless steel plate (specific gravity: 7.9) having a size of 1 mm × 12.7 mm × 1.0 mm in thickness is used, and the apparent density of the composite material is 1.50, as shown in FIGS.
By using one piece of carbon fiber prepreg 11 adjusted as described above, the metal material 2 was rolled up in a laminated shape and integrally formed to obtain a molded body 1 adjusted to a specific gravity of 2.60.
【0011】実施例2は,実施例1と同じサイズのベー
ンに対して,金属材2には,面取り加工した90mm×
12.7mm×厚み0.8mmサイズのステンレス鋼板
(比重7.9)を用いており,複合材料には,図2
(1),(2)に示すように,実施例1と同じ,見掛け
密度を1.50に調整した一枚の炭素繊維プリプレグ1
1を用いて該金属材2を積層状に捲き込んで一体的に形
成した,比重2.35に調整した成形体1を作り得た。In a second embodiment, a metal material 2 is chamfered to a vane of the same size as in the first embodiment.
A stainless steel plate (specific gravity: 7.9) with a size of 12.7 mm x thickness of 0.8 mm is used.
As shown in (1) and (2), one carbon fiber prepreg 1 having the same apparent density as 1.
Thus, a molded article 1 adjusted to a specific gravity of 2.35 was formed by winding the metal material 2 in a laminating shape using No. 1 and integrally forming the same.
【0012】実施例3は,152mm×56mm×厚み
12mmサイズのベーンに対して,金属材2には,面取
り加工した148mm×52mm×厚み8mmサイズの
銅板比重(8.96)を用いており,複合材料には,図
2(3),(4)に示すように,見掛け密度を1.65
に調整した8枚の炭素繊維プリプレグ12を用いてお
り,該炭素繊維プリプレグ12を上下に2分割し,該金
属材2を中央位置に挟んで一体的に形成した,比重6.
06に調整した成形体1を作り得た。Embodiment 3 uses a copper plate specific gravity (8.96) of chamfered 148 mm × 52 mm × 8 mm size for the metal material 2 for a vane of 152 mm × 56 mm × 12 mm thickness. As shown in FIGS. 2 (3) and (4), the composite material has an apparent density of 1.65.
The carbon fiber prepreg 12 is vertically divided into two parts, and the metal material 2 is formed integrally with the metal material 2 sandwiched at a center position.
Thus, a molded article 1 adjusted to 06 could be produced.
【0013】実施例4は,113mm×32mm×厚み
7mmサイズのベーンに対して,面取り加工した103
mm×29mm×厚み4mmサイズの鉄板(7.8)を
用いており,複合材料には,図2(5),(6)に示す
ように,見掛け密度を1.60に調整した粉状炭素繊維
13を用いており,該粉状炭素繊維13量を2分割し該
金属材2を中央位置に挟んで一体的に形成した,比重
4.53に調整した成形体1を作り得た。In a fourth embodiment, a vane having a size of 113 mm × 32 mm × thickness 7 mm is chamfered 103
2 × 5 mm × 4 mm thick iron plate (7.8) is used. As shown in FIGS. 2 (5) and (6), powdered carbon with an apparent density adjusted to 1.60 is used for the composite material. The fiber 13 was used, and the powdered carbon fiber 13 was divided into two parts, and the metal material 2 was sandwiched at the center position to be integrally formed, thereby obtaining a molded body 1 adjusted to a specific gravity of 4.53.
【0014】,実施例5は,実施例1と同じサイズのベ
ーンに対して,金属材2には,面取り加工した90mm
×12.7mm×厚み1.0mmサイズのアルミ合金板
(2.8)を用いており,複合材料には,図2(7),
(8)に示すように,見掛け密度を1.30に調整した
一枚のアラミド繊維プリプレグ11と,見掛け密度を
1.50に調整した粉状炭素繊維13を複合的に用いて
おり,該アラミド繊維プリプレグ11を用いて該金属材
2を積層状に捲き込み,ベーンの外周部に該粉状炭素繊
維13を配設して一体的に形成した,比重1.81に調
整した成形体1を作り得た。In a fifth embodiment, a 90 mm chamfered metal plate 2 is applied to a vane of the same size as the first embodiment.
An aluminum alloy plate (2.8) with a size of × 12.7 mm × thickness of 1.0 mm is used.
As shown in (8), one sheet of aramid fiber prepreg 11 whose apparent density is adjusted to 1.30 and powdery carbon fiber 13 whose apparent density is adjusted to 1.50 are used in a composite manner. The metal material 2 is wound up in a laminated state using the fiber prepreg 11, and the powdered carbon fiber 13 is disposed on the outer periphery of the vane to integrally form the molded body 1 adjusted to a specific gravity of 1.81. I could make it.
【0015】実施例6は,実施例1と同じサイズのベー
ンに対して,金属材2には,面取り加工した90mm×
12.7mm×厚み1.0mmサイズのマグネシュウム
板(1.74)を用いており,複合材料には,図2
(7),(8)に示すように,見掛け密度を1.32に
調整した一枚の綿布繊維プリプレグ11と,見掛け密度
を1.30に調整した一枚のアラミド繊維プリプレグ1
1を複合的に用いており,該綿布繊維プリプレグ11を
用いて該金属材2を積層状に捲き込み,その上からアラ
ミド繊維プリプレグ11を積層状に捲き込んで一体的に
形成した,比重1.39に調整した成形体1を作り得
た。In a sixth embodiment, a metal material 2 is chamfered to a vane of the same size as in the first embodiment.
A magnesium plate (1.74) with a size of 12.7 mm x thickness of 1.0 mm is used.
As shown in (7) and (8), one cotton fiber prepreg 11 whose apparent density was adjusted to 1.32 and one aramid fiber prepreg 1 whose apparent density was adjusted to 1.30
The metal material 2 is wound up in a laminated state using the cotton cloth fiber prepreg 11, and the aramid fiber prepreg 11 is wound up in a laminated state from above, and integrally formed. Thus, a molded article 1 adjusted to 0.39 was produced.
【0016】[0016]
【発明の効果】本発明によるベーンポンプの比重調整ベ
ーンは,複合材料からなる成形体1と金属材2とで構成
されており、金属材2が複合材料からなる成形体1の中
央位置に埋没され一体的に形成されてので,既存のベー
ンポンプに取り付けられているベーンの比重に近似させ
るには,本発明を構成している複合材料からなる成形体
1と金属材2とを予め重量比を調製することで所望の比
重に設定した様々なベーンが簡易に製作することがで
き,既存ベーンの取り替え用のみならず新規のベーンポ
ンプのベーンとして使用ができる。また,ベーンポンプ
のベーンの比重が2.5〜5.0程度の範囲にある場合
は,金属材2には鉄板を用いることができ低コストの比
重調整ベーンを提供することができる。さらに比重が小
さく摺動特性を備えた強靱な繊維が開発された際には本
発明により,より一層の軽量化した比重調整ベーンを提
供することができる。The specific gravity adjusting vane of the vane pump according to the present invention is composed of a molded body 1 made of a composite material and a metal material 2, and the metal material 2 is buried at the center of the molded body 1 made of the composite material. Since they are integrally formed, the weight ratio of the molded body 1 made of the composite material and the metal material 2 constituting the present invention is adjusted in advance to approximate the specific gravity of the vane attached to the existing vane pump. By doing so, various vanes set to a desired specific gravity can be easily manufactured, and can be used not only for replacing existing vanes but also as vanes for new vane pumps. In addition, when the specific gravity of the vane of the vane pump is in the range of about 2.5 to 5.0, an iron plate can be used for the metal material 2 and a low-cost specific gravity adjusting vane can be provided. Further, when a tough fiber having a small specific gravity and sliding characteristics is developed, the present invention can provide a specific gravity adjusting vane which is further reduced in weight.
【0017】一方,本発明のベーンポンプの比重調整ベ
ーンは,複合材料からなる成形品1でベーンの表面全体
を覆っているために,摩擦係数および摩耗係数が小さ
く,ローターのベーン溝からベーンが飛び出す速度を速
くできるとともにローターのベーン溝の耐摩耗性が改善
できた。そのためにベーンポンプの機能維持のみならず
機能改善に役立つことが見出せた。また,金属材2が複
合材料からなる成形品1の中央位置に埋没しているため
に,金属材2が強度補強の役目を果たし,合成樹脂材の
ベーンに比べ機械強度が強いという利点を見出せた。On the other hand, since the specific gravity adjusting vane of the vane pump of the present invention covers the entire surface of the vane with the molded article 1 made of the composite material, the vane protrudes from the vane groove of the rotor because the coefficient of friction and the wear coefficient are small. The speed could be increased and the wear resistance of the vane grooves of the rotor could be improved. Therefore, it was found that the vane pump was useful not only for maintaining the function but also for improving the function. Further, since the metal material 2 is buried in the center of the molded article 1 made of the composite material, the metal material 2 plays a role of reinforcing the strength and has an advantage that the mechanical strength is higher than that of the synthetic resin vane. Was.
【図1】は,比重調整ベーンの代表的な斜視図を示し
す。FIG. 1 shows a typical perspective view of a specific gravity adjusting vane.
【図2】は,[Fig. 2]
【図1】の断面図を示し,1 shows a sectional view of FIG.
【図2】(1)は,FIG. 2 shows (1)
【図1】A−A断面図を示し,複合材料に一枚のプリプ
レグ11を用いて成形した成形体1を示し,金属材2が
プリプレグ11に捲き込まれて成形体1の中央位置に埋
没されて一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along the line AA, showing a molded body 1 formed by using a single prepreg 11 for a composite material. A metal material 2 is wound around the prepreg 11 and buried in the center of the molded body 1 2 shows a cross section integrally formed.
【図2】(2)は,FIG. 2 shows (2)
【図1】B−B断面図を示し,複合材料に一枚のプリプ
レグ11を用いて成形した成形体1を示し,金属材2が
プリプレグ11に捲き込まれて成形体1の中央位置に埋
没されて一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along the line BB, showing a molded body 1 formed by using a single prepreg 11 for a composite material. A metal material 2 is wound around the prepreg 11 and buried in the center of the molded body 1 2 shows a cross section integrally formed.
【図2】(3)は,FIG. 2 (3)
【図1】A−A断面図を示し,複合材料に複数枚のプリ
プレグ12を用いて成形した成形体1を示し,金属材2
が積層状のプリプレグ12成形体1の中央位置に埋没さ
れて一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along a line AA, showing a molded body 1 formed by using a plurality of prepregs 12 on a composite material,
Shows a cross-section buried at the center position of the laminated prepreg 12 molded body 1 and integrally formed.
【図2】(4)は,FIG. 2 (4)
【図1】B−B断面図を示し,複合材料に複数枚のプリ
プレグ12を用いて成形した成形体1を示し,金属材2
が積層状のプリプレグ12の成形体1の中央位置に埋没
されて一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along a line BB, showing a molded body 1 formed by using a plurality of prepregs 12 on a composite material,
Shows a cross section formed by being buried at the center position of the molded body 1 of the laminated prepreg 12 and integrally formed.
【図2】(5)は,FIG. 2 (5)
【図1】A−A断面図を示し,複合材料に粉状繊維13
を用いて成形した成形体1を示し,金属材2が粉状繊維
13の成形体1の中央位置に埋没されて一体的に形成し
た断面を示す。FIG. 1 is a cross-sectional view taken along the line AA, in which a powdery fiber 13 is added to the composite material.
FIG. 1 shows a molded body 1 formed by using a metal material 2, and shows a cross section in which a metal material 2 is buried in a central position of the molded body 1 of powdery fibers 13 and is integrally formed.
【図2】(6)は,FIG. 2 (6)
【図1】B−B断面図を示し,複合材料に粉状繊維13
を用いて成形した成形体1を示し,金属材2が成形体1
の中央位置に埋没されて一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along a line BB.
Fig. 1 shows a molded body 1 formed by using a metal material 2
2 shows a cross-section buried at the center position of the and integrally formed.
【図2】(7)は,FIG. 2 (7)
【図1】A−A断面図を示し,複合材料に一枚のプリプ
レグ11と粉状繊維13を複合的に用いて成形した成形
体1を示し,成形体1の中心部には金属材2がプリプレ
グ11に捲き込まれ,成形体1の外周部は粉状繊維13
に覆われおり,金属材2が成形体1の内部に埋没されて
一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along line AA of FIG. 1, showing a molded body 1 formed by using a single prepreg 11 and a powdery fiber 13 in a composite material. Is wound into the prepreg 11 and the outer periphery of the molded body 1
FIG. 2 shows a cross-section in which the metal material 2 is embedded in the molded body 1 and integrally formed.
【図2】(8)は,FIG. 2 (8)
【図1】B−B断面図を示し,複合材料に一枚のプリプ
レグ11と粉状繊維13を複合的に用いて成形した成形
体1を示し,成形体1の中心部には金属材2がプリプレ
グ11に捲き込まれ,成形体1の外周部は粉状繊維13
に覆われおり,金属材2が成形体1の内部に埋没されて
一体的に形成した断面を示す。FIG. 1 is a cross-sectional view taken along the line BB of FIG. 1, showing a molded body 1 formed by using a single prepreg 11 and a powdery fiber 13 in a composite material. Is wound into the prepreg 11 and the outer periphery of the molded body 1
FIG. 2 shows a cross-section in which the metal material 2 is embedded in the molded body 1 and integrally formed.
1・・・・複合材料からなる成形体 11・・・一枚のプリプレグからなる複合材料 12・・・複数枚のプリプレグからなる複合材料 13・・・粉状繊維からなる複合材料 2・・・・金属材 DESCRIPTION OF SYMBOLS 1 ... Molded body made of composite material 11 ... Composite material made of one prepreg 12 ... Composite material made of a plurality of prepregs 13 ... Composite material made of powdery fiber 2 ...・ Metal material
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年3月22日(2000.3.2
2)[Submission date] March 22, 2000 (200.3.2)
2)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図面の簡単な説明】 図1は,比重調整ベーンの代表的な斜視図を示す。図2
は,図1の断面図を示す。図2(1)は,図1のA−A
断面図を示し,複合材料に一枚のプリプレグ11を用い
て成形した成形体1を示し,金属材2がプリプレグ11
に捲き込まれて成形体1の中央位置に埋没されて一体的
に形成した断面図を示す。図2(2)は,図1のB−B
断面図を示し,複合材料に一枚のプリプレグ11を用い
て成形した成形体1を示し,金属材2がプリプレグ11
に捲き込まれて成形体1の中央位置に埋没されて一体的
に形成した断面図を示す。図2(3)は,図1のA−A
断面図を示し,複合材料に複数枚のプリプレグ12を用
いて成形した成形体1を示し,金属材2が積層状のプリ
プレグ12からなる成形体1の中央位置に埋没されて一
体的に形成した断面図を示す。図2(4)は,図1のB
−B断面図を示し,複合材料に一枚のプリプレグ12を
用いて成形した成形体1を示し,金属材2が積層状のプ
リプレグ12からなる成形体1の中央位置に埋没されて
一体的に形成した断面図を示す。図2(5)は,図1の
A−A断面図を示し,複合材料に粉状繊維13を用いて
成形した成形体1を示し,金属材2が粉状繊維13から
なる成形体1の中央位置に埋没されて一体的に形成した
断面図を示す。図2(6)は,図1のB−B断面図を示
し,複合材料に粉状繊維13を用いて成形した成形体1
を示し,金属材2が粉状繊維13からなる成形体1の中
央位置に埋没されて一体的に形成した断面図を示す。図
2(7)は,図1のA−A断面図を示し,複合材料に一
枚のプリプレグ11と粉状繊維13を複合的に用いて成
形した成形体1を示し,成形体1の中心部は金属材2が
一枚のプリプレグ11に捲き込まれ,成形体1の外周部
は粉状繊維13が覆われており,金属材2が成形体1の
内部に埋没されて一体的に形成した断面図を示す。図2
(8)は,図1のB−B断面図を示し,複合材料に一枚
のプリプレグ11と粉状繊維13を複合的に用いて成形
した成形体1を示し,成形体1の中心部は金属材2が一
枚のプリプレグ11に捲き込まれ,成形体1の外周部は
粉状繊維13が覆われており,金属材2が成形体1の内
部に埋没されて一体的に形成した断面図を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a typical perspective view of a specific gravity adjusting vane. FIG.
Shows a sectional view of FIG. FIG. 2 (1) is a sectional view taken on line AA of FIG.
FIG. 1 is a cross-sectional view showing a compact 1 formed by using a single prepreg 11 for a composite material.
FIG. 2 is a cross-sectional view formed by being rolled up and buried in a central position of the molded body 1 to be integrally formed. FIG. 2 (2) is a cross-sectional view of FIG.
FIG. 1 is a cross-sectional view showing a compact 1 formed by using a single prepreg 11 for a composite material.
FIG. 2 is a cross-sectional view formed by being rolled up and buried in a central position of the molded body 1 to be integrally formed. FIG. 2 (3) is a sectional view taken on line AA of FIG.
FIG. 1 is a cross-sectional view showing a molded body 1 formed by using a plurality of prepregs 12 on a composite material. A metal material 2 is buried at a central position of the molded body 1 made of a laminated prepreg 12 and integrally formed. FIG. FIG. 2 (4) is a diagram of FIG.
FIG. 1B is a cross-sectional view showing a molded body 1 formed by using a single prepreg 12 in a composite material, and a metal material 2 is buried at a central position of the molded body 1 made of a laminated prepreg 12 and integrally formed. The sectional view formed is shown. FIG. 2 (5) is a cross-sectional view taken along the line AA of FIG. 1 and shows the molded body 1 formed by using the powdery fibers 13 for the composite material. FIG. 2 shows a sectional view buried in a central position and integrally formed. FIG. 2 (6) is a cross-sectional view taken along the line BB of FIG.
FIG. 2 is a cross-sectional view showing a state in which the metal material 2 is buried at a central position of the molded body 1 made of the powdery fibers 13 and integrally formed. FIG. 2 (7) is a cross-sectional view taken along the line AA of FIG. 1, and shows a molded body 1 formed by using a single prepreg 11 and a powdery fiber 13 in a composite material. The metal material 2 is rolled into a single prepreg 11, and the outer periphery of the molded body 1 is covered with powdery fibers 13, and the metal material 2 is buried inside the molded body 1 and integrally formed. FIG. FIG.
(8) is a cross-sectional view taken along the line BB of FIG. 1, and shows a molded body 1 formed by using a single prepreg 11 and a powdery fiber 13 in a composite material. The center of the molded body 1 is The metal material 2 is rolled into a single prepreg 11, the outer periphery of the molded body 1 is covered with a powdery fiber 13, and the metal material 2 is buried inside the molded body 1 to form a cross-section. The figure is shown.
【符号の説明】 1・・・・複合材料からなる成形体 11・・・一枚のプリプレグからなる複合材料 12・・・複数枚のプリプレグからなる複合材料 13・・・粉状繊維からなる複合材料 2・・・・金属材[Description of Signs] 1 ··· Molded body composed of composite material 11 ··· Composite material composed of one prepreg 12 ··· Composite material composed of multiple prepregs 13 ··· Composite composed of powdery fiber Material 2: Metallic material
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】全図[Correction target item name] All figures
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
【図2】 FIG. 2
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H040 AA00 BB00 CC14 CC16 CC17 DD11 DD36 4F072 AA02 AB06 AB09 AB10 AB28 AB29 AD13 AD19 AD23 AD44 AD45 AG03 AH23 AH25 AJ04 AK14 AL16 4J002 AH002 CC041 CC151 CD001 CL062 CM041 DA016 DL006 FA042 FA046 FD012 FD016 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3H040 AA00 BB00 CC14 CC16 CC17 DD11 DD36 4F072 AA02 AB06 AB09 AB10 AB28 AB29 AD13 AD19 AD23 AD44 AD45 AG03 AH23 AH25 AJ04 AK14 AL16 4J002 AH002 CC041 CC151 CD001 CL062 CM041 DA016 DL016 FD016
Claims (6)
と,金属製部材とで構成されており、前記金属製部材が
前記繊維強化合成樹脂複合材料からなる成形体の内部に
埋没され一体的に形成されてなるベーンポンプの比重調
整ベーン。1. A molded body made of a fiber-reinforced synthetic resin composite material and a metal member, wherein the metal member is buried inside the molded body made of the fiber-reinforced synthetic resin composite material and integrally formed. A specific gravity adjusting vane of the vane pump formed on the vane pump.
らなる成形体にインサート成形により,前記繊維強化合
成樹脂複合材料からなる成形体の内部に埋没され一体的
に形成されてなる請求項1記載のベーンポンプの比重調
整ベーン。2. The method according to claim 1, wherein the metal member is buried integrally with the molded body made of the fiber-reinforced synthetic resin composite material by insert molding into the molded body made of the fiber-reinforced synthetic resin composite material. Specific gravity adjusting vane for the described vane pump.
含浸した一枚の織布状繊維(プリプレグ)からなり,金
属製部材の全面を包み込みあるいは積層状に捲き込んで
一体的に形成されてなる請求項1または2記載のベーン
ポンプの比重調整ベーン。3. The fiber-reinforced synthetic resin composite material is made of a single woven fabric fiber (prepreg) impregnated with a synthetic resin, and is integrally formed by wrapping the entire surface of the metal member or winding it up in a laminate. The vane adjusting vane according to claim 1 or 2, wherein the vane pump has a specific gravity.
含浸した複数枚の織布状繊維(プリプレグ)からなり,
金属製部材を前記複数枚の織布状繊維(プリプレグ)の
中央位置に配設し,積層状に一体的に形成されてなる請
求項1または2記載のベーンポンプの比重調整ベーン。4. The fiber-reinforced synthetic resin composite material comprises a plurality of woven fibers (prepregs) impregnated with a synthetic resin.
The specific gravity adjusting vane of a vane pump according to claim 1 or 2, wherein a metal member is disposed at a central position of the plurality of woven fabric fibers (prepregs) and is integrally formed in a laminated shape.
含浸した粒状繊維またはフレーク状繊維あるいは粉状繊
維若しく粒状繊維,フレーク状繊維,粉状繊維,織布繊
維の少なくとも2種の混合繊維からなり,金属製部材を
前記繊維中央位置に配設し一体的に形成されてなる請求
項1または2記載のベーンポンプの比重調整ベーン。5. The fiber-reinforced synthetic resin composite material is a mixture of at least two kinds of synthetic resin-impregnated granular fibers or flake fibers or powder fibers or granular fibers, flake fibers, powder fibers, and woven fibers. The specific gravity adjusting vane for a vane pump according to claim 1 or 2, wherein the vane pump is made of a fiber, and a metal member is disposed at the center of the fiber and integrally formed.
と金属製部材とで構成され一体的に形成したベーンの比
重が1.4〜6.0に調整した請求項1,2,3,4ま
たは5記載のベーンポンプの比重調整ベーン。6. The specific gravity of a vane formed of a molded body made of a fiber-reinforced synthetic resin composite material and a metal member and integrally formed is adjusted to 1.4 to 6.0. A vane adjusting vane according to claim 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000053235A JP2001241389A (en) | 2000-02-29 | 2000-02-29 | Specific gravity adjusting vane in vane pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000053235A JP2001241389A (en) | 2000-02-29 | 2000-02-29 | Specific gravity adjusting vane in vane pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001241389A true JP2001241389A (en) | 2001-09-07 |
Family
ID=18574650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000053235A Pending JP2001241389A (en) | 2000-02-29 | 2000-02-29 | Specific gravity adjusting vane in vane pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001241389A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003037965A1 (en) * | 2001-10-31 | 2003-05-08 | Nippon Oil Corporation | Sliding member and pump |
JP2010241928A (en) * | 2009-04-03 | 2010-10-28 | Oiles Ind Co Ltd | Sliding member |
KR200466185Y1 (en) * | 2010-12-16 | 2013-04-05 | 킹스톤 콤프 컴퍼니 리미티드 | Rotary sliding-vane compressor |
CN103423153A (en) * | 2013-06-14 | 2013-12-04 | 石家庄晓进机械制造科技有限公司 | Filling vane pump used on emulsion explosive filling machine |
CN103821711A (en) * | 2012-11-19 | 2014-05-28 | 六汉企业股份有限公司 | Pump structure |
-
2000
- 2000-02-29 JP JP2000053235A patent/JP2001241389A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003037965A1 (en) * | 2001-10-31 | 2003-05-08 | Nippon Oil Corporation | Sliding member and pump |
JP2010241928A (en) * | 2009-04-03 | 2010-10-28 | Oiles Ind Co Ltd | Sliding member |
KR200466185Y1 (en) * | 2010-12-16 | 2013-04-05 | 킹스톤 콤프 컴퍼니 리미티드 | Rotary sliding-vane compressor |
CN103821711A (en) * | 2012-11-19 | 2014-05-28 | 六汉企业股份有限公司 | Pump structure |
CN103423153A (en) * | 2013-06-14 | 2013-12-04 | 石家庄晓进机械制造科技有限公司 | Filling vane pump used on emulsion explosive filling machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3950599A (en) | Low-friction laminate liner for bearings | |
CA2570040A1 (en) | Planar elements for use in papermaking machines | |
JP2001241389A (en) | Specific gravity adjusting vane in vane pump | |
TW201536907A (en) | Thermally conductive composite material, and manufacturing method therefor | |
CN110181886B (en) | Thin-wall bonding self-lubricating plate | |
JP2013072055A (en) | Method for manufacturing fiber-reinforced resin structure | |
CN104471270B (en) | Driftage control brake block and braking element | |
JP2006312281A (en) | Outer plate member | |
US4006051A (en) | Method of preparing a low-friction laminate liner for bearings | |
JP2016022685A (en) | Heat conductive laminate | |
JPH0312541B2 (en) | ||
JPWO2019078242A1 (en) | Fiber reinforced plastic molded product | |
JP2011211947A (en) | Fishing line guide and fishing rod | |
EP2955399A1 (en) | Plain bearing | |
WO2013176059A1 (en) | Manufacturing method for molded resin product with metal insert | |
JP6608224B2 (en) | Manufacturing method of sliding member | |
JP2016147964A (en) | Fiber-reinforced thermoplastic resin member | |
JP2005220487A (en) | Fluorine fiber fabric and composite material | |
US3900408A (en) | Bearing liner | |
WO2018235512A1 (en) | Fiber-reinforced plastic | |
JPH0668594B2 (en) | Carbon fiber reinforced thermosetting resin camera shutter blades | |
JP3598787B2 (en) | Doctor blade holder | |
JP2021110345A (en) | Spherical slide bearing | |
JP7511601B2 (en) | Carbon fiber reinforced plastic plate and method for producing the same | |
JP2013203834A (en) | Fiber-reinforced thermoplastic resin sheet and method for producing the same |