JP2001240982A - Method for making porous film using superfine particle - Google Patents

Method for making porous film using superfine particle

Info

Publication number
JP2001240982A
JP2001240982A JP2000054726A JP2000054726A JP2001240982A JP 2001240982 A JP2001240982 A JP 2001240982A JP 2000054726 A JP2000054726 A JP 2000054726A JP 2000054726 A JP2000054726 A JP 2000054726A JP 2001240982 A JP2001240982 A JP 2001240982A
Authority
JP
Japan
Prior art keywords
porous film
ultrafine particles
gas
porous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000054726A
Other languages
Japanese (ja)
Other versions
JP3364189B2 (en
Inventor
Yoshiaki Kinemuchi
杵鞭  義明
Ika Kou
江  偉華
Kiyoshi Yatsui
八井  浄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000054726A priority Critical patent/JP3364189B2/en
Publication of JP2001240982A publication Critical patent/JP2001240982A/en
Application granted granted Critical
Publication of JP3364189B2 publication Critical patent/JP3364189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for making a superfine particles which is capable of manufacturing the porous film not introduced with defects and having stable quality by dispersing the superfine particles of metal or ceramics into gas and recovering the superfine particles by suction to a porous base material and uses the revolutionary superfine particles exhibiting an excellent effect, such as a deposition rate higher than the deposition rate of a gaseous phase method as the amount of the supply of the superfine particles in the deposition is extremely large. SOLUTION: The method for making the metallic or ceramic porous film using the superfine particles characterized in that the porous film composed of the metal or ceramics is made by dispersing the superfine particles of <=0.1 μm in grain size into gas and recovering the same onto the heated porous base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超微粒子を用い
て、金属又はセラミックスで構成される多孔質膜を作製
する方法に関するものである。
[0001] The present invention relates to a method for producing a porous film made of metal or ceramics using ultrafine particles.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
金属やセラミックスで構成される多孔質膜は、膜材料を
溶解または分散させた液体を塗布し、その後、乾燥およ
び焼成することにより作製する方法(液相法)と、気相
法により成膜する方法がある。液相法による成膜方法で
は、乾燥および焼成中、膜材料の収縮に起因する割れや
大きな孔などの欠陥が導入されやすいという欠点があ
る。また気相法では、成膜速度が遅いという欠点があ
る。
2. Description of the Related Art
A porous film made of metal or ceramics is formed by applying a liquid in which a film material is dissolved or dispersed, and then drying and firing (liquid phase method) or a gas phase method. There is a way. The film formation method by the liquid phase method has a drawback that defects such as cracks and large pores due to shrinkage of the film material are easily introduced during drying and baking. Further, the vapor phase method has a disadvantage that the film formation rate is low.

【0003】本発明は、金属やセラミックスの超微粒子
を気体中に分散させ、超微粒子を多孔質基材へ吸引によ
り回収することで、欠陥が導入されず品質の安定した多
孔質膜を製造することができ、また、成膜中の超微粒子
の供給量が気相法にくらべ非常に多いので、成膜速度が
気相法よりも速いなど秀れた効果を発揮する画期的な超
微粒子を用いた多孔質膜の作製方法を提供することを目
的としている。
[0003] The present invention produces a porous membrane of stable quality without introducing defects by dispersing ultrafine particles of metal or ceramics in a gas and collecting the ultrafine particles by suction into a porous substrate. In addition, because the supply amount of ultrafine particles during film formation is much larger than that of the gas phase method, the revolutionary ultrafine particles exhibit excellent effects such as a higher film formation rate than the gas phase method. It is an object of the present invention to provide a method for producing a porous film using the method.

【0004】[0004]

【課題を解決するための手段】添付図面を参照して本発
明の要旨を説明する。
The gist of the present invention will be described with reference to the accompanying drawings.

【0005】粒径0.1μm以下の微粒子を気体中に分
散させ、加熱した多孔質基材上へ回収することで、金属
又はセラミックスで構成される多孔質膜を作製すること
を特徴とする超微粒子を用いた多孔質膜の作製方法に係
るものである。
[0005] An ultra-fine film characterized by producing a porous film made of metal or ceramics by dispersing fine particles having a particle size of 0.1 μm or less in a gas and collecting the fine particles on a heated porous substrate. The present invention relates to a method for producing a porous film using fine particles.

【0006】また、超微粒子の材質を、酸化物、窒化
物、炭化物などのセラミックスとして、セラミックスで
構成される多孔質膜を作製することを特徴とする請求項
1記載の超微粒子を用いた多孔質膜の作製方法に係るも
のである。
A porous film comprising the ultrafine particles according to claim 1, wherein the material of the ultrafine particles is ceramics such as oxides, nitrides and carbides, and a porous film made of ceramics is produced. The present invention relates to a method for manufacturing a porous film.

【0007】また、超微粒子の材質を金属として、金属
で構成される多孔質膜を作製することを特徴する請求項
1記載の超微粒子を用いた多孔質膜の作製方法に係るも
のである。
Further, the present invention relates to a method for producing a porous film using ultrafine particles according to claim 1, wherein a porous film made of metal is produced by using a metal as a material of the ultrafine particles.

【0008】また、超微粒子の材質を、金属とセラミッ
クスとの混合物として、金属とセラミックスとで構成さ
れる多孔質膜を作製することを特徴する請求項1記載の
超微粒子を用いた多孔質膜の作製方法に係るものであ
る。
The porous film using ultrafine particles according to claim 1, wherein the material of the ultrafine particles is a mixture of metal and ceramic to produce a porous film composed of metal and ceramic. It relates to a method for manufacturing the same.

【0009】[0009]

【発明の実施の形態】最も最良と考える本発明の実施の
形態(発明をどのように実施するか)を、図面に基づい
てその作用効果を示して簡単に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment (how to carry out the invention) of the present invention, which is considered to be the best, will be briefly described with reference to the drawings, showing its operational effects.

【0010】微細な細孔径(0.1μm以下)を有する
多孔質膜は、気体分離、煤煙中の粒子捕獲、NOxなど
の有害ガスの分解などに利用される。多孔体も細孔径を
小さくすることにより、同様の用途で利用可能である
が、気体透過速度が著しく低下するため、処理量が非常
に少ないものとなる。したがって、気体が透過する際の
圧力損失を極力抑えるために、膜状にすることが必須と
なる。
A porous membrane having a fine pore diameter (0.1 μm or less) is used for gas separation, trapping of particles in soot, decomposition of harmful gases such as NOx, and the like. Porous materials can be used for similar applications by reducing the pore size, but the gas permeation rate is significantly reduced, so that the throughput is very small. Therefore, in order to minimize the pressure loss at the time of gas permeation, it is essential to form a film.

【0011】多孔質膜の材質には、大別して有機系と無
機系があるが、有機系は最高使用温度が200℃程度で
あり、それ以上での使用には無機系の多孔質膜を使用す
る必要がある。また、高温・腐食環境下では、セラミッ
クスとする必要がある。無機系の多孔質膜の作製方法に
は、ゾルゲル法などの液体状の物質を基材に塗布する液
相法と、CVDなどの気相から物質を基材上へ析出させ
る気相法、アルミニウムの陽極酸化を利用するといった
化学的方法などがある。液相法は、大面積にも対応でき
るという特徴があるが、製造工程中の乾燥および焼成時
に、膜材料の収縮に起因する割れや大きな孔などの欠陥
が導入されやすいという欠点がある。
[0011] The material of the porous membrane is roughly classified into an organic type and an inorganic type. The organic type has a maximum use temperature of about 200 ° C. There is a need to. In a high-temperature and corrosive environment, ceramics must be used. The inorganic porous film can be prepared by a liquid phase method such as a sol-gel method for applying a liquid substance to a substrate, a gas phase method for depositing a substance from a gas phase on a substrate such as CVD, or aluminum. Chemical methods such as utilizing anodic oxidation. The liquid phase method has a feature that it can cope with a large area, but has a drawback that defects such as cracks and large pores due to shrinkage of the film material are easily introduced during drying and firing during the manufacturing process.

【0012】気相法は、基材に大きな欠陥などがあると
成膜後も欠陥として残ってしまい、また成膜速度が遅い
ために生産コストが上がるという問題がある。化学的方
法は、安価な方法であるが、材質に制限があるという問
題がある。
[0012] The vapor phase method has a problem that if a substrate has a large defect or the like, it remains as a defect even after film formation, and the film formation rate is low, so that the production cost increases. Although the chemical method is an inexpensive method, there is a problem that the material is limited.

【0013】そこで、基材の欠陥に影響されず、かつ大
面積にも対応可能、成膜速度が速い、材質に制限がない
という方法として、超微粒子を用いた多孔質膜の作製方
法を発明した。
Therefore, a method for producing a porous film using ultrafine particles has been invented as a method which is not affected by defects in the base material, can cope with a large area, has a high deposition rate, and has no limitation on the material. did.

【0014】即ち、本発明は、金属やセラミックスの超
微粒子を気体中に分散させ、超微粒子を多孔質基材へ吸
引により回収すると同時に多孔質基材の加熱も行う。こ
れにより、気体の透過しやすい欠陥から優先的に膜が生
成される。また、成膜過程が多孔質膜の気体透過率と関
連しているため、気体透過率を測定することにより多孔
質膜の品質調整および管理も行える。このため本方法に
よれば、欠陥が導入されず品質の安定した多孔質膜を製
造することができ、また、成膜中の超微粒子の供給量が
気相法にくらべ非常に多いので、成膜速度が気相法より
も速いなど秀れた効果を発揮する。
That is, according to the present invention, ultrafine particles of metal or ceramics are dispersed in a gas, and the ultrafine particles are collected by suction into a porous substrate, and simultaneously the porous substrate is heated. As a result, a film is preferentially generated from defects that are easily permeable to gas. Further, since the film formation process is related to the gas permeability of the porous film, the quality control and management of the porous film can be performed by measuring the gas permeability. Therefore, according to the present method, a porous film having a stable quality without introducing defects can be manufactured, and the supply amount of the ultrafine particles during the film formation is much larger than that of the gas phase method. Excellent effects such as higher film speed than gas phase method.

【0015】更に詳述すると、超微粒子(粒径0.1μ
m以下)は容易に気体中に浮遊する。この性質を用いて、
セラミックス超微粒子や、金属超微粒子を気体中に分散
させる。分散させた超微粒子を加熱した多孔質基材に吸
引することにより、多孔質薄膜を作製する。気体は細孔
径の大きな気孔から優先的に流れるので、超微粒子も大
きな気孔から堆積する。多孔質膜の欠陥は、周囲に比較
して大きな孔やクラックであり、このような欠陥は気体
が透過しやすい状態となっている。したがって、本方法
によれば、基材の欠陥を修繕することが可能であり、ま
た成膜した多孔質膜の細孔径も均一なものとなる。さら
に、気体の透過速度は気孔率や細孔径に依存するため、
成膜中に膜を透過する気体流量をモニターすることによ
り、性能の安定した膜を製造することが可能となる。本
方法は、基材に超微粒子を吸引し堆積させるという単純
な方式のため、大面積にも対応が可能である。成膜速度
は、粉末供給量、超微粒子を吸引する時の圧力差に依存
するが、従来の気相法にくらべ高速である。超微粒子
は、各種多様な材質で供給することが可能であり、本方
法によれば多孔質膜の材質への制限はない。
More specifically, ultrafine particles (particle diameter: 0.1 μm)
m or less) easily floats in gas. Using this property,
Ultrafine ceramic particles and ultrafine metal particles are dispersed in a gas. A porous thin film is produced by sucking the dispersed ultrafine particles into the heated porous substrate. Since gas flows preferentially from pores having a large pore diameter, ultrafine particles also accumulate from large pores. The defects of the porous film are large holes and cracks as compared with the surroundings, and such defects are in a state where gas is easily transmitted. Therefore, according to the present method, it is possible to repair the defect of the base material, and the pore diameter of the formed porous film becomes uniform. Furthermore, since the gas permeation rate depends on the porosity and pore size,
By monitoring the flow rate of gas passing through the film during film formation, it is possible to produce a film with stable performance. Since this method is a simple method of sucking and depositing ultrafine particles on a substrate, it can be applied to a large area. The deposition rate depends on the amount of powder supplied and the pressure difference when sucking ultrafine particles, but is higher than that of the conventional gas phase method. The ultrafine particles can be supplied with various materials, and according to the present method, there is no limitation on the material of the porous membrane.

【0016】[0016]

【実施例】本発明の具体的な実施例について図面に基づ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described with reference to the drawings.

【0017】細孔径0.1μm、気孔率30%、αアル
ミナの多孔質基材(基板)へ、平均粒径20nmのγA
23粒子をO2中に分散させγAl23多孔質膜を成
膜した。成膜温度は、500℃、600℃、700℃と
した。成膜後、O2、H2、CH4ガスを透過させ、透過
速度より気体分離率を測定した。
A γA having an average particle diameter of 20 nm was applied to a porous substrate (substrate) of 0.1 μm in pore diameter, 30% porosity, and α alumina.
l 2 O 3 particles were dispersed in O 2 to form a γAl 2 O 3 porous film. The film forming temperatures were 500 ° C., 600 ° C., and 700 ° C. After film formation, O 2 , H 2 , and CH 4 gases were permeated, and the gas separation rate was measured from the permeation speed.

【0018】図1に示すように、その結果、成膜により
気体分離率は向上し、また成膜温度の上昇に伴い向上し
た。これは、粗大な細孔が消滅し細孔径が均一になるた
めであると考えられる。
As a result, as shown in FIG. 1, as a result, the gas separation rate was improved by the film formation, and was improved with the rise of the film formation temperature. It is considered that this is because the coarse pores disappear and the pore diameter becomes uniform.

【0019】[0019]

【発明の効果】本発明は上述のように構成したから、欠
陥が導入されず品質の安定した多孔質膜を製造すること
ができ、また、成膜中の超微粒子の供給量が気相法にく
らべ非常に多いので、成膜速度が気相法よりも速いなど
秀れた効果を発揮する画期的な超微粒子を用いた多孔質
膜の作製方法となる。
As described above, the present invention is constructed as described above, so that it is possible to manufacture a porous film having a stable quality without introducing defects, and to reduce the supply amount of ultrafine particles during film formation by a gas phase method. Since the number is much larger than that of the first embodiment, the present invention provides a method of manufacturing a porous film using epoch-making ultrafine particles that exhibits excellent effects such as a higher film formation rate than the vapor phase method.

【0020】即ち、一層気体の透過しやすい欠陥から優
先的に膜が生成され、また、成膜した多孔質膜の細孔径
も均一なものとなり、性能の安定した膜を製造すること
が可能となるなど極めて秀れた超微粒子を用いた多孔質
膜の作製方法となる。
That is, a film is preferentially generated from defects that are more easily permeated by gas, and the pore diameter of the formed porous film becomes uniform, so that a film with stable performance can be manufactured. It is a method of manufacturing a porous film using ultra-fine particles which are extremely excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】気体分離率の基板温度依存性を示すグラフであ
る。
FIG. 1 is a graph showing the substrate temperature dependence of the gas separation rate.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 41/87 C04B 41/87 A 41/88 41/88 S Fターム(参考) 4D006 GA42 MA07 MA09 MA10 MA21 MB04 MC01X MC02X MC03X NA45 NA50 PA03 PB62 PB66 PB68 4G076 AA02 BF03 BF05 CA10 CA26 CA29 DA29 FA04 4K044 AA11 AB08 BA01 BA11 BB01 BB13 CA02 CA29 CA59 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C04B 41/87 C04B 41/87 A 41/88 41/88 SF term (reference) 4D006 GA42 MA07 MA09 MA10 MA21 MB04 MC01X MC02X MC03X NA45 NA50 PA03 PB62 PB66 PB68 4G076 AA02 BF03 BF05 CA10 CA26 CA29 DA29 FA04 4K044 AA11 AB08 BA01 BA11 BB01 BB13 CA02 CA29 CA59

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.1μm以下の微粒子を気体中に
分散させ、加熱した多孔質基材上へ回収することで、金
属又はセラミックスで構成される多孔質膜を作製するこ
とを特徴とする超微粒子を用いた多孔質膜の作製方法。
1. A porous film made of metal or ceramic is produced by dispersing fine particles having a particle size of 0.1 μm or less in a gas and collecting the fine particles on a heated porous substrate. Of producing a porous film using ultrafine particles to be produced.
【請求項2】 超微粒子の材質を、酸化物、窒化物、
炭化物などのセラミックスとして、セラミックスで構成
される多孔質膜を作製することを特徴とする請求項1記
載の超微粒子を用いた多孔質膜の作製方法。
2. The material of the ultrafine particles is oxide, nitride,
2. The method for producing a porous film using ultrafine particles according to claim 1, wherein a porous film composed of ceramics is produced as ceramics such as carbide.
【請求項3】 超微粒子の材質を金属として、金属で構
成される多孔質膜を作製することを特徴する請求項1記
載の超微粒子を用いた多孔質膜の作製方法。
3. The method for producing a porous film using ultrafine particles according to claim 1, wherein the material of the ultrafine particles is metal and a porous film made of metal is produced.
【請求項4】 超微粒子の材質を、金属とセラミックス
との混合物として、金属とセラミックスとで構成される
多孔質膜を作製することを特徴する請求項1記載の超微
粒子を用いた多孔質膜の作製方法。
4. The porous film using ultrafine particles according to claim 1, wherein the material of the ultrafine particles is a mixture of metal and ceramic to produce a porous film composed of metal and ceramic. Method of manufacturing.
JP2000054726A 2000-02-29 2000-02-29 Fabrication method of porous membrane using ultrafine particles Expired - Fee Related JP3364189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054726A JP3364189B2 (en) 2000-02-29 2000-02-29 Fabrication method of porous membrane using ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054726A JP3364189B2 (en) 2000-02-29 2000-02-29 Fabrication method of porous membrane using ultrafine particles

Publications (2)

Publication Number Publication Date
JP2001240982A true JP2001240982A (en) 2001-09-04
JP3364189B2 JP3364189B2 (en) 2003-01-08

Family

ID=18575940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054726A Expired - Fee Related JP3364189B2 (en) 2000-02-29 2000-02-29 Fabrication method of porous membrane using ultrafine particles

Country Status (1)

Country Link
JP (1) JP3364189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033818A (en) * 2002-06-28 2004-02-05 Toto Ltd Method for manufacturing porous composite structure and porous fine particles used in the manufacture
JP2006328459A (en) * 2005-05-25 2006-12-07 Nissan Motor Co Ltd Film deposition apparatus, and film deposition method using the same
JP2008068258A (en) * 2007-11-15 2008-03-27 Toto Ltd Method for producing porous combined structure and porous fine particle to be used for the production
CN112546870A (en) * 2020-11-25 2021-03-26 南京工业大学 In-situ repair technology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033818A (en) * 2002-06-28 2004-02-05 Toto Ltd Method for manufacturing porous composite structure and porous fine particles used in the manufacture
JP2006328459A (en) * 2005-05-25 2006-12-07 Nissan Motor Co Ltd Film deposition apparatus, and film deposition method using the same
JP4666476B2 (en) * 2005-05-25 2011-04-06 日産自動車株式会社 Film forming apparatus and film forming method using the same
JP2008068258A (en) * 2007-11-15 2008-03-27 Toto Ltd Method for producing porous combined structure and porous fine particle to be used for the production
JP4626829B2 (en) * 2007-11-15 2011-02-09 Toto株式会社 Method for producing porous composite structure and porous fine particles used for the production
CN112546870A (en) * 2020-11-25 2021-03-26 南京工业大学 In-situ repair technology

Also Published As

Publication number Publication date
JP3364189B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
KR930005940A (en) Supported Microporous Ceramic Membrane
US20180141006A1 (en) Carbon-Containing Membrane for Water and Gas Separation
JP4562565B2 (en) Inorganic porous separation membrane and method for producing the same
US8481110B2 (en) Methods of making inorganic membranes
JP2010528835A (en) Method for forming inorganic porous coating on porous support using specific pore forming agent
JP2010528835A5 (en)
US20030054154A1 (en) Method of making a porous green form and oxygen transport membrane
JPWO2008010452A1 (en) Ceramic filter
Zhou et al. Preparation of a new ceramic microfiltration membrane with a separation layer of attapulgite nanofibers
CN105801122B (en) A kind of preparation method of graded pore structure silicon carbide-based porous ceramics
JPWO2009001970A1 (en) Separation membrane complex and method for producing separation membrane complex
KR20090105234A (en) Hydrogen filtering membrane having pipe-shaped structure and manufacturing method thereof
JP2008246304A (en) Ceramic porous membrane, its manufacturing method, and manufacturing method of ceramic filter
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP2003238270A (en) Method of producing porous ceramic material
KR20170095330A (en) Filters comprising sic membranes incorporating nitrogen
JP3971546B2 (en) Porous ceramic laminate and method for producing the same
JP2010156206A (en) Exhaust gas purifying filter
US11033863B2 (en) Filters comprising oxygen-depleted SiC membranes
JP3364189B2 (en) Fabrication method of porous membrane using ultrafine particles
JP5082067B2 (en) Method for producing high-strength macroporous porous ceramic and porous body thereof
JP2004521732A (en) A filter having a structure arranged in a grade order and a method for manufacturing the same.
JP2007021409A (en) Method for manufacturing diesel particulate filter
JP7014647B2 (en) A break filter and a method for producing a silicon carbide porous body used in the break filter.
JP2005224668A (en) Filter catalyst manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees