JP2001240572A - Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component - Google Patents

Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component

Info

Publication number
JP2001240572A
JP2001240572A JP2000056145A JP2000056145A JP2001240572A JP 2001240572 A JP2001240572 A JP 2001240572A JP 2000056145 A JP2000056145 A JP 2000056145A JP 2000056145 A JP2000056145 A JP 2000056145A JP 2001240572 A JP2001240572 A JP 2001240572A
Authority
JP
Japan
Prior art keywords
carbon dioxide
mmol
gas
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000056145A
Other languages
Japanese (ja)
Inventor
Takamasa Fuchigami
高正 渕上
Noriko Wakasa
のり子 若狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP2000056145A priority Critical patent/JP2001240572A/en
Publication of JP2001240572A publication Critical patent/JP2001240572A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method of converting carbon dioxide to an alcohol group by hydrogenation under mild conditions. SOLUTION: The preparation method of the alcohol group is characterized by hydrogenating carbon dioxide in a solvent containing water as a main component in the presence of catalyst composed of rhodium supported catalyst and molibdenum compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素を水を
主成分とする溶媒中で水素添加し、アルコール類を製造
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing alcohols by hydrogenating carbon dioxide in a solvent containing water as a main component.

【0002】[0002]

【従来の技術】二酸化炭素の還元的固定化によって得ら
れるメタノール等のアルコール類はクリーンな燃料とな
るばかりでなく、低級オレフィンや芳香族化合物などに
変換できる重要な出発原料である。現在、一般にメタノ
ールは合成ガスから製造されており、二酸化炭素を水素
添加する方法より有利であるとされている。しかし、化
石燃料の燃焼に伴って発生する二酸化炭素の大気中への
蓄積が問題となっている現在、その固定化による低減が
急務とされている。
2. Description of the Related Art Alcohols such as methanol obtained by reductive fixation of carbon dioxide are not only a clean fuel but also important starting materials which can be converted into lower olefins and aromatic compounds. At present, methanol is generally produced from synthesis gas, which is said to be more advantageous than the method of hydrogenating carbon dioxide. However, at present, there is a problem of accumulation of carbon dioxide in the atmosphere generated by the burning of fossil fuels, and it is urgently required to reduce the carbon dioxide by fixing the carbon dioxide.

【0003】二酸化炭素を水素添加し、メタノール等の
アルコール類を製造する方法としては、気相合成法およ
び液相合成法が挙げられる。
[0003] Examples of a method for producing alcohols such as methanol by hydrogenating carbon dioxide include a gas phase synthesis method and a liquid phase synthesis method.

【0004】気相合成法としては、たとえば、(1)BA
SF社らのZnO/Cr2O3触媒を用いて350℃、250−350kg/cm2
Gの条件で行う方法、(2)Cu/ZnO/Al2O3触媒を用いて2
70℃、150-250kg/cm2Gの条件で行う方法等(たとえば、
G.C.Chinchen, K.Mansfield,M.S.Spencer, Chemtech, 6
92(1990)、J.C.J.Bart, R.P.A.Sneeden, Catal. Today,
2, 1(1987))が公知であるが、反応温度が高温である
ばかりでなく、高圧を要する上に、気相合成法は大がか
りな反応装置を必要とし、容積効率が悪いという欠点を
有していた。
[0004] As the gas phase synthesis method, for example, (1) BA
350 ° C, 250-350 kg / cm 2 using ZnO / Cr 2 O 3 catalyst of SF company
G method, (2) using Cu / ZnO / Al 2 O 3 catalyst
70 ° C, 150-250kg / cm 2 G method (for example,
GCChinchen, K. Mansfield, MSSpencer, Chemtech, 6
92 (1990), JCJBart, RPASneeden, Catal. Today,
2, 1 (1987)) is known, but not only requires a high reaction temperature but also requires a high pressure, and the gas phase synthesis method requires a large-scale reactor and has a disadvantage that the volume efficiency is poor. Was.

【0005】液相合成法としても、たとえば、J. Chem.
Soc. Chem. Commun., 629(1993)および、触媒, 36, 13
5(1994)には、ルテニウム錯体を触媒とする方法が報告
されているが、反応温度が240℃と高温であり、溶媒に
は高価なN-メチル-2-ピロリドンなどを用いなければな
らないという欠点を有していた。また、これらの方法で
は、有毒である一酸化炭素の多量の副生が認められ、還
元反応が一酸化炭素を経由して進行していることが示唆
されている。
[0005] As a liquid phase synthesis method, for example, J. Chem.
Soc. Chem. Commun., 629 (1993) and Catalysts, 36, 13
In 5 (1994), a method using a ruthenium complex as a catalyst is reported, but the reaction temperature is as high as 240 ° C, and expensive solvents such as N-methyl-2-pyrrolidone must be used. Had disadvantages. Moreover, in these methods, a large amount of toxic carbon monoxide is produced as by-products, suggesting that the reduction reaction proceeds via carbon monoxide.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従来
の技術が抱えていた上記のような欠点を克服し、二酸化
炭素を温和な条件下で水素添加して収率良くアルコール
類を製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks of the prior art and to produce alcohols in good yield by hydrogenating carbon dioxide under mild conditions. It is to provide a way to do it.

【0007】[0007]

【課題を解決するための手段】本発明者らは、これらの
問題を解決すべく鋭意検討を重ねた結果、ロジウム担持
触媒とモリブデン化合物との混合触媒を用い、さらに、
安価な水を主成分とする溶媒を用いることによって、二
酸化炭素を温和な条件下で水素添加して収率良くアルコ
ール類を製造できることを見いだし本発明を完成するに
至った。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors have used a mixed catalyst of a rhodium-supported catalyst and a molybdenum compound.
The inventors have found that alcohols can be produced in good yield by hydrogenating carbon dioxide under mild conditions by using a solvent containing inexpensive water as a main component, and have completed the present invention.

【0008】すなわち本発明は、ロジウム担持触媒とモ
リブデン化合物からなる触媒存在下、水を主成分とする
溶媒中で二酸化炭素を水素添加することを特徴とするア
ルコール類の製造方法に関するものである。
That is, the present invention relates to a method for producing alcohols, which comprises hydrogenating carbon dioxide in a solvent containing water as a main component in the presence of a catalyst comprising a rhodium-supported catalyst and a molybdenum compound.

【0009】また、本発明においては、有毒である一酸
化炭素の副生は認められないばかりではなく、一酸化炭
素を共存させると反応が進行しない(参考例1参照)こ
とから、本触媒系は反応機構的にも従来法とは全く異な
る触媒作用を有していることを示唆している。
In the present invention, not only is no toxic by-product of carbon monoxide observed, but the reaction does not proceed when carbon monoxide is present (see Reference Example 1). Suggests that the reaction mechanism has a completely different catalytic action from the conventional method.

【0010】[0010]

【発明の実施の形態】本発明において、ロジウム担持触
媒とは担体上にロジウムを担持した触媒である。使用で
きる担体としては、多孔性の物質であればよく、活性
炭、金属酸化物、複合酸化物、層状粘土化合物等が挙げ
られる。中でも活性炭、アルミナおよびこれらの組み合
わせからなる担体が、触媒活性、反応効率等の点で好ま
しい。担持触媒の製造法には特に制限はなく、公知の方
法で製造したものを使用できる。たとえば、含浸法、イ
オン交換法、物理混合法等で調製することができる。触
媒金属の担持量には特に制限はないが、総触媒量に対し
て通常1〜80重量%の範囲で選択することができる。
使用する触媒量は触媒の担持量等によっても異なり特に
制限はないが、基質である二酸化炭素に対するロジウム
の量を通常0.01〜40モル%の範囲から選択するこ
とができ、反応効率、経済性等から0.1〜20モル%
の範囲が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a rhodium-supported catalyst is a catalyst in which rhodium is supported on a carrier. The carrier that can be used may be a porous substance, and examples thereof include activated carbon, metal oxides, composite oxides, and layered clay compounds. Among them, a carrier comprising activated carbon, alumina and a combination thereof is preferred in terms of catalytic activity, reaction efficiency and the like. The method for producing the supported catalyst is not particularly limited, and a catalyst produced by a known method can be used. For example, it can be prepared by an impregnation method, an ion exchange method, a physical mixing method, or the like. The amount of the catalyst metal carried is not particularly limited, but can be generally selected in the range of 1 to 80% by weight based on the total amount of the catalyst.
The amount of the catalyst to be used varies depending on the amount of the supported catalyst and the like, and is not particularly limited. However, the amount of rhodium with respect to carbon dioxide as a substrate can be generally selected from the range of 0.01 to 40 mol%, and the reaction efficiency and economy 0.1 to 20 mol% from properties
Is preferable.

【0011】本発明において、モリブデン化合物とは0
価金属そのもの、および/または各種モリブデンの無機
化合物、有機化合物あるいは錯体化合物である。具体的
には、モリブデンカルボニル、モリブデン酸アンモニウ
ム、モリブデン酸ナトリウム、酢酸モリブデン、酸化モ
リブデン、酸化モリブデンアセチルアセトナト、塩化モ
リブデン、リンモリブデン酸、リンモリブデン酸ナトリ
ウム、リンモリブデン酸アンモニウム等を用いることが
できる。使用する触媒量は特に制限はないが、基質であ
る二酸化炭素に対するモリブデンの量を通常0.001
〜40モル%の範囲から選択することができ、反応効
率、経済性等から0.01〜20モル%の範囲が好まし
い。
In the present invention, the molybdenum compound is 0.
Valent metal itself and / or various molybdenum inorganic compounds, organic compounds or complex compounds. Specifically, molybdenum carbonyl, ammonium molybdate, sodium molybdate, molybdenum acetate, molybdenum oxide, molybdenum acetylacetonate, molybdenum chloride, phosphomolybdic acid, sodium phosphomolybdate, ammonium phosphomolybdate, or the like can be used. . The amount of the catalyst to be used is not particularly limited, but the amount of molybdenum relative to carbon dioxide as a substrate is usually 0.001 to 0.001.
The range can be selected from the range of from 40 to 40 mol%, and the range of from 0.01 to 20 mol% is preferable from the viewpoint of reaction efficiency, economy and the like.

【0012】本発明の方法において、反応は、加温、二
酸化炭素−水素加圧下で実施される。反応方法は特に制
限はなく、たとえば回分式または半回分式の方法であっ
てもよい。
In the method of the present invention, the reaction is carried out under heating and under carbon dioxide-hydrogen pressure. The reaction method is not particularly limited, and may be, for example, a batch method or a semi-batch method.

【0013】反応温度は、通常室温〜250℃であり、
反応効率、安全性、経済性等から100〜200℃が好
ましい。二酸化炭素分圧は通常1〜60kg/cm2Gの範囲
から選ばれるが、安全性、経済性等から30kg/cm2G以
下が好ましい。水素分圧は通常3〜150kg/cm2Gの範
囲からから選ばれるが、安全性、経済性等から100kg
/cm2G以下が好ましい。反応時間は、温度、圧力、およ
び触媒量等の設定の仕方によって変わるため、一概にそ
の範囲を決めることは困難であるが、回分式および半回
分式においては通常1〜60時間、好ましくは2〜40
時間がよい。本発明は、水を主成分とする溶媒中で行う
ものである。混合して使用できる溶媒としては特に限定
はないが、生成物の分離の容易さ、経済性等から、水単
独、あるいは水を含むアルコール系溶媒を用いることが
好ましい。
The reaction temperature is usually from room temperature to 250 ° C.
The temperature is preferably 100 to 200 ° C. from the viewpoint of reaction efficiency, safety, economy and the like. Carbon dioxide partial pressure is usually selected from the range of 1~60kg / cm 2 G, safety, less preferably 30kg / cm 2 G from the economics of such. The hydrogen partial pressure is usually selected from the range of 3 to 150 kg / cm 2 G.
/ cm 2 G or less is preferred. Since the reaction time varies depending on the setting method of the temperature, pressure, amount of catalyst, and the like, it is difficult to determine the range in a straightforward manner. However, in a batch system and a semi-batch system, it is usually 1 to 60 hours, preferably 2 hours. ~ 40
Time is good. The present invention is carried out in a solvent containing water as a main component. The solvent that can be used by mixing is not particularly limited, but it is preferable to use water alone or an alcoholic solvent containing water from the viewpoint of easy separation of the product, economic efficiency, and the like.

【0014】[0014]

【実施例】以下、本発明の方法を実施例によりさらに詳
細に説明するが、本発明はこれらの実施例に限定される
ものではない。
EXAMPLES Hereinafter, the method of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1Embodiment 1

【0016】[0016]

【化1】 Embedded image

【0017】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、モリブデンカルボニ
ル 0.7mg(0.0025mmol)、および水 1.0mlを仕込み、系内
を二酸化炭素ガスで十分置換した後、9kg/cm2Gになるよ
うに二酸化炭素ガス(4.0mmol)を圧入した。さらに、水
素ガス 30kg/cm2G圧入した。加熱攪拌しながら160℃に
昇温し、16時間水素化反応を行った。
5% in a 10 ml stainless steel autoclave
After charging 20.6 mg (0.01 mmol) of rhodium carbon, 0.7 mg (0.0025 mmol) of molybdenum carbonyl, and 1.0 ml of water, and sufficiently replacing the inside of the system with carbon dioxide gas, carbon dioxide gas was adjusted to 9 kg / cm 2 G ( 4.0 mmol). Further, 30 kg / cm 2 G of hydrogen gas was injected. The temperature was raised to 160 ° C. while heating and stirring, and a hydrogenation reaction was performed for 16 hours.

【0018】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.312mmol
(収率7.79%/CO2、3120%/Rh、12480%/Mo)、エタノール
0.0054mmol(収率0.27%/CO2、54%/Rh、216%/Mo)、および
メタン 0.28mmol(収率7.1%/CO2)が生成していた。
After completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, methanol 0.312 mmol
(Yield 7.79% / CO 2 , 3120% / Rh, 12480% / Mo), ethanol
0.0054 mmol (yield 0.27% / CO 2 , 54% / Rh, 216% / Mo) and methane 0.28 mmol (7.1% / CO 2 ) were produced.

【0019】実施例2Embodiment 2

【0020】[0020]

【化2】 Embedded image

【0021】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、モリブデンカルボニ
ル 0.7mg(0.0025mmol)、および水 1.0mlを仕込み、系内
を二酸化炭素ガスで十分置換した後、9kg/cm2Gになるよ
うに二酸化炭素ガス(4.0mmol)を圧入した。さらに、水
素ガス 55kg/cm2G圧入した。加熱攪拌しながら160℃に
昇温し、16時間水素化反応を行った。
5% in a 10 ml stainless steel autoclave
After charging 20.6 mg (0.01 mmol) of rhodium carbon, 0.7 mg (0.0025 mmol) of molybdenum carbonyl, and 1.0 ml of water, and sufficiently replacing the inside of the system with carbon dioxide gas, carbon dioxide gas was adjusted to 9 kg / cm 2 G ( 4.0 mmol). Further, 55 kg / cm 2 G of hydrogen gas was injected. The temperature was raised to 160 ° C. while heating and stirring, and a hydrogenation reaction was performed for 16 hours.

【0022】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.510mmol
(収率12.7%/CO2、5100%/Rh、20400%/Mo)、エタノール
0.0067mmol(収率0.34%/CO2、67%/Rh、268%/Mo)、および
メタン 0.24mmol(収率5.9%/CO2)が生成していた。
After the completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, methanol 0.510 mmol
(Yield 12.7% / CO 2 , 5100% / Rh, 20400% / Mo), ethanol
0.0067 mmol (yield 0.34% / CO 2 , 67% / Rh, 268% / Mo) and methane 0.24 mmol (5.9% / CO 2 ) were produced.

【0023】実施例3Embodiment 3

【0024】[0024]

【化3】 Embedded image

【0025】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、モリブデンカルボニ
ル 0.7mg(0.0025mmol)、および水1.0mlを仕込み、系内
を二酸化炭素ガスで十分置換した後、9kg/cm2Gになるよ
うに二酸化炭素ガス(4.0mmol)を圧入した。さらに、水
素ガス 30kg/cm2G圧入した。加熱攪拌しながら180℃に
昇温し、16時間水素化反応を行った。
5% in a 10 ml stainless steel autoclave
Rhodium carbon 20.6 mg (0.01 mmol), molybdenum carbonyl 0.7 mg (0.0025), and g of water 1.0 ml, and after sufficiently replacing the inside of the system with carbon dioxide gas, so as to 9 kg / cm 2 G Carbon dioxide gas ( 4.0 mmol). Further, 30 kg / cm 2 G of hydrogen gas was injected. The temperature was raised to 180 ° C. while heating and stirring, and a hydrogenation reaction was performed for 16 hours.

【0026】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.568mmol
(収率14.2%/CO2、5680%/Rh、23720%/Mo)、エタノール
0.0080mmol(収率0.40%/CO2、80%/Rh、320%/Mo)、および
メタン 0.23mmol(収率5.7%/CO2)が生成していた。
After the completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, 0.568 mmol of methanol was obtained.
(Yield 14.2% / CO 2 , 5680% / Rh, 23720% / Mo), ethanol
0.0080 mmol (yield 0.40% / CO 2 , 80% / Rh, 320% / Mo) and methane 0.23 mmol (5.7% / CO 2 ) were produced.

【0027】実施例4Embodiment 4

【0028】[0028]

【化4】 Embedded image

【0029】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、モリブデンカルボニ
ル 0.7mg(0.0025mmol)、および水 1.0mlを仕込み、系内
を二酸化炭素ガスで十分置換した後、9kg/cm2Gになるよ
うに二酸化炭素ガス(4.0mmol)を圧入した。さらに、水
素ガス 55kg/cm2G圧入した。加熱攪拌しながら180℃に
昇温し、16時間水素化反応を行った。
5% in a 10 ml stainless steel autoclave
After charging 20.6 mg (0.01 mmol) of rhodium carbon, 0.7 mg (0.0025 mmol) of molybdenum carbonyl, and 1.0 ml of water, and sufficiently replacing the inside of the system with carbon dioxide gas, carbon dioxide gas was adjusted to 9 kg / cm 2 G ( 4.0 mmol). Further, 55 kg / cm 2 G of hydrogen gas was injected. The temperature was raised to 180 ° C. while heating and stirring, and a hydrogenation reaction was performed for 16 hours.

【0030】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.849mmol
(収率21.2%/CO2、8490%/Rh、33960%/Mo)、エタノール
0.0078mmol(収率0.39%/CO2、78%/Rh、312%/Mo)、および
メタン 0.29mmol(収率7.3%/CO2)が生成していた。
After completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, methanol 0.849 mmol
(Yield 21.2% / CO 2 , 8490% / Rh, 33960% / Mo), ethanol
0.0078 mmol (yield 0.39% / CO 2 , 78% / Rh, 312% / Mo) and methane 0.29 mmol (7.3% / CO 2 ) were produced.

【0031】実施例5Embodiment 5

【0032】[0032]

【化5】 Embedded image

【0033】10mlのステンレス製オートクレーブに5%-
ロジウムアルミナ 20.6mg(0.01mmol)、モリブデンカル
ボニル 0.7mg(0.0025mmol)、および水 1.0mlを仕込み、
系内を二酸化炭素ガスで十分置換した後、9kg/cm2Gにな
るように二酸化炭素ガス(4.0mmol)を圧入した。さら
に、水素ガス 55kg/cm2G圧入した。加熱攪拌しながら16
0℃に昇温し、16時間水素化反応を行った。
5% in a 10 ml stainless steel autoclave
20.6 mg (0.01 mmol) of rhodium alumina, 0.7 mg (0.0025 mmol) of molybdenum carbonyl and 1.0 ml of water were charged,
After sufficiently replacing the inside of the system with carbon dioxide gas, carbon dioxide gas (4.0 mmol) was injected under pressure to 9 kg / cm 2 G. Further, 55 kg / cm 2 G of hydrogen gas was injected. 16 with heating and stirring
The temperature was raised to 0 ° C., and a hydrogenation reaction was performed for 16 hours.

【0034】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.133mmol
(収率3.32%/CO2、1330%/Rh、5320%/Mo)、エタノール 0.
0037mmol(収率0.19%/CO2、37%/Rh、148%/Mo)が生成して
いた。
After the completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, methanol 0.133 mmol
(Yield 3.32% / CO 2 , 1330% / Rh, 5320% / Mo), ethanol 0.
0037 mmol (yield 0.19% / CO 2 , 37% / Rh, 148% / Mo) had been produced.

【0035】実施例6Embodiment 6

【0036】[0036]

【化6】 Embedded image

【0037】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、リンモリブデン酸 0.
4mg(0.00021mmol)、および水 1.0mlを仕込み、系内を二
酸化炭素ガスで十分置換した後、9kg/cm2Gになるように
二酸化炭素ガス(4.0mmol)を圧入した。さらに、水素ガ
ス 30kg/cm2G圧入した。加熱攪拌しながら180℃に昇温
し、16時間水素化反応を行った。
In a 10 ml stainless steel autoclave, 5%
Rhodium carbon 20.6 mg (0.01 mmol), phosphomolybdic acid 0.
After charging 4 mg (0.00021 mmol) and 1.0 ml of water and sufficiently replacing the inside of the system with carbon dioxide gas, carbon dioxide gas (4.0 mmol) was injected under pressure to 9 kg / cm 2 G. Further, 30 kg / cm 2 G of hydrogen gas was injected. The temperature was raised to 180 ° C. while heating and stirring, and a hydrogenation reaction was performed for 16 hours.

【0038】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.392mmol
(収率9.80%/CO2、3920%/Rh、15680%/Mo)、エタノール
0.0054mmol(収率0.27%/CO2、54%/Rh、216%/Mo)、および
メタン 0.31mmol(収率7.7%/CO2)が生成していた。
After the completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, 0.392 mmol of methanol was obtained.
(Yield 9.80% / CO 2 , 3920% / Rh, 15680% / Mo), ethanol
0.0054 mmol (yield 0.27% / CO 2 , 54% / Rh, 216% / Mo) and methane 0.31 mmol (7.7% / CO 2 ) were produced.

【0039】実施例7Embodiment 7

【0040】[0040]

【化7】 Embedded image

【0041】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、モリブデン酸アンモ
ニウム 0.4mg(0.00036mmol)、および水 1.0mlを仕込
み、系内を二酸化炭素ガスで十分置換した後、9kg/cm2G
になるように二酸化炭素ガス(4.0mmol)を圧入した。さ
らに、水素ガス 55kg/cm2G圧入した。加熱攪拌しながら
160℃に昇温し、16時間水素化反応を行った。
5% in a 10 ml stainless steel autoclave
After charging 20.6 mg (0.01 mmol) of rhodium carbon, 0.4 mg (0.00036 mmol) of ammonium molybdate, and 1.0 ml of water, and sufficiently replacing the system with carbon dioxide gas, 9 kg / cm 2 G
Was injected with carbon dioxide gas (4.0 mmol). Further, 55 kg / cm 2 G of hydrogen gas was injected. While heating and stirring
The temperature was raised to 160 ° C., and a hydrogenation reaction was performed for 16 hours.

【0042】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール 0.426mmol
(収率10.7%/CO2、4260%/Rh、17040%/Mo)、エタノール
0.0050mmol(収率0.25%/CO2、50%/Rh、200%/Mo)、および
メタン 0.20mmol(収率5.0%/CO2)が生成していた。
After the completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, methanol 0.426 mmol was obtained.
(Yield 10.7% / CO 2 , 4260% / Rh, 17040% / Mo), ethanol
0.0050 mmol (yield 0.25% / CO 2 , 50% / Rh, 200% / Mo) and methane 0.20 mmol (yield 5.0% / CO 2 ) were produced.

【0043】参考例1Reference Example 1

【0044】[0044]

【化8】 Embedded image

【0045】10mlのステンレス製オートクレーブに5%-
ロジウム炭素 20.6mg(0.01mmol)、モリブデンカルボニ
ル 0.7mg(0.0025mmol)、および水 1.0mlを仕込み、系内
を二酸化炭素ガスで十分置換した後、9kg/cm2Gになるよ
うに二酸化炭素ガス(4.0mmol)を圧入した。さらに、一
酸化炭素ガス 9kg/cm2G、および水素ガス 55kg/cm2Gを
圧入した。加熱攪拌しながら180℃に昇温し、16時間水
素化反応を行った。
5% in a 10 ml stainless steel autoclave
After charging 20.6 mg (0.01 mmol) of rhodium carbon, 0.7 mg (0.0025 mmol) of molybdenum carbonyl, and 1.0 ml of water, and sufficiently replacing the inside of the system with carbon dioxide gas, carbon dioxide gas was adjusted to 9 kg / cm 2 G ( 4.0 mmol). Further, 9 kg / cm 2 G of carbon monoxide gas and 55 kg / cm 2 G of hydrogen gas were injected. The temperature was raised to 180 ° C. while heating and stirring, and a hydrogenation reaction was performed for 16 hours.

【0046】反応終了後、オートクレーブを室温まで冷
却し、続いてガスをパージして常圧に戻し、反応液を取
り出した。反応液およびパージしたガスをガスクロマト
グラフィーにより分析した結果、メタノール、エタノー
ル、およびメタンは全く生成していなかった。
After the completion of the reaction, the autoclave was cooled to room temperature, and then the gas was purged to return to normal pressure, and the reaction solution was taken out. As a result of analyzing the reaction solution and the purged gas by gas chromatography, methanol, ethanol, and methane were not generated at all.

【0047】[0047]

【発明の効果】本発明は、温和な反応条件下、水を主成
分とする溶媒中で二酸化炭素を水素添加し、アルコール
類を製造する方法を提供する。
The present invention provides a method for producing alcohols by hydrogenating carbon dioxide in a solvent containing water as a main component under mild reaction conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA02 AA03 BA01A BA01B BA08A BA08B BA26B BB07B BB14A BC59A BC59B BC71A BC71B BE42B CB02 CB70 DA05 FA02 FB06 4H006 AA02 AC41 BA14 BA24 BA55 BB31 BE20 BE41 4H039 CA60 CL35 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // C07B 61/00 300 C07B 61/00 300 F term (reference) 4G069 AA02 AA03 BA01A BA01B BA08A BA08B BA26B BB07B BB14A BC59A BC59B BC71A BC71B BE42B CB02 CB70 DA05 FA02 FB06 4H006 AA02 AC41 BA14 BA24 BA55 BB31 BE20 BE41 4H039 CA60 CL35

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ロジウム担持触媒とモリブデン化合物から
なる触媒存在下、水を主成分とする溶媒中で二酸化炭素
を水素添加することを特徴とするアルコール類の製造方
法。
1. A method for producing alcohols, comprising hydrogenating carbon dioxide in a solvent containing water as a main component in the presence of a catalyst comprising a rhodium-supported catalyst and a molybdenum compound.
【請求項2】担持触媒の担体が活性炭、アルミナ、およ
びこれらの組み合わせから選ばれたものである請求項1
に記載の方法。
2. The support of the supported catalyst is selected from activated carbon, alumina, and a combination thereof.
The method described in.
JP2000056145A 2000-03-01 2000-03-01 Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component Pending JP2001240572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056145A JP2001240572A (en) 2000-03-01 2000-03-01 Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056145A JP2001240572A (en) 2000-03-01 2000-03-01 Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component

Publications (1)

Publication Number Publication Date
JP2001240572A true JP2001240572A (en) 2001-09-04

Family

ID=18577147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056145A Pending JP2001240572A (en) 2000-03-01 2000-03-01 Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component

Country Status (1)

Country Link
JP (1) JP2001240572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012637A2 (en) * 2004-07-29 2006-02-02 Wisconsin Alumni Research Foundation Catalytic method to remove co and utilize its energy content in co-containing streams
JP2007502840A (en) * 2003-08-21 2007-02-15 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock
JP2012072080A (en) * 2010-09-28 2012-04-12 Tokyo Electric Power Co Inc:The Slurry floor type carbon dioxide fixed reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502840A (en) * 2003-08-21 2007-02-15 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock
JP4804352B2 (en) * 2003-08-21 2011-11-02 ピアースン テクノロジーズ, インコーポレイテッド Method and apparatus for preparing useful products derived from carbonaceous feedstock
WO2006012637A2 (en) * 2004-07-29 2006-02-02 Wisconsin Alumni Research Foundation Catalytic method to remove co and utilize its energy content in co-containing streams
WO2006012637A3 (en) * 2004-07-29 2007-05-03 Wisconsin Alumni Res Found Catalytic method to remove co and utilize its energy content in co-containing streams
JP2012072080A (en) * 2010-09-28 2012-04-12 Tokyo Electric Power Co Inc:The Slurry floor type carbon dioxide fixed reactor

Similar Documents

Publication Publication Date Title
US10974233B2 (en) Catalyst for preparing 1,5-pentanediol via hydrogenolysis of tetrahydrofurfuryl alcohol, method and application thereof
JP2008503340A (en) Catalyst and method for the synthesis of C2-oxygenates by hydrogenation of carbon monoxide
CN102245549A (en) An improved process for hydrogenating alkyl ester(s) in the presence of carbon monoxide
WO2011138643A4 (en) A process for preparation of hydroxyacetone or propylene glycol
Wieland et al. Immobilized Metal Complex Catalysts and Heterogeneous Precious Metal Catalysts on Polysiloxane Supports and Their Application in Organic Synthesis
JP5861024B2 (en) Method for producing glycol from polyhydric alcohol
JP2020200326A (en) Process for preparing alcohol from hydrocarbons
JP2001240572A (en) Preparation method of alcohol group by hydrogen addition to carbon dioxide in solvent with water as main component
US20050222452A1 (en) Process for preparing dioxy-functionalized propane compounds
CN104662009A (en) Method for synthesising 2,5-di(hydroxymethyl)furan and 2,5-di(hydroxymethyl)tetrahydrofuran by selective hydrogenation of furan-2,5-dialdehyde
CN101314134A (en) Process for preparing bifunctional catalyst for preparing dimethyl ether directly with synthesis gas
Ishihara et al. Homogeneous debenzylation using extremely active catalysts: Tris (triflyl) methane, scandium (III) tris (triflyl) methide, and copper (II) tris (triflyl) methide
RU2247706C2 (en) Method of preparing fluorinated methylbenzyl alcohol
JP2807053B2 (en) Decomposition method of methanol
JP5684657B2 (en) Method for producing polyol hydrocracked product
US6762332B2 (en) Process for preparing an alcohol from an olefin
JPS6028429A (en) Catalyst for preparing polyethylene glycol dialkyl ether
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP2007245138A (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2021502351A (en) Continuous production method of 2,3-butanediol
JPH08245477A (en) Production of formaldehyde by catalytic hydrogenation of carbon dioxide
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JP4990125B2 (en) Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst
JP4502096B2 (en) Regeneration method of strongly basic anion exchange resin
JPH0867645A (en) Production of ethanol from carbon dioxide and catalyst for production