JP2001240463A - Sintered body of chromia and process for producing the same - Google Patents

Sintered body of chromia and process for producing the same

Info

Publication number
JP2001240463A
JP2001240463A JP2000057909A JP2000057909A JP2001240463A JP 2001240463 A JP2001240463 A JP 2001240463A JP 2000057909 A JP2000057909 A JP 2000057909A JP 2000057909 A JP2000057909 A JP 2000057909A JP 2001240463 A JP2001240463 A JP 2001240463A
Authority
JP
Japan
Prior art keywords
chromia
sintered body
powder
sintering
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000057909A
Other languages
Japanese (ja)
Other versions
JP5002087B2 (en
Inventor
Naotaka Tanahashi
尚貴 棚橋
Makoto Okawa
誠 大河
Yoshiharu Kajita
吉晴 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mino Ceramic Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mino Ceramic Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2000057909A priority Critical patent/JP5002087B2/en
Publication of JP2001240463A publication Critical patent/JP2001240463A/en
Application granted granted Critical
Publication of JP5002087B2 publication Critical patent/JP5002087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dense and uniform sintered body of chromia having high purity, and to provide a process for producing the sintered body of chromia using single component of chromia and in industrially feasible scale. SOLUTION: This sintered body of chromia is produced by firing chromia powder in vacuum or an inert atmosphere with pressure so as to result in dense form having a relative density of 97% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、緻密性に優れ、且
つ、均質な組織を有するクロミア焼結体とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chromia sintered body having excellent denseness and a uniform structure, and a method for producing the same.

【0002】[0002]

【従来の技術】クロミア(Cr23)は、高温において
スラグ融液に濡れにくく、溶解しにくいことから、クロ
ミアを活用した焼結材料は、ガラス溶解炉や、一般及び
産業廃棄物等の減容化や無害化に有効な廃棄物処理用の
溶融炉等の内張炉材として広く用いられている。クロミ
アは大気中で焼成すると、蒸発−凝縮機構によって過度
な粒成長を起こしてクロミア単成分では緻密に焼結する
ことが困難であることから(図3参照)、クロミアを活
用した耐火物用途では、クロミアにTiO2や粘土等の
焼結助剤を添加し、大気中で高温焼成することにより焼
結の促進が図られている。例えば、特開平6−3216
28号公報には、TiO2等の焼結助剤を用いて作られ
たクロミア質焼結体を耐食性骨材として耐火物に応用す
ることが記載されている。
2. Description of the Related Art Chromia (Cr 2 O 3 ) is difficult to wet and dissolve in a slag melt at a high temperature. Therefore, sintering materials utilizing chromia are used in glass melting furnaces, general and industrial wastes, and the like. It is widely used as a lining furnace material such as a melting furnace for waste treatment effective for volume reduction and detoxification. When chromia is fired in the atmosphere, excessive grain growth occurs due to the evaporation-condensation mechanism, and it is difficult to sinter densely with a single chromia component (see Fig. 3). In addition, sintering aids such as TiO 2 and clay are added to chromia, and sintering is promoted by firing at a high temperature in the air. For example, JP-A-6-3216
No. 28 describes that a chromia sintered body produced using a sintering aid such as TiO 2 is applied to a refractory as a corrosion-resistant aggregate.

【0003】しかしながら、このような焼結体は空隙が
多く緻密性に劣り、更に、焼結助剤が液相としてクロミ
アの粒界に存在することとなるため、スラグ融液と接触
した場合に、スラグ中の特性成分の拡散によって焼結体
組織が著しく崩壊してしまい、クロミアの優れた耐食性
機能が生かされることなく、結果として侵食が進行して
しまうといった問題が生じる。
[0003] However, such a sintered body has many voids and is inferior in density, and furthermore, a sintering aid exists as a liquid phase at the grain boundaries of chromia. In addition, the structure of the sintered body is significantly disintegrated due to the diffusion of the characteristic components in the slag, and there is a problem that the excellent corrosion resistance function of chromia is not utilized and as a result, the erosion proceeds.

【0004】一方、クロミア単成分の緻密化焼結につい
ては、例えば、特公昭63−387号公報に記載の製造
方法が知られている。かかる方法では、クロミアの成形
体を炭素還元雰囲気で焼成することにより、焼結過程で
成形体内部に適量の低融点組成物を生成させ、95%以
上の相対密度の緻密な焼結体を得ている。しかし、上記
公報に記載されている従来の製造方法では、成形と焼成
の2段工程からなり、焼成する際には成形体を炭素粉末
中に埋め込む必要があるため、従来の焼成方法よりも手
間がかかるという実用上の問題がある。
On the other hand, as for densification sintering of a single component of chromia, for example, a production method described in Japanese Patent Publication No. 63-387 is known. In this method, a chromia compact is fired in a carbon-reducing atmosphere to generate an appropriate amount of a low-melting-point composition inside the compact during the sintering process, and a dense sintered body having a relative density of 95% or more is obtained. ing. However, the conventional manufacturing method described in the above publication includes a two-step process of molding and firing, and when firing, it is necessary to embed the molded body in carbon powder, which is more troublesome than the conventional firing method. However, there is a practical problem.

【0005】又、クロミアは、焼成時の収縮が殆どな
く、成形時の充填性が焼結体の密度に大きく反映される
ため、クロミアの緻密化焼結には雰囲気制御の他に、成
形時の充填性も重要となる。しかし、市販の高純度クロ
ミアは、一般に数μmサイズの微粉末であり、このよう
な微粉末を高圧力で成形するには、真空中の場合を除き
成形体内部に形成される空気層の存在が問題となり、そ
れを入りにくくするためには、スプレードライヤー等で
更に粉体原料を顆粒状にするといった前処理が必要にな
る。以上のように、従来のクロミア単成分の緻密化焼結
では、成形や焼成に手間がかかっていたことから、原料
段階から焼成工程まで、簡便で、且つ、実用的な製造方
法の開発が望まれている。
[0005] Chromia hardly shrinks during sintering, and the filling property during molding is greatly reflected in the density of the sintered body. Is also important. However, commercially available high-purity chromia is generally a fine powder having a size of several μm. To form such a fine powder under high pressure, the presence of an air layer formed inside the molded body except in a vacuum is required. However, in order to make the powder hard to enter, it is necessary to perform a pre-treatment such as further granulating the powder raw material with a spray drier or the like. As described above, in the conventional densification sintering of a single chromia component, molding and sintering were troublesome, so that development of a simple and practical manufacturing method from the raw material stage to the sintering process is expected. It is rare.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、上記した従来技術の課題を解決し、高純度にして緻
密で、且つ、均質なクロミア焼結体を得ることにある。
更に、本発明の目的は、クロミア単成分を用い、上記の
優れたクロミア焼結体を容易に得ることのできるクロミ
ア焼結体の製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the above-mentioned problems of the prior art and to obtain a dense, homogeneous and homogeneous chromia sintered body of high purity.
A further object of the present invention is to provide a method for producing a chromia sintered body that can easily obtain the above-described excellent chromia sintered body using a chromia single component.

【0007】[0007]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、相対密度が
97%以上の緻密な形態を有し、且つ、クロミア粉末を
真空中若しくは不活性雰囲気中で加圧焼成して得られた
ものであることを特徴とするクロミア焼結体、及び、該
クロミア焼結体を製造するためのクロミア焼結体の製造
方法であって、クロミア粉末を真空中若しくは不活性雰
囲気中で加圧しながら加熱して焼成することを特徴とす
るクロミア焼結体の製造方法である。
The above objects are achieved by the present invention described below. That is, the present invention is characterized in that the chromia powder has a dense form having a relative density of 97% or more, and is obtained by firing a chromia powder under pressure in a vacuum or an inert atmosphere. A sintered body, and a method for producing a chromia sintered body for producing the chromia sintered body, wherein the chromia powder is heated and fired while being pressed in a vacuum or an inert atmosphere. This is a method for producing a chromia sintered body.

【0008】[0008]

【発明の実施の形態】以下に、好ましい実施の形態を挙
げて、本発明を詳細に説明する。本発明のクロミア焼結
体は、真空中若しくは不活性雰囲気中で加圧焼成して得
られたものであって、相対密度が97%以上と緻密であ
ることを特徴とする。かかるクロミア焼結体は、クロミ
ア粉末を真空中若しくは不活性雰囲気中で加圧しながら
加熱して焼成する本発明の製造方法によって容易に得ら
れる。以下、これについて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to preferred embodiments. The chromia sintered body of the present invention is obtained by firing under pressure in a vacuum or in an inert atmosphere, and is characterized by having a relative density of 97% or more and a high density. Such a chromia sintered body can be easily obtained by the production method of the present invention in which chromia powder is heated and baked while applying pressure in a vacuum or an inert atmosphere. Hereinafter, this will be described.

【0009】本発明のクロミア焼結体は、相対密度が9
7%以上であるため、これを製造するためのクロミア粉
体原料としては、純度の高いものを使用することが好ま
しい。好ましくは、99.5重量%以上の純度の粉体原
料を用いることが好ましい。このような純度の市販され
ているクロミア粉体は、通常、平均粒径が1〜3μmの
範囲に調製されているが、本発明においては、これをそ
のまま使用することができる。より均質なクロミア焼結
体を得るためには、よりシャープな粒度分布を有する均
一なクロミア微粉末を原料として用いることが好まし
い。
The chromia sintered body of the present invention has a relative density of 9
Since it is 7% or more, it is preferable to use a high-purity chromia powder raw material for producing the same. Preferably, a powder raw material having a purity of 99.5% by weight or more is used. Commercially available chromia powder having such a purity is usually prepared to have an average particle size in the range of 1 to 3 μm, but in the present invention, this can be used as it is. In order to obtain a more uniform chromia sintered body, it is preferable to use a uniform chromia fine powder having a sharper particle size distribution as a raw material.

【0010】本発明においては、上記のように、好まし
くは、Cr23の純度が99.5重量%以上のクロミア
微粉末を原料として用いるが、このような、クロミア粉
体を真空中又は不活性雰囲気中で加圧焼成することを特
徴とする。その際に、焼成温度を、好ましくは、120
0〜1600℃の範囲、更に好ましくは、1300〜1
500℃の範囲とするとよい。又、圧力としては、好ま
しくは、加圧力10〜60MPaの範囲、更に好ましく
は、20〜40MPaの範囲で加圧焼結を行うとよい。
In the present invention, as described above, preferably, chromia fine powder having a purity of Cr 2 O 3 of 99.5% by weight or more is used as a raw material. It is characterized by firing under pressure in an inert atmosphere. At that time, the firing temperature is preferably set to 120
0-1600 degreeC, More preferably, 1300-1.
The temperature may be in the range of 500 ° C. As the pressure, the pressure sintering is preferably performed at a pressure of 10 to 60 MPa, more preferably at a pressure of 20 to 40 MPa.

【0011】本発明者らの検討によれば、より高い密度
のクロミア焼結体を得るためには、焼成温度を1200
℃以上、更に好ましくは、1300℃以上とすることが
望ましいことがわかった。一方、焼成温度が1600℃
よりも高くなると、粒子の成長が著しくなる傾向があ
り、得られるクロミア焼結体の強度が低下することが起
こる。このため、1600℃以下、より好ましくは、1
500℃以下の温度で焼成するとよいことがわかった。
又、加圧力を60MPaより大きくしても焼結性への加
圧効果が格段に変わらず経済的でなく、一方、10MP
aよりも加圧力が小さい場合は、長時間に及ばないと加
圧効果が充分に得られない場合がある。従って、実用的
には、20〜40MPaの範囲で加圧焼結を行うとよ
い。更に、実際の焼成条件は、両者の兼ね合いにおいて
決定され、より高い温度で焼成すれば圧力を低く抑える
ことができ、圧力を高くすることによって、より低い温
度での焼成が可能となる。
According to the study of the present inventors, in order to obtain a chromia sintered body having a higher density, the sintering temperature must be set to 1200.
It has been found that the temperature is desirably not less than 1 ° C., more preferably not less than 1300 ° C. On the other hand, the firing temperature is 1600 ° C
If it is higher than this, the growth of particles tends to be remarkable, and the strength of the obtained chromia sintered body will be reduced. For this reason, 1600 ° C. or lower, more preferably 1
It was found that firing at a temperature of 500 ° C. or less was good.
Further, even if the pressing force is larger than 60 MPa, the effect of the pressing on the sinterability is not significantly changed and is not economical.
When the pressing force is smaller than a, the pressing effect may not be sufficiently obtained unless the pressing force is applied for a long time. Therefore, in practice, pressure sintering is preferably performed in the range of 20 to 40 MPa. Furthermore, the actual firing conditions are determined by a balance between the two, and firing at a higher temperature can reduce the pressure, and by increasing the pressure, firing at a lower temperature becomes possible.

【0012】本発明のクロミア焼結体は、真空中若しく
は不活性雰囲気中で、上記に挙げたような焼成温度及び
加圧力の範囲から選択される好適な焼成条件で加圧焼成
して得られるが、この際に用いる加圧焼結法としては、
焼結助剤の力に頼らず外圧により焼結を助長するホット
プレス法、若しくは、従来からのパルス通電加熱加圧焼
結法を用いることができる。本発明のクロミア焼結体
は、特に、パルス通電加熱加圧焼結法を用いて製造する
ことが好ましい。パルス通電加熱法としては、パルス電
流を直接又は間接に、或いは直接と間接を同時に利用す
る各種の方法があるが、いずれも利用できる。又、加圧
方法としては、粉体原料に対して、一軸加圧であっても
よいし、一軸加圧を行ないながら、チャンバー内に導入
した不活性ガスを利用した全体加圧であってもよい。以
下、加圧焼成の方法について具体的に説明する。
The chromia sintered body of the present invention can be obtained by pressure firing in a vacuum or an inert atmosphere under suitable firing conditions selected from the ranges of firing temperature and pressure as described above. However, as the pressure sintering method used in this case,
A hot press method in which sintering is promoted by an external pressure without relying on the force of a sintering aid, or a conventional pulsed current heating and pressure sintering method can be used. It is particularly preferable that the chromia sintered body of the present invention is manufactured by using a pulse current heating and pressure sintering method. As the pulse current heating method, there are various methods that use the pulse current directly or indirectly, or simultaneously use the direct and indirect methods, and any of them can be used. Further, as the pressurizing method, the powder material may be uniaxially pressurized, or may be uniaxially pressurized while performing the entire pressurization using an inert gas introduced into the chamber. Good. Hereinafter, the pressure firing method will be specifically described.

【0013】ホットプレス法では、クロミア粉体原料を
充填するためのグラファイト等からなる材質の焼成型
(ダイ)と、該焼成型内に充填されているクロミア粉末
に少なくとも圧力がかかるように構成されている上下パ
ンチを用い、ダイ内に充填されているクロミア粉末に一
軸加圧しながら、ダイ及び上下パンチから伝わるジュー
ル熱で焼成を行なう。
In the hot press method, a sintering die (die) made of graphite or the like for filling a chromia powder raw material and a chromia powder filled in the sintering mold are configured to apply at least pressure. Using the upper and lower punches, baking is performed by Joule heat transmitted from the die and the upper and lower punches while uniaxially pressing the chromia powder filled in the die.

【0014】パルス通電加熱加圧焼結法では、グラファ
イト等の材料からなる導電性焼成型(ダイ)に充填され
た粉体に上下のパンチによって一軸加圧しながら、パル
ス電流を粉体及び導電性ダイに流すことによって起こる
粉体自身の発熱作用と、ダイ及び上下のパンチから伝わ
るジュール熱で焼成を行なう。
In the pulse current heating / pressure sintering method, a pulse current is applied to a powder filled in a conductive firing mold (die) made of a material such as graphite while uniaxially pressing the powder with upper and lower punches. Firing is performed by the heat generation effect of the powder itself caused by flowing through the die and Joule heat transmitted from the die and the upper and lower punches.

【0015】本発明においては、上記のいずれの焼結方
法を用いる場合も、真空中、又は、クロミアに対して不
活性な雰囲気中で焼成を行なう。この際、不活性雰囲気
とするために、いずれの不活性ガスを使用することもで
きるが、中でも、アルゴンガス中で行うのが一般的であ
る。
In the present invention, when any of the above sintering methods is used, the sintering is performed in a vacuum or in an atmosphere inert to chromia. At this time, any inert gas can be used in order to make the atmosphere inert. Above all, the process is generally performed in an argon gas.

【0016】更に、本発明では、ダイとパンチの噛み合
わせを良くし、クロミア粉体原料に対して均一な加熱が
行われるようにする目的で、図2に示したように、上下
パンチと、圧粉体成形面との間にグラファイト粉末を薄
く配置して焼成してもよい。本発明者らの検討によれ
ば、特に、ダイとパンチの発熱性が電流特性に大きく影
響されるパルス通電加熱加圧焼結法を用いて加圧焼成す
る場合に、グラファイト粉末を配置した状態で加熱加圧
することが望ましいことがわかった。この際のグラファ
イト粉末の充填量は、最大の加圧力を施した時点で、そ
の厚みが0.5〜5mm程度の範囲になるように、加圧
力に合わせて適宜に設定すればよい。
Further, in the present invention, as shown in FIG. 2, upper and lower punches are provided for the purpose of improving the engagement between the die and the punch, and to uniformly heat the chromia powder raw material. Graphite powder may be thinly arranged between the green compact forming surface and firing. According to the study of the present inventors, in particular, when pressure firing using a pulse current heating and pressure sintering method in which the heat generation of the die and the punch is greatly affected by the current characteristics, the state where the graphite powder is disposed It was found that it was desirable to heat and pressurize at. The filling amount of the graphite powder at this time may be appropriately set in accordance with the pressing force so that the thickness is in the range of about 0.5 to 5 mm at the time of applying the maximum pressing force.

【0017】この際に使用するグラファイト粉末は、ダ
イとパンチの損傷を防ぐために、なるべく純度が高いも
のを用いることが好ましい。又、その粒径としては、グ
ラファイト自身の充填性を高めるためにはできるだけ小
さい方が好ましいが、グラファイト粉末は、加圧焼成後
には焼結により固化してしまうため、充填性がよく、し
かも、焼結により得られる固化物を容易に破砕できる程
度の粒径のものを適宜に選択することが好ましい。この
ようにすれば、クロミア粉体を加圧焼成後に、得られる
クロミア焼結体の上下の面から、グラファイト焼結体を
容易に分離して取り除くことができる。
The graphite powder used at this time is preferably as high as possible in order to prevent damage to the die and punch. In addition, the particle size is preferably as small as possible in order to enhance the filling properties of the graphite itself, but the graphite powder is solidified by sintering after pressure firing, so that the filling properties are good, and It is preferable to appropriately select a particle having such a particle size that a solid obtained by sintering can be easily crushed. By doing so, the graphite sintered body can be easily separated and removed from the upper and lower surfaces of the obtained chromia sintered body after the chromia powder is fired under pressure.

【0018】本発明のクロミア焼結体の製造方法によれ
ば、クロミア焼結体を製造する場合に、上記したホット
プレス法若しくはパルス通電加熱法等の加熱法を用い、
焼結過程が不活性雰囲気中で行なわれるように制御し、
更に加圧しながら焼成することで、従来の大気中で行な
われている焼成よりも低温で焼結を進行させることが可
能となるため、クロミア粉末の粒成長を伴うことなく、
得られる焼結体を緻密化できるという顕著な効果が得ら
れる。
According to the method for producing a chromia sintered body of the present invention, when producing a chromia sintered body, a heating method such as the above-described hot press method or pulse current heating method is used.
Controlling the sintering process to take place in an inert atmosphere,
By sintering with further pressurization, sintering can proceed at a lower temperature than the sintering performed in the conventional atmosphere, without accompanying the grain growth of the chromia powder,
A remarkable effect that the obtained sintered body can be densified can be obtained.

【0019】以下に、クロミア焼結体の製造にパルス通
電加熱加圧焼結法を用いた場合を例に採って、本発明の
効果について説明する。パルス通電加熱法のプロセスで
は、通電すると外部応力のかかる粒子接触部に高エネル
ギーのパルス電流が流れ、溶着状態のネックを瞬時に形
成するため、従来のホットプレス法に比べて短時間で焼
結できるという利点がある。
Hereinafter, the effect of the present invention will be described by taking, as an example, a case where a pulse current heating and pressure sintering method is used for producing a chromia sintered body. In the pulse current heating process, when energized, a high-energy pulse current flows through the particle contact area where external stress is applied, instantaneously forming a welded neck, and sintering in a shorter time compared to the conventional hot press method There is an advantage that you can.

【0020】一般に、クロミアは大気中で焼成されると
著しい粒成長を起こし、空隙を生じながら焼結が進行す
るが、本発明では、真空中、又は、クロミアに対して不
活性な雰囲気中で焼成を行なうので、焼成雰囲気におけ
る酸素分圧が低下しているため、著しい粒成長を伴わず
に焼結が進行する。更に、付加的な要素として、粉体に
対して外部から適度な圧力をかけながら焼成しているた
め、加熱時において塑性流動が促進され、効果的に空隙
が排除されるため、緻密な焼結体の形成が可能となる。
In general, chromia undergoes remarkable grain growth when fired in the air, and sintering proceeds while forming voids. However, in the present invention, chromia is treated in a vacuum or in an atmosphere inert to chromia. Since the firing is performed, the oxygen partial pressure in the firing atmosphere is reduced, so that sintering proceeds without significant grain growth. Further, as an additional element, since the powder is fired while applying an appropriate pressure from the outside, plastic flow is promoted during heating, and voids are effectively eliminated, so that dense sintering is performed. The body can be formed.

【0021】以上の作用が奏される結果、パルス通電加
熱加圧焼結法を用いてクロミア粉末を焼成すれば、上記
のような高純度にして相対密度が97%以上の緻密なク
ロミア焼結体が容易に得られる。更に、上記方法では、
成形と焼成が同時に行われるため、高い成形圧力を必要
とすることなく、しかも粉体原料の前処理を必要とせず
に、微粉末のまま緻密化焼結することが可能となる。
As a result, when the chromia powder is fired using the pulse current heating / pressurizing sintering method, a dense chromia sinter having a high purity and a relative density of 97% or more as described above is obtained. The body is easily obtained. Further, in the above method,
Since molding and firing are performed simultaneously, it is possible to perform dense sintering as fine powder without requiring a high molding pressure and without requiring pretreatment of the powder raw material.

【0022】パルス通電加熱加圧焼結法を用いてクロミ
ア粉末を焼成する場合に、グラファイト等の材料からな
る導電性のダイとパンチを用いた場合は、使用頻度が高
くなると摩耗によりダイとパンチの噛み合わせが悪くな
り、充填粉体原料に対して均一な成形ができなくなるこ
とが起こることがある。この場合には、パンチとの接触
面で加熱効果に違いを生じ、不均質な組織が形成される
ことが生じる恐れがあり、又、局部的な発熱はダイの劣
化を早める原因ともなる。
When the chromia powder is fired by the pulse current heating / pressurizing sintering method, when a conductive die and a punch made of a material such as graphite are used, when the frequency of use becomes high, the die and the punch are worn due to wear. May be deteriorated, and uniform molding may not be performed on the charged powder raw material. In this case, there is a possibility that a difference occurs in the heating effect at the contact surface with the punch, and a non-uniform structure may be formed. In addition, local heat generation may cause deterioration of the die earlier.

【0023】パルス通電加熱加圧焼結法では、ダイとパ
ンチの噛み合わせが充填粉体とパンチとの接触性だけで
なく、パンチからダイへの電流の流れ方にも影響する。
電流がダイに均一に流れないと、圧粉体側面において加
熱効果に違いが生じ、ジュール熱だけに頼るホットプレ
ス法よりも更に不均質な組織が形成されることが生じる
恐れがある。
In the pulse current heating / pressure sintering method, the engagement between the die and the punch affects not only the contact property between the filling powder and the punch but also the current flow from the punch to the die.
If the current does not flow uniformly through the die, a difference in the heating effect occurs on the side surface of the green compact, and a more inhomogeneous structure may be formed than in the hot pressing method relying solely on Joule heat.

【0024】しかしながら、パンチと圧粉体との間に導
電性の高いグラファイト粉末を配置して、加圧しながら
通電加熱して焼成する態様の本発明のクロミア焼結体の
製造方法によれば、圧粉体の全面が均一に加圧されると
共に、パンチからダイへの通電点が全周に確保されるこ
ととなるため、電流が均一に流れ、その結果、圧粉体に
対して均一に加熱することができる。
However, according to the method for producing a chromia sintered body of the present invention, in which graphite powder having high conductivity is arranged between the punch and the green compact, and the powder is heated while being heated while being pressed, and then fired. Since the entire surface of the green compact is uniformly pressed and the energization point from the punch to the die is secured on the entire circumference, the current flows uniformly, and as a result, the uniform Can be heated.

【0025】以上述べた特徴から、パルス通電加熱加圧
焼結法を利用した本発明のクロミア焼結体の製造方法に
よれば、高温耐食性材料としての信頼性の高いクロミア
焼結体が容易に得られる。更に、かかる製造方法では、
粉末の成形と焼成とが同時に行われ、しかも僅か5分程
度の保持時間で焼結が行われるため、工業的に充分に利
用できる。従って、本発明のクロミア焼結体を工業的規
模で生産することが可能となる。
From the characteristics described above, according to the method for producing a chromia sintered body of the present invention utilizing the pulse current heating and pressurizing sintering method, a highly reliable chromia sintered body as a high-temperature corrosion-resistant material can be easily obtained. can get. Further, in such a manufacturing method,
Since the molding and firing of the powder are performed simultaneously and the sintering is performed with a holding time of only about 5 minutes, it can be used industrially sufficiently. Therefore, it becomes possible to produce the chromia sintered body of the present invention on an industrial scale.

【0026】以上のような特徴を有する本発明の製造方
法で製造されたクロミア焼結体を電子顕微鏡(SEM)
で組織観察した結果、図1に示すように、粒子間が溶融
状態で結合し、且つ、局所的な粒成長を起こすことな
く、粒子径の揃った均質な組織が形成されることが確認
できた。又、焼成温度、加圧力等の焼成条件を変えるこ
とによって、得られるクロミア焼結体の組織形態を制御
できることや、本発明の製造方法で製造されたクロミア
焼結体は、温度効果によって粒子の成長が進行する場合
があったとしても、加圧効果によって焼結体の緻密性が
維持されることもわかった。
The chromia sintered body manufactured by the manufacturing method of the present invention having the above-mentioned characteristics is obtained by an electron microscope (SEM).
As a result of observation of the structure, it was confirmed that, as shown in FIG. 1, the particles were bonded in a molten state and a uniform structure having a uniform particle diameter was formed without causing local grain growth. Was. In addition, by changing the firing conditions such as firing temperature and pressure, the morphology of the obtained chromia sintered body can be controlled, and the chromia sintered body manufactured by the manufacturing method of the present invention has a particle effect due to the temperature effect. It was also found that the compactness of the sintered body was maintained by the pressing effect even if the growth proceeded in some cases.

【0027】[0027]

【実施例】次に、実施例及び比較例を挙げて本発明を更
に詳細に説明する。 <実施例1>原料のクロミア粉末としては、平均粒径1
μmの市販品(日本化学工業(株)製、G5)を用い
た。粉体の充填部は、図2に示したように上下パンチと
ダイとによって形成されるが、パンチの形状は上下とも
にφ60×40mmであり、ダイの形状は、外径φ10
0mm、内径φ60.8mm、高さ70mmのものを用
いた。これらの材質はいずれもグラファイトである。先
ず、ダイに下パンチを差し込んだ後、ダイ内部に、上記
の原料粉末を均一に充填し、上パンチを差し込む。この
際、本実施例では、ダイ及びパンチと粉末原料との反応
によって生じるダイの損傷を防ぐために、0.2mm厚
のカーボンシートを、上下パンチと充填された粉末原料
との間に各々1枚、粉末原料が充填されるダイ内壁に2
枚設置した。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. <Example 1> The raw material chromia powder had an average particle size of 1
A commercially available product of μm (G5 manufactured by Nippon Chemical Industry Co., Ltd.) was used. The filling portion of the powder is formed by upper and lower punches and a die as shown in FIG. 2, and the shape of the punch is φ60 × 40 mm at both the upper and lower sides, and the shape of the die is an outer diameter
Those having a diameter of 0 mm, an inner diameter of 60.8 mm, and a height of 70 mm were used. These materials are all graphite. First, after inserting the lower punch into the die, the above-mentioned raw material powder is uniformly filled in the die, and the upper punch is inserted. At this time, in this embodiment, in order to prevent damage to the die caused by the reaction between the die and the punch and the powder raw material, a carbon sheet having a thickness of 0.2 mm is inserted between the upper and lower punches and the filled powder raw material. , 2
We installed.

【0028】上記のようにしてクロミア粉末原料が充填
されたダイスを、放電プラズマ焼結機((株)イズミテ
ック製、SPS−7.40)のチャンバー内にセット
し、焼成を行った。先ず、チャンバー内を5Pa以下の
真空状態とした後、表1に示したような焼成条件で焼成
して、No.1〜8の8種類の焼結体を得た。即ち、焼
成条件は、20〜40MPaの範囲内で夫々加圧力を粉
体にかけながら、19又は20分で1350〜1450
℃の範囲の到達温度に夫々昇温し、その所定の温度で5
分間保持して加圧焼成を行なった。このようにして焼成
した後、加圧を完全に開放すると共に自然冷却し、40
0℃に達した時点で大気開放して各焼結体を得た。
The dice filled with the chromia powder raw material as described above was set in a chamber of a discharge plasma sintering machine (SPS-7.40, manufactured by Izmitek Co., Ltd.) and fired. First, the inside of the chamber was evacuated to 5 Pa or less, and then fired under the firing conditions shown in Table 1. Eight types of sintered bodies 1 to 8 were obtained. That is, the firing conditions are 1350 to 1450 in 19 or 20 minutes while applying a pressing force to the powder within the range of 20 to 40 MPa.
Temperature to the ultimate temperature in the range of
Pressed firing was carried out for a period of one minute. After firing in this manner, the pressure is completely released, and the product is naturally cooled.
When the temperature reached 0 ° C., it was opened to the atmosphere to obtain each sintered body.

【0029】<比較例1>焼結助剤(TiO2、Si
2)を合量で10%使用して、実施例1で使用したと
同様のCr23を90%含む粉体原料を用い、大気中
で、1750℃で焼成して、比較例のクロミア焼結体N
o.9を得た。
<Comparative Example 1> Sintering aids (TiO 2 , Si
O 2 ) was used in a total amount of 10%, and the same powder material containing 90% of Cr 2 O 3 as used in Example 1 was fired at 1750 ° C. in the air to obtain a comparative example. Chromia sintered body N
o. 9 was obtained.

【0030】[0030]

【評価】上記得られた実施例及び比較例のNo.1〜9
の9種類の焼結体を夫々切断加工し、各焼結体につい
て、下記に述べる方法で、相対密度、曲げ強度、侵食試
験、表面の状態観察を実施して、その特性を夫々評価し
た。その結果を、各焼結体の焼成条件と共に表1に示し
た。
[Evaluation] Nos. Of Examples and Comparative Examples obtained above. 1-9
Each of the nine types of sintered bodies was cut and subjected to relative density, bending strength, erosion tests, and surface state observations by the methods described below, and their properties were evaluated. The results are shown in Table 1 together with the firing conditions of each sintered body.

【0031】(1)相対密度 アルキメデス法によって密度の計測を行なった。即ち、
JIS−R2205に準拠して、得られた嵩密度をクロ
ミアの理論密度で除して百分率で表したものを相対密度
とした。
(1) Relative density The density was measured by the Archimedes method. That is,
In accordance with JIS-R2205, the obtained bulk density was divided by the theoretical density of chromia and expressed as a percentage, which was defined as a relative density.

【0032】(2)曲げ強度 本実施例のNo.1〜8の焼結体について、JIS−R
1601に準拠し、室温における3点曲げ強度を測定し
た。
(2) Bending strength Regarding the sintered bodies of Nos. 1 to 8, JIS-R
The three-point bending strength at room temperature was measured according to 1601.

【0033】(3)侵食試験 No.1、2、5及び9の焼結体について、下記のよう
なスラグによる侵食試験を行なった。スラグ侵食試験
は、試薬から合成したスラグを大気中、1500℃で溶
融し、その溶融スラグに50時間、夫々の焼結体(6×
10×20mm形状に切り出した試料を使用)を浸漬さ
せて実施した。試験後、試料を切断し、SEMによりス
ラグ界面を観察し、試料の減少量を測定して侵食量と
し、各焼結体の耐食性を評価した。
(3) Erosion test No. The following slag erosion tests were performed on the sintered bodies 1, 2, 5, and 9. In the slag erosion test, the slag synthesized from the reagent was melted in the air at 1500 ° C., and each of the sintered bodies (6 ×
(A sample cut into a shape of 10 × 20 mm was used). After the test, the sample was cut, the slag interface was observed by SEM, and the amount of decrease in the sample was measured to determine the amount of erosion, and the corrosion resistance of each sintered body was evaluated.

【0034】(4)表面の状態観察 SEMによる微構造組織の観察を行ない、粒子を無作為
に100個取り出してその粒径を測定し、得られた粒子
径の範囲で表面性状を評価した。
(4) Observation of Surface Condition The microstructure was observed by SEM, 100 particles were taken out at random, the particle size was measured, and the surface properties were evaluated in the range of the obtained particle size.

【0035】(5)評価結果 本実施例の製造方法で得られたNo.1〜8の8種類の
焼結体は、表1に示したように、相対密度が97%以上
であり、いずれも緻密なクロミア焼結体であることが確
認できた。これに対し、焼結助剤を用い大気中で焼成し
たNo.9の比較例の焼結体は相対密度が89%であ
り、本実施例のものに比べて緻密さが劣ったものであれ
ることがわかった。又、本実施例によれば、比較例の方
法に比べて、格段に低い焼成温度で、相対密度が97%
以上の緻密なクロミア焼結体が容易に得られることもわ
かった。
(5) Evaluation Result No. 1 obtained by the manufacturing method of this embodiment. As shown in Table 1, the eight types of sintered bodies 1 to 8 had a relative density of 97% or more, and it was confirmed that all of them were dense chromia sintered bodies. On the other hand, No. 1 was fired in the air using a sintering aid. The sintered body of Comparative Example 9 had a relative density of 89%, indicating that the sintered body was inferior in density to that of the present example. Further, according to the present example, the relative density was 97% at a significantly lower firing temperature than the method of the comparative example.
It was also found that the above dense chromia sintered body was easily obtained.

【0036】又、No.1、2及び5の本実施例の焼結
体は、No.9の比較例の焼結体と比べて、スラグによ
る侵食を格段に抑制でき、耐食性に優れた焼結体である
ことが確認できた。これは、比較例の焼結体は相対密度
に劣り、粒界における空隙が多いことや、粒子間に液相
が存在していることがスラグによる侵食を促進させてい
るのに対し、本実施例の焼結体は、相対密度が高く、こ
のような原因が抑制されているためと考えられる。
In addition, No. The sintered bodies of this example of Nos. 1, 2, and 5 As compared with the sintered body of Comparative Example No. 9, erosion by slag was remarkably suppressed, and it was confirmed that the sintered body was excellent in corrosion resistance. This is because the sintered body of the comparative example is inferior in relative density and has many voids at grain boundaries and the existence of a liquid phase between particles promotes erosion by slag. It is considered that the sintered body of the example has a high relative density, and such a cause is suppressed.

【0037】更に、No.1〜8の8種類の本実施例の
焼結体の特性について、焼成条件との関係を詳細に検討
した結果、以下のことがわかった。先ず、加圧力を一定
にして焼成温度を変化させて得られたNo.1〜5の焼
結体から、表1に示したように、相対密度については、
いずれも高いものが得られるが、焼成温度を上げるに従
い、粒成長が進行し、曲げ強さが低下する傾向があるこ
とがわかった。従って、加圧力が同じであれば、できる
だけ、低い焼成温度で焼成することが有効であることが
わかった。
Further, No. As for the characteristics of the eight types of sintered bodies of Examples 1 to 8, the relationship between the characteristics and the firing conditions was examined in detail, and the following was found. First, No. 1 was obtained by changing the firing temperature while keeping the pressure constant. From the sintered bodies 1 to 5, as shown in Table 1, the relative density
In all cases, high values were obtained, but it was found that as the firing temperature was increased, the grain growth tended to proceed, and the bending strength tended to decrease. Therefore, it was found that firing at the lowest firing temperature was effective if the pressure was the same.

【0038】一方、以上の検討の結果、より良好なクロ
ミア焼結体が得られた1350℃の焼結温度を一定にし
て、加圧力を変化させてNo.6〜8の焼結体を得た。
表1に示されているように、得られたNo.6〜8の焼
結体の相対密度は、加圧力に左右され、加圧力が低くな
るに従って緻密化しにくくなる傾向が見られた。従っ
て、できるだけ加圧力を大きくして焼成することが好ま
しいが、経済性との兼ね合いから、加圧力は30MPa
程度で充分であることもわかった。
On the other hand, as a result of the above examination, a better chromia sintered body was obtained. 6 to 8 sintered bodies were obtained.
As shown in Table 1, the obtained No. The relative densities of the sintered bodies Nos. 6 to 8 depended on the pressing force, and there was a tendency that densification became difficult as the pressing force became lower. Therefore, it is preferable to bake with as high a pressing force as possible, but from the viewpoint of economy, the pressing force should be 30 MPa.
It turned out that the degree was enough.

【0039】[0039]

【表1】 [Table 1]

【0040】<実施例2>原料のクロミア粉末として
は、実施例1で使用したと同様の平均粒径1μmの市販
品(日本化学工業(株)製、G5)を用いた。粉体の充
填部は、図2に示したように上下パンチとダイとによっ
て形成されるが、パンチの形状は上下ともにφ100×
40mmであり、ダイの形状は、外径φ140mm、内
径φ100.8mm、高さ70mmのものを用いた。こ
れらの材質はいずれもグラファイトである。先ず、ダイ
に下パンチを差し込んだ後、ダイ内部に、上記の原料粉
末を均一に充填し、上パンチを差し込む。この際、ダイ
及びパンチと粉末原料との反応によって生じるダイの損
傷を防ぐために、実施例1の場合と同様に、0.2mm
厚のカーボンシートを、上下パンチと充填された粉末原
料との間に各々1枚、粉末原料が充填されるダイ内壁に
2枚設置した。
<Example 2> As a raw material of chromia powder, a commercial product (Nippon Kagaku Kogyo Co., Ltd., G5) having an average particle diameter of 1 μm similar to that used in Example 1 was used. The filling portion of the powder is formed by upper and lower punches and a die as shown in FIG.
The die had an outer diameter of 140 mm, an inner diameter of 100.8 mm, and a height of 70 mm. These materials are all graphite. First, after inserting the lower punch into the die, the above-mentioned raw material powder is uniformly filled in the die, and the upper punch is inserted. At this time, in order to prevent the die from being damaged due to the reaction between the die and the punch and the powdery raw material, 0.2 mm as in the case of the first embodiment.
One thick carbon sheet was placed between the upper and lower punches and the filled powder material, and two were placed on the inner wall of the die filled with the powder material.

【0041】本実施例では、上記の状態のものと、更に
これに、上下パンチと、形成される圧粉体成形面との間
に平均粒径100μmのグラファイト粉末を1.5〜3
mmの厚みで夫々配置したものの2種類を用意した。
In this embodiment, a graphite powder having an average particle size of 100 μm is interposed between the upper and lower punches and the green compact forming surface to be formed in an amount of 1.5 to 3 μm.
Two types each of which were arranged with a thickness of mm were prepared.

【0042】上記のようにして、原料粉末のものもの
と、原料粉末に加えてグラファイトを充填した2種類の
ダイスを、夫々、放電プラズマ焼結機((株)イズミテ
ック製、SPS−7.40)のチャンバー内にセット
し、加圧焼成を行った。焼成条件は、先ずチャンバー内
を5Pa以下の真空状態とした後、30MPaの加圧力
を粉体にかけながら、19分で1350℃まで昇温し
た。そして、この温度で5分保持した後、加圧を完全に
開放すると共に自然冷却し、400℃に達した時点で大
気開放して、No.10及び11のクロミア焼結体を得
た。グラファイトを配置したNo.10のクロミア焼結
体では、焼成後、固化したグラファイトをカーボンシー
トと共に取り除いた。
As described above, two types of dies each having a raw material powder and two types of dies filled with graphite in addition to the raw material powder were respectively used in a discharge plasma sintering machine (manufactured by Izumi Tech Co., Ltd., SPS-7. It was set in the chamber of 40) and baked under pressure. The firing conditions were as follows. First, the inside of the chamber was evacuated to 5 Pa or less, and the temperature was raised to 1350 ° C. in 19 minutes while applying a pressure of 30 MPa to the powder. Then, after maintaining at this temperature for 5 minutes, the pressure was completely released and the sample was naturally cooled. When the temperature reached 400 ° C., the sample was released to the atmosphere. 10 and 11 chromia sintered bodies were obtained. No. in which graphite was placed In the chromia sintered body of No. 10, after firing, the solidified graphite was removed together with the carbon sheet.

【0043】上記で得られた2種類の焼結体を切断加工
し、実施例1で行なったと同様の方法で、相対密度の計
測、SEMによる微構造組織の観察、3点曲げ強度の測
定、スラグによる侵食試験を夫々実施した。その結果、
No.10及び11のクロミア焼結体は共に、実施例1
のNo.5及びNo.7のクロミア焼結体と同等の焼成
特性を有するものであった。
The two types of sintered bodies obtained above were cut and processed in the same manner as in Example 1 to measure the relative density, observe the microstructure by SEM, measure the three-point bending strength, Erosion tests with slag were performed respectively. as a result,
No. The chromia sintered bodies of Nos. 10 and 11 are the same as in Example 1.
No. 5 and No. 5 7 had the same sintering characteristics as the chromia sintered body of No. 7.

【0044】更に、グラファイト粉末を設置したことに
よる効果を確認するために、室温における3点曲げ強度
の測定の際に、No.10及び11の各焼結体の5箇所
よりJIS−R1601に準じて曲げ強度測定用試料を
2本ずつ採取し、夫々について3点曲げ強さを測定し
た。そして、測定値から曲げ強さのバラツキ具合を確認
すると共に、これらの値から曲げ強さの標準偏差を求
め、この標準偏差が小さいものほど均質性に優れている
と判断し、焼結体の均質性評価を行なった。
Further, in order to confirm the effect of the provision of the graphite powder, when measuring the three-point bending strength at room temperature, no. Two samples for bending strength measurement were taken from five places of each of the sintered bodies 10 and 11 in accordance with JIS-R1601, and the three-point bending strength was measured for each. Then, while confirming the variation of the bending strength from the measured values, the standard deviation of the bending strength is obtained from these values, and it is determined that the smaller the standard deviation, the better the homogeneity. A homogeneity evaluation was performed.

【0045】表2に、グラファイト粉末を配置して作製
したNo.10の焼結体と、配置せずに作製したNo.
11の焼結体について、上記の方法で得られた、それぞ
れ異なる点で採取した試料の曲げ強さと、その標準偏差
を示した。この結果、グラファイト粉末を配置しないN
o.11の焼結体の場合は、曲げ強さのバラツキの幅が
最大で約200MPaあったのに対し、グラファイト粉
末を配置した場合はその約半分におさまっており、更
に、標準偏差についても同様に小さいことから、全体的
に均一な焼成が行われたことを確認できた。
Table 2 shows that No. 1 prepared by arranging graphite powder. No. 10 and a sintered body of No. 10 prepared without disposition.
With respect to the 11 sintered bodies, the bending strengths of the samples obtained at different points and obtained by the above method, and the standard deviations thereof, are shown. As a result, N without graphite powder
o. In the case of the sintered body of No. 11, the width of the variation in bending strength was about 200 MPa at the maximum, whereas when graphite powder was arranged, it was about half of that, and the standard deviation was also the same. From the small size, it was confirmed that uniform firing was performed as a whole.

【0046】[0046]

【表2】 [Table 2]

【0047】<実施例3>原料のクロミア粉末として、
純度99.9%の市販品(日本化学工業(株)製、G
5)の平均粒径3μmのものを用いた。粉体の充填部
は、図2に示したように上下パンチとダイとによって形
成されるが、パンチの形状は上下ともにφ60×150
mmであり、ダイの形状は、外径φ170mm、内径φ
60mm、高さ120mmのものを用いた。これらの材
質はいずれもグラファイトである。先ず、ダイに下パン
チを差し込んだ後、ダイ内部に、上記の原料粉末を均一
に充填し、上パンチを差し込む。この際、ダイ及びパン
チと粉末原料との反応によって生じるダイの損傷を防ぐ
ために、実施例1の場合と同様に、0.2mm厚のカー
ボンシートを、上下パンチと充填された粉末原料との間
に各々1枚、粉末原料が充填されるダイ内壁に2枚設置
した。
Example 3 As a raw material chromia powder,
A commercially available product having a purity of 99.9% (manufactured by Nippon Chemical Industry Co., Ltd., G
The material having an average particle size of 3 μm in 5) was used. The filling portion of the powder is formed by upper and lower punches and a die as shown in FIG.
mm, and the shape of the die is outer diameter φ170 mm, inner diameter φ
Those having a size of 60 mm and a height of 120 mm were used. These materials are all graphite. First, after inserting the lower punch into the die, the above-mentioned raw material powder is uniformly filled in the die, and the upper punch is inserted. At this time, in order to prevent damage to the die caused by the reaction between the die and the punch and the powder raw material, a carbon sheet having a thickness of 0.2 mm was placed between the upper and lower punches and the filled powder raw material in the same manner as in Example 1. And one on each die inner wall filled with the powder material.

【0048】上記のようにしてクロミア粉末原料が充填
されたダイスを、ホットプレス焼結機(富士電波工業
(株)製、FVPHP−R−15,FRET−30)の
チャンバー内にセットし、焼成を行った。先ず、チャン
バー内を5Pa以下の真空状態とした後、焼成条件は、
1350℃で、30MPaの加圧力を粉体にかけなが
ら、270分で1350℃の到達温度に夫々昇温し、そ
の所定の温度で180分間保持して加圧焼成を行なっ
た。このようにして焼成した後、加圧を完全に開放する
と共に自然冷却し、400℃に達した時点で大気開放し
て焼結体を得た。この結果、相対密度99.6%の焼結
体が得られた。得られた焼結体について、SEMによる
微構造組織の観察を行なった結果、3μm程度の微粒子
で構成された緻密な組織となっていた。又、実施例1と
同様に、スラグによる浸食を格段に抑制でき、耐食性に
優れた焼結体であることが確認できた。
The die filled with the chromia powder raw material as described above is set in a chamber of a hot press sintering machine (FVPHP-R-15, FRET-30, manufactured by Fuji Denpa Kogyo KK) and fired. Was done. First, after the chamber is evacuated to 5 Pa or less, the firing conditions are as follows:
While applying a pressure of 30 MPa to the powder at 1350 ° C., the temperature was increased to the ultimate temperature of 1350 ° C. in 270 minutes, and the pressure was maintained at the predetermined temperature for 180 minutes to perform pressure firing. After firing in this manner, the pressure was completely released and the product was naturally cooled. When the temperature reached 400 ° C., the product was released to the atmosphere to obtain a sintered body. As a result, a sintered body having a relative density of 99.6% was obtained. Observation of the microstructure of the obtained sintered body by SEM showed that the sintered body had a dense structure composed of fine particles of about 3 μm. Further, similarly to Example 1, slag erosion was significantly suppressed, and it was confirmed that the sintered body was excellent in corrosion resistance.

【0049】[0049]

【発明の効果】以上、説明したように、本発明によれ
ば、高純度にして緻密かつ均質なクロミア焼結体が簡便
な製造方法によって容易に提供される。本発明によれ
ば、耐食性に優れ、ガラス溶解炉や廃棄物処理溶融炉等
において長期使用可能な高温耐食性材料として有用なク
ロミア焼結体を工業的規模で経済的に提供できるクロミ
ア焼結体の製造方法が提供される。
As described above, according to the present invention, a dense and homogeneous chromia sintered body having high purity can be easily provided by a simple manufacturing method. According to the present invention, a chromia sintered body that has excellent corrosion resistance and can economically provide a chromia sintered body useful as a high-temperature corrosion-resistant material that can be used for a long time in a glass melting furnace, a waste treatment melting furnace, or the like on an industrial scale. A manufacturing method is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のクロミア焼結体をSEMで組織観察し
た結果を示す図である。
FIG. 1 is a view showing the results of microscopic observation of a chromia sintered body of the present invention by SEM.

【図2】本発明のクロミア焼結体を得るための粉体試料
の充填容器を示す概略図である。
FIG. 2 is a schematic view showing a container for filling a powder sample for obtaining a chromia sintered body of the present invention.

【図3】従来の焼成方法によって得られたクロミア焼結
体をSEMで組織観察した結果を示す図である。
FIG. 3 is a view showing the results of microscopic observation of the structure of a chromia sintered body obtained by a conventional firing method using a SEM.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大河 誠 愛知県半田市亀崎北浦町一丁目46番地 美 濃窯業株式会社技術研究所内 (72)発明者 梶田 吉晴 愛知県半田市亀崎北浦町一丁目46番地 美 濃窯業株式会社技術研究所内 Fターム(参考) 4G030 AA22 BA25 GA11 GA23 GA24 GA27 GA29 GA31  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Okawa 1-46 Kamezaki-Kitaura-cho, Handa-shi, Aichi Prefecture Inside the Technical Research Institute, Mino Ceramics Co., Ltd. No. Mino Ceramic Industry Co., Ltd. F-term (reference) 4G030 AA22 BA25 GA11 GA23 GA24 GA27 GA29 GA31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 相対密度が97%以上の緻密な形態を有
し、且つ、クロミア粉末を真空中若しくは不活性雰囲気
中で加圧焼成して得られたものであることを特徴とする
クロミア焼結体。
1. A chromia sinter having a dense form having a relative density of 97% or more and obtained by sintering a chromia powder under pressure in a vacuum or an inert atmosphere. Union.
【請求項2】 請求項1に記載のクロミア焼結体を製造
するためのクロミア焼結体の製造方法であって、クロミ
ア粉末を真空中若しくは不活性雰囲気中で加圧しながら
加熱して焼成することを特徴とするクロミア焼結体の製
造方法。
2. A method for producing a chromia sintered body for producing the chromia sintered body according to claim 1, wherein the chromia powder is heated and baked while being pressed in a vacuum or in an inert atmosphere. A method for producing a chromia sintered body, comprising:
【請求項3】 加熱をパルス通電加熱によって行なう請
求項2に記載のクロミア焼結体の製造方法。
3. The method for producing a chromia sintered body according to claim 2, wherein the heating is performed by pulse current heating.
【請求項4】 クロミア粉末の平均粒子径が1〜3μm
の範囲にある請求項2又は3に記載のクロミア焼結体の
製造方法。
4. The chromia powder has an average particle size of 1 to 3 μm.
The method for producing a chromia sintered body according to claim 2 or 3, wherein
【請求項5】 焼成型内に充填したクロミア粉末と、該
クロミア粉末に少なくとも圧力をかけるための上下パン
チとの間にグラファイト粉末を配置した状態で焼成する
請求項2〜4のいずれか1項に記載のクロミア焼結体の
製造方法。
5. The calcining method according to claim 2, wherein graphite powder is arranged between the chromia powder filled in the sintering mold and upper and lower punches for applying at least pressure to the chromia powder. 3. The method for producing a chromia sintered body according to 1.).
【請求項6】 焼成温度1200〜1600℃、荷重1
0〜60MPaの範囲で加圧焼成を行なう請求項2〜5
のいずれか1項に記載のクロミア焼結体の製造方法。
6. A firing temperature of 1200 to 1600 ° C. and a load of 1
The pressure baking is performed in the range of 0 to 60 MPa.
The method for producing a chromia sintered body according to any one of the above.
JP2000057909A 2000-02-29 2000-02-29 CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD Expired - Fee Related JP5002087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057909A JP5002087B2 (en) 2000-02-29 2000-02-29 CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057909A JP5002087B2 (en) 2000-02-29 2000-02-29 CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2001240463A true JP2001240463A (en) 2001-09-04
JP5002087B2 JP5002087B2 (en) 2012-08-15

Family

ID=18578576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057909A Expired - Fee Related JP5002087B2 (en) 2000-02-29 2000-02-29 CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5002087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323984C (en) * 2005-12-12 2007-07-04 中钢集团洛阳耐火材料研究院 Chrome oxide product sintering method
JP2017022248A (en) * 2015-07-10 2017-01-26 トヨタ自動車株式会社 Manufacturing method of compact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016873A (en) * 1998-06-29 2000-01-18 Asahi Optical Co Ltd Sintering with discharge plasma

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016873A (en) * 1998-06-29 2000-01-18 Asahi Optical Co Ltd Sintering with discharge plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323984C (en) * 2005-12-12 2007-07-04 中钢集团洛阳耐火材料研究院 Chrome oxide product sintering method
JP2017022248A (en) * 2015-07-10 2017-01-26 トヨタ自動車株式会社 Manufacturing method of compact

Also Published As

Publication number Publication date
JP5002087B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US7419926B2 (en) Sintered bodies based on niobium suboxide
Ghahremani et al. Spark plasma sintering of mullite: relation between microstructure, properties and spark plasma sintering (SPS) parameters
Eriksson et al. Fast densification and deformation of titanium powder
Yamanoglu Pressureless spark plasma sintering: A perspective from conventional sintering to accelerated sintering without pressure
JPS6021866A (en) Refractory electroconductive mixture material and manufacture thereof by thermal balance press formation
CN105441881B (en) The manufacturing method of chromium target and combinations thereof
JP2002129204A (en) Method for manufacturing porous metal
JP2010083729A (en) Alumina-based sintered compact excellent in corrosion resistance, heat shock resistance, and durability
Salamon et al. Pressure-less spark plasma sintering of alumina
JP7333486B2 (en) Setter for firing ceramics
JP2002309323A (en) Functionally gradient material composed of low-melting point metal and oxide ceramics, and its manufacturing method
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
JP2001240463A (en) Sintered body of chromia and process for producing the same
JP5036110B2 (en) Lightweight ceramic sintered body
JP6680605B2 (en) Manufacturing method of baking container
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
Topuz et al. Challenges in the production of titanium–based Scaffolds bio–functionalized with hydroxyapatite by powder metallurgy technique
JP4399579B2 (en) Castable molded product and method for producing the same
JP7414300B2 (en) Zirconium boride/boron carbide composite and its manufacturing method
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4430782B2 (en) CHROMIA-ZIRCONIA SINTERED BODY AND PROCESS FOR PRODUCING THE SAME
JP2001261440A (en) Oxidation-resistant hafnium carbide sintered body and oxidation-resistant hafnium carbide-lanthanum boride sintered body, their production processes and electrode for plasma generation, made by using the same
Ariff et al. Improvements in the development of silicon nitride inserts using hybrid microwave energy for machining Inconel 718
JP2008133516A (en) Compact of amorphous metal, manufacturing method and manufacturing apparatus therefor
JPH01188459A (en) High purity magnesia sintered body and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees