JP2001237108A - Voltage nonlinear resistor - Google Patents

Voltage nonlinear resistor

Info

Publication number
JP2001237108A
JP2001237108A JP2000043915A JP2000043915A JP2001237108A JP 2001237108 A JP2001237108 A JP 2001237108A JP 2000043915 A JP2000043915 A JP 2000043915A JP 2000043915 A JP2000043915 A JP 2000043915A JP 2001237108 A JP2001237108 A JP 2001237108A
Authority
JP
Japan
Prior art keywords
zinc oxide
voltage
oxide
resistor
bismuth oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000043915A
Other languages
Japanese (ja)
Inventor
Masatsune Oguro
正恒 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000043915A priority Critical patent/JP2001237108A/en
Publication of JP2001237108A publication Critical patent/JP2001237108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the production of a voltage nonlinear resistor easier by reducing varistor voltage fluctuation among the production lots of the resistor by reducing the diameter variation of sintered zinc oxide particles in the sintered body of the resistor obtained by using a mixed raw material. SOLUTION: In this voltage nonlinear resistor which contains a zinc oxide as the main ingredient and a plurality of accessory ingredients added to the main ingredient by very small amounts, the bismuth oxide added to the zinc oxide as one of the accessory ingredients has a bulk density of <45 ml/100 g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電圧非直線抵抗体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage non-linear resistor.

【0002】[0002]

【従来の技術】従来の電圧非直線抵抗体は、主成分の酸
化亜鉛に副成分として酸化ビスマス、酸化コバルト、酸
化マンガン、酸化アンチモン、酸化ニッケル、酸化クロ
ム、酸化ゲルマニウム等の金属酸化物、及び硝酸アルミ
ニウムを各々微量添加し、混合分散したスラリーをスプ
レードライヤーで造粒した後、所定形状に成形して大気
中の1200〜1300℃の温度で2〜3時間焼成し焼
結体を作製する。得られた焼結体は優れた電圧非直線性
を示しサージ吸収用素子、電圧安定化用素子として広く
使用されている。
2. Description of the Related Art A conventional voltage non-linear resistor includes metal oxides such as bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, nickel oxide, chromium oxide, and germanium oxide as subcomponents in addition to zinc oxide as a main component, and A small amount of aluminum nitrate is added, and the mixed and dispersed slurry is granulated by a spray drier, formed into a predetermined shape, and fired at 1200 to 1300 ° C. in the atmosphere for 2 to 3 hours to produce a sintered body. The obtained sintered body exhibits excellent voltage non-linearity and is widely used as a surge absorbing element and a voltage stabilizing element.

【0003】[0003]

【発明が解決しようとする課題】前記従来の電圧非直線
抵抗体では、用いる副成分の嵩の大小により原料粉末の
凝集性に差を生じ、嵩が大きく(粒径が小さく)なるに
従って凝集力が大きくなる、即ち分散性が低下する。こ
のため得られた混合原料の均質性が悪く、これを用い得
られた電圧非直線性抵抗体の焼結体は酸化亜鉛焼結粒子
径のバラツキが大きく、その結果動作開始電圧(バリス
タ電圧)が製造ロットごとに変動する。また嵩が小さく
(粒径が大きく)なるに従って微量副成分の均質分散性
が低下し、前記同様な結果となる。特にバリスタ電圧が
100V/mm以下の低電圧製品ではこれが大きな問題
点となっていた。
In the conventional voltage non-linear resistor described above, the cohesiveness of the raw material powder differs depending on the size of the subcomponent used, and the cohesive force increases as the bulk (larger particle size) increases. Becomes large, that is, the dispersibility decreases. For this reason, the obtained mixed raw material has poor homogeneity, and the sintered body of the voltage non-linear resistor obtained using the mixed raw material has a large variation in the zinc oxide sintered particle diameter, and as a result, the operation start voltage (varistor voltage) Varies from production lot to production lot. Further, as the bulk becomes smaller (the particle size becomes larger), the homodispersibility of the minor component becomes lower, and the same result as described above is obtained. In particular, this has been a serious problem in low-voltage products having a varistor voltage of 100 V / mm or less.

【0004】このため製造ロット間の変動を小さく制御
するためには微量副成分の嵩の管理が重要なファクター
となっていた。尚、バリスタ電圧とは電圧非直線抵抗体
の焼結体の両面に一対の電極を設け、この電極間に電流
1mAを流した時に、電極間に発生する電圧であり、焼
結体単位長当たりの酸化亜鉛焼結粒子の粒界数により決
まる。酸化亜鉛−酸化ビスマス系電圧非直線抵抗体の1
粒界当たりのバリスタ電圧は約3Vで、単位長当たりの
粒界数が増えれば(即ち酸化亜鉛焼結粒子径が小さくな
れば)バリスタ電圧は高くなり、粒界数が減れば(即ち
酸化亜鉛焼結粒子径が大きくなれば)バリスタ電圧は低
くなる。
[0004] For this reason, in order to control the variation between production lots to a small extent, the management of the volume of the trace subcomponent has been an important factor. The varistor voltage is a voltage generated between the electrodes when a pair of electrodes are provided on both surfaces of a sintered body of a voltage non-linear resistor and a current of 1 mA flows between the electrodes. Is determined by the number of grain boundaries of the zinc oxide sintered particles. One of zinc oxide-bismuth oxide based voltage non-linear resistors
The varistor voltage per grain boundary is about 3 V. If the number of grain boundaries per unit length increases (ie, if the zinc oxide sintered particle diameter decreases), the varistor voltage increases, and if the number of grain boundaries decreases (ie, zinc oxide decreases). The varistor voltage is lower (if the sintered particle size is larger).

【0005】本発明は電圧非直線抵抗体の製造ロット間
のバリスタ電圧バラツキを低減し、特に低電圧製品の生
産が容易なものを提供するものである。
It is an object of the present invention to reduce variations in varistor voltage between production lots of a voltage non-linear resistor, and to provide a low-voltage resistor that is easy to produce.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、以下の構成を有するものである。
Means for Solving the Problems In order to achieve the above object, the present invention has the following arrangement.

【0007】本発明の請求項1に記載の発明は、特に、
酸化亜鉛を主成分とし、これに複数の酸化物原料を副成
分として添加してなる電圧非直線抵抗体において、前記
副成分の一つである酸化ビスマスにその嵩が45ml/
100gより小さい材料を用いる電圧非直線抵抗体であ
り、酸化亜鉛を主成分とし酸化ビスマスを含む組成は、
その焼結過程において酸化亜鉛は酸化ビスマスの存在の
もとに700℃前後より酸化亜鉛の焼結が開始し、90
0〜950℃近辺から酸化亜鉛粒径の成長が始まること
が知られている。酸化亜鉛と酸化ビスマスだけの組成で
は10〜15μm程度の粒径で焼結体を得ることはそれ
ほど困難ではないが、サージ吸収等のその他の安定した
電気特性を得るために酸化ビスマスの他に各種酸化物等
の副成分の添加が必要とされる。これら副成分がスピネ
ル化合物を作り粒界に偏析し、酸化亜鉛粒径の成長を阻
害するため粒径バラツキが大きくなりバリスタ電圧の変
動が大きくなる。これを解決するためには酸化亜鉛粒子
成長の温度範囲で粒成長を阻害するスピネル化合物の発
現を抑制する必要がある。嵩が45ml/100g以下
の酸化ビスマスを用いることで比較的粒子の粗い酸化ビ
スマスは凝集性が低下し酸化亜鉛との混合分散性が向上
させると共に、酸化ビスマスを仲介して生成される酸化
亜鉛粒成長阻害スピネル(酸化亜鉛−酸化アンチモン化
合物)の発現を緩和し制御することができる。これによ
り30μm以上の粗大酸化亜鉛粒径を有し、かつバラツ
キ幅の小さい焼結体を比較的容易に作成することが可能
となり、製造ロット間のバリスタ電圧の変動を小さいも
のにすることができるという作用を有するものである。
[0007] The invention described in claim 1 of the present invention is, in particular,
In a voltage nonlinear resistor obtained by adding zinc oxide as a main component and a plurality of oxide raw materials as subcomponents, bismuth oxide, which is one of the subcomponents, has a bulk of 45 ml /
A voltage non-linear resistor using a material smaller than 100 g, a composition containing zinc oxide as a main component and bismuth oxide,
In the sintering process, zinc oxide starts sintering at around 700 ° C. in the presence of bismuth oxide,
It is known that the growth of zinc oxide particle size starts around 0 to 950 ° C. It is not so difficult to obtain a sintered body with a particle size of about 10 to 15 μm with a composition of only zinc oxide and bismuth oxide, but in order to obtain other stable electrical properties such as surge absorption, other than bismuth oxide, It is necessary to add an auxiliary component such as an oxide. These sub-components form a spinel compound and segregate at the grain boundaries and hinder the growth of the zinc oxide particle size, so that the particle size variation increases and the varistor voltage fluctuates. In order to solve this, it is necessary to suppress the expression of a spinel compound that inhibits grain growth in the temperature range of zinc oxide particle growth. By using bismuth oxide having a bulk of 45 ml / 100 g or less, relatively coarse bismuth oxide has reduced cohesiveness and improved mixing and dispersibility with zinc oxide, and zinc oxide particles formed via bismuth oxide. The expression of the growth inhibiting spinel (zinc oxide-antimony oxide compound) can be alleviated and controlled. This makes it possible to relatively easily prepare a sintered body having a coarse zinc oxide particle size of 30 μm or more and a small variation width, and it is possible to reduce fluctuations in varistor voltage between manufacturing lots. It has the action of:

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.

【0009】まず酸化亜鉛に対し酸化ビスマス0.75
mol、酸化コバルト0.5mol、酸化マンガン0.
15mol、酸化アンチモン0.5mol、酸化ニッケ
ル0.25mol、酸化クロム0.1mol、酸化ゲル
マニウム0.05molと硝酸アルミニウム0.001
6molの副成分のみをそれぞれ秤量した後、ボールミ
ルで予備混合を行う。尚、酸化ビスマスは(表1)に示
す嵩のものを用いた。また本組成は電圧の低い電圧非直
線性抵抗体として公知のものである。
First, bismuth oxide 0.75 with respect to zinc oxide
mol, cobalt oxide 0.5 mol, manganese oxide 0.
15 mol, antimony oxide 0.5 mol, nickel oxide 0.25 mol, chromium oxide 0.1 mol, germanium oxide 0.05 mol, and aluminum nitrate 0.001
After weighing only 6 mol of each subcomponent, premixing is performed by a ball mill. In addition, the bismuth oxide having a bulk shown in (Table 1) was used. This composition is known as a low-voltage non-linear resistor.

【0010】次に予備混合済みの副成分組成をバイン
ダ、分散剤、純水と共に酸化亜鉛97.6984mol
に加え分散装置で混合しスラリーを作成する。
Next, the pre-mixed sub-component composition was mixed with a binder, a dispersant, and pure water together with 97.6964 mol of zinc oxide.
And a slurry is prepared by mixing with a dispersion device.

【0011】次いで、スラリーをスプレードライヤーで
噴霧乾燥し、造粒粉を作成する。
Next, the slurry is spray-dried with a spray drier to produce granulated powder.

【0012】その後、造粒粉を直径14mmφ、厚さ
1.2mmの円板に圧力800kg/cm2で成形を行
う。
Thereafter, the granulated powder is formed into a disc having a diameter of 14 mm and a thickness of 1.2 mm at a pressure of 800 kg / cm 2 .

【0013】次に、大気中の1290℃の温度で焼成を
行い、焼結体とした後、焼結体の両面に銀電極を焼き付
けバリスタ電圧96V/mmの電圧非直線抵抗素子を完
成させた。尚、焼結体寸法は直径11mmφ、厚さ1.
0mmである。
Next, firing was performed at a temperature of 1290 ° C. in the air to form a sintered body, and silver electrodes were baked on both surfaces of the sintered body to complete a voltage non-linear resistance element having a varistor voltage of 96 V / mm. . The sintered body had a diameter of 11 mmφ and a thickness of 1.
0 mm.

【0014】得られた電圧非直線抵抗素子の特性を測定
しその結果を(表1)に示した。
The characteristics of the obtained voltage non-linear resistance element were measured, and the results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】(表1)に示すように、嵩を45ml/1
00g以下に制御した酸化ビスマス材料を用いて作成し
たロットのバリスタ電圧は100V/mmより低く9
5.8〜98.2V/mmと安定していることが分か
る。一方酸化ビスマスの嵩が45ml/100gより高
いと動作電圧が高くなる。これは酸化ビスマスの嵩が高
くなる(粒径が小さくなる)と酸化亜鉛の焼結粒成長を
阻害するスピネルが焼成過程の低い温度段階(900〜
950℃以下)で酸化亜鉛粒子の粒界に発現し、焼結体
の酸化亜鉛粒成長を妨害するため、酸化亜鉛粒子が小さ
く単位長当たりの酸化亜鉛粒子数が増えるため、バリス
タ電圧が高くなる。
As shown in Table 1, the bulk was 45 ml / 1.
The varistor voltage of a lot prepared using a bismuth oxide material controlled to be not more than 100 g is lower than 100 V / mm.
It turns out that it is 5.8-98.2V / mm and is stable. On the other hand, if the bulk of bismuth oxide is higher than 45 ml / 100 g, the operating voltage increases. This is because when the bulk of bismuth oxide increases (the particle size decreases), the spinel that inhibits the growth of sintered particles of zinc oxide is formed in a low temperature stage (900 to 900) of the firing process.
(At 950 ° C. or lower) at the grain boundaries of the zinc oxide particles, which hinders the growth of the zinc oxide particles in the sintered body, so that the zinc oxide particles are small and the number of zinc oxide particles per unit length increases, so that the varistor voltage increases. .

【0017】一方酸化ビスマスの嵩を小さくすれば、バ
リスタ電圧を低く制御することはできるが、酸化ビスマ
スの嵩を40ml/100g以下にすることは通常の工
業用酸化ビスマスの製造上コストアップになると共に、
酸化ビスマスの嵩がある程度以上小さく(粒径が粗く)
なるに従って酸化亜鉛との混合分散性が悪くなり好まし
くない。工業用として比較的容易に入手でき、しかも安
定し、バラツキの小さいバリスタ電圧の電圧非直線抵抗
体を得るためには、酸化ビスマスの嵩として45ml/
100g以下好ましくは40ml/100g以上を用い
ることが有効な手段となることが明らかとなる。
On the other hand, if the bulk of bismuth oxide is reduced, the varistor voltage can be controlled to be low. However, if the bulk of bismuth oxide is reduced to 40 ml / 100 g or less, the production cost of ordinary industrial bismuth oxide increases. Along with
The volume of bismuth oxide is small to some extent (coarse particle size)
As it becomes more difficult to mix and disperse with zinc oxide, it is not preferable. In order to obtain a voltage non-linear resistor having a varistor voltage which is relatively easily available for industrial use, and which is stable and small in variance, a volume of bismuth oxide of 45 ml /
It is clear that using 100 g or less, preferably 40 ml / 100 g or more, is an effective means.

【0018】[0018]

【発明の効果】以上のように酸化亜鉛を主成分とし、こ
れに複数の微量副成分原料を添加してなる電圧非直線抵
抗体において、前記副成分の一つである酸化ビスマスに
その嵩が45ml/100gより小さい材料を用いるこ
とにより酸化ビスマスの凝集性を緩和し酸化亜鉛との混
合分散性を低下させることなく、かつ焼成過程で酸化亜
鉛の粒界に偏析して酸化亜鉛の粒成長を阻害するスピネ
ル化合物の発現を緩和することができる。従って得られ
た電圧非直線抵抗体は製造ロット間でバリスタ電圧が安
定し、特に低電圧製品では焼結体の単位長当たりの酸化
亜鉛粒子数がほぼ一定となりバリスタ電圧のバラツキの
小さい電圧非直線抵抗体を安定して製造することができ
る。
As described above, in a voltage nonlinear resistor comprising zinc oxide as a main component and a plurality of trace subcomponent materials added thereto, the bulk of bismuth oxide, one of the subcomponents, increases. By using a material smaller than 45 ml / 100 g, the cohesiveness of bismuth oxide is alleviated, and the dispersibility with zinc oxide is not reduced. The expression of the inhibiting spinel compound can be reduced. Therefore, the obtained voltage non-linear resistor has a stable varistor voltage between production lots, and especially in low-voltage products, the number of zinc oxide particles per unit length of the sintered body is almost constant, and the voltage non-linear voltage variation of the varistor voltage is small. The resistor can be manufactured stably.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とし、これに複数の微
量副成分原料を添加してなる電圧非直線抵抗体におい
て、前記副成分の一つである酸化ビスマスにその嵩が4
5ml/100gより小さい材料を用いる電圧非直線抵
抗体。
1. A voltage non-linear resistor comprising zinc oxide as a main component and a plurality of trace subcomponent materials added thereto, wherein bismuth oxide, one of the subcomponents, has a bulk of 4%.
A voltage non-linear resistor using a material smaller than 5 ml / 100 g.
JP2000043915A 2000-02-22 2000-02-22 Voltage nonlinear resistor Pending JP2001237108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043915A JP2001237108A (en) 2000-02-22 2000-02-22 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043915A JP2001237108A (en) 2000-02-22 2000-02-22 Voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JP2001237108A true JP2001237108A (en) 2001-08-31

Family

ID=18566755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043915A Pending JP2001237108A (en) 2000-02-22 2000-02-22 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP2001237108A (en)

Similar Documents

Publication Publication Date Title
JP2001237108A (en) Voltage nonlinear resistor
JPH10233303A (en) Ntc thermistor
JP2572310B2 (en) Composition for thermistor
JP2572312B2 (en) Composition for thermistor
JP3569810B2 (en) High temperature thermistor
JP2572313B2 (en) Composition for thermistor
JP2546726B2 (en) Voltage nonlinear resistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPH0128481B2 (en)
JP3551269B2 (en) High temperature measurement thermistor
JPS6249961B2 (en)
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JPH1131605A (en) Voltage nonlinear resistor
JP2003007512A (en) Nonlinear resistor element
JPH0722206A (en) Thermistor
JPS6252922B2 (en)
JP2013125821A (en) Method for manufacturing nonlinear resistor element
JPH04263402A (en) Manufacture of non-linear voltage resistor
JP2001102204A (en) Thermistor composition, manufacturing method therefor and thermistor
JPH04290202A (en) Manufacture of voltage dependent nonlinear resistor
JPS62152104A (en) Ptc ceramic resistor
JPS60928B2 (en) Manufacturing method of voltage nonlinear resistor
JP2000012309A (en) Manufacture of zinc oxide varistor
JPH06181104A (en) Zno varistor
JPH05267014A (en) Manufacture of voltage dependent nonlinear resistor