JP2001235585A - Regional cogeneration system - Google Patents

Regional cogeneration system

Info

Publication number
JP2001235585A
JP2001235585A JP2000047662A JP2000047662A JP2001235585A JP 2001235585 A JP2001235585 A JP 2001235585A JP 2000047662 A JP2000047662 A JP 2000047662A JP 2000047662 A JP2000047662 A JP 2000047662A JP 2001235585 A JP2001235585 A JP 2001235585A
Authority
JP
Japan
Prior art keywords
steam
heat
power generation
generation system
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000047662A
Other languages
Japanese (ja)
Inventor
Arata Ito
新 伊藤
Seiichi Yokobori
誠一 横堀
Tatsuo Miyazawa
竜雄 宮沢
Hideaki Hioki
秀明 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000047662A priority Critical patent/JP2001235585A/en
Publication of JP2001235585A publication Critical patent/JP2001235585A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regional cogeneration system supplying the hot heat and cold heat to the region and enhancing the total heat efficiency of a nuclear power generation plant. SOLUTION: This regional cogeneration system is provided with a nuclear power generating system 1 having a heat exchanger 11 supplied branched steam generated in a nuclear reactor 6 and introduced to a steam turbine 7 for driving a power generator 8, a steam storage tank 13 installed in a place separated from the nuclear power generating system 1 and receiving and storing the steam generated from circulating water for exchanging the heat in the heat exchanger 11 of the nuclear power generating system 1, a storage steam power generating system 2 having a steam turbine 14 for power generation driven using the steam stored in the steam storage tank 13, and a regional heat supply system 3 supplied the circulating water for exchanging the heat with exhaust of the steam turbine 14 of the storage steam power generating system 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力発電プラン
トの原子炉で生成した蒸気を使用してピーク電力需要対
応の発電と地域熱供給をおこなう地域コジェネシステム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regional cogeneration system for performing power generation corresponding to peak power demand and district heat supply using steam generated in a nuclear reactor of a nuclear power plant.

【0002】[0002]

【従来の技術】これまでに設けられた地域コジェネシス
テムとしては和歌山マリーナシティに隣接する関西電力
(株)海南火力発電所のタービン抽気熱をスチームコン
バータで熱交換して生成した蒸気を送って地域熱供給し
ているものがある。この地域コジェネシステムは、暖房
・給湯用蒸気の直接供給と、蒸気を用いて吸収式冷凍機
で製造した冷水の供給を行っている。
2. Description of the Related Art As a regional cogeneration system provided up to now, steam generated by exchanging heat with a turbine converter at the Kanan Electric Power Co., Inc. Hainan Thermal Power Station adjacent to Wakayama Marina City is sent to a local cogeneration system. Some are supplying heat. This regional cogeneration system supplies steam for heating and hot water supply directly, and supplies cold water produced by an absorption refrigerator using steam.

【0003】原子力発電プラントは、発電コストが安い
ためにベースロード運用が行われている。電力需要には
日負荷変動があるためにピーク電力需要に対しては水力
発電、石油火力発電プラントが用いられている。水力発
電の場合には遠隔立地で、環境破壊、建設期間が長い等
の問題があり、石油火力発電の場合には炭酸ガス排出に
よる地球温暖化の問題がある。
[0003] In nuclear power plants, base load operation is performed because of low power generation costs. Due to daily load fluctuations in power demand, hydropower and oil-fired power plants are used for peak power demand. In the case of hydroelectric power generation, there are problems such as a remote location, environmental destruction, and a long construction period. In the case of oil-fired power generation, there is a problem of global warming due to carbon dioxide emission.

【0004】そこで原子力発電プラントの特徴を生かし
ながら日負荷変動に対応するために、製造した蒸気を貯
蔵しピーク電力需要に対して貯蔵蒸気で発電するシステ
ムが検討されている。夜間の10時間に20%の蒸気を抽気
して貯蔵し、昼間の7時間に20%の追加発電を行うこと
で負荷変動対応が可能となり、揚水発電所並みの貯蔵発
電効率(72.6%)が得られると評価されている。110 万
kW級の原子力発電プラントの場合、4040m3 の貯蔵容器
21基を114 m×54mの敷地に設置することになる。その
ときの容器の内径は11.5mで、高さは44.2mである。
[0004] To cope with daily load fluctuations while taking advantage of the features of a nuclear power plant, a system for storing the produced steam and generating electricity with the stored steam for peak power demand has been studied. By extracting and storing 20% of steam during 10 hours at night and by generating 20% additional power during 7 hours during the day, it is possible to respond to load fluctuations, and the storage and power generation efficiency (72.6%) is comparable to that of the PSPP. It is evaluated that it can be obtained. 1.1M
In the case of kW-class nuclear power plant, storage container of 4040m 3
21 units will be set up on a 114 mx 54 m site. The inner diameter of the container at that time is 11.5 m, and the height is 44.2 m.

【0005】[0005]

【発明が解決しようとする課題】上述の従来の地域熱供
給においては、配管コストが高いために負荷密度が40MW
/km2 以上で、1km2 に約5000世帯以上が居住すること
が経済性の成立する条件になっている。そのためにどの
地域においても地域熱供給ができるものではないという
問題がある。
In the above-mentioned conventional district heat supply, the load density is 40 MW due to high piping cost.
/ Km 2 or more, and about 5000 households living in 1 km 2 is a condition for economic viability. For this reason, there is a problem that district heat supply cannot be provided in every region.

【0006】原子力発電所に蒸気貯蔵容器を設置し、夜
間に製造した蒸気を貯蔵して昼間にピーク電力需要対応
の発電に用いる方法は、揚水発電所のように環境を破壊
する、建設期間が長い、適当な立地が不足している等の
問題は無いが、原子力発電プラントの熱効率は33.4%程
度であり、ガスタービンコンバイド発電プラントの50%
を超えるものに比較して非常に低いという問題が残る。
[0006] A method of installing a steam storage container in a nuclear power plant and storing the steam produced at night and using it for power generation in response to peak power demand in the daytime destroys the environment like a pumped storage power plant. Although there is no problem such as the lack of a long and suitable location, the thermal efficiency of the nuclear power plant is about 33.4%, and 50% of the gas turbine combined power plant.
The problem remains that it is very low compared to those exceeding.

【0007】この問題に対しては、原子力プラントで製
造する熱エネルギーを発電だけでなく直接熱利用にも供
給することによって総合熱効率を容易に60%以上にする
ことができるという検討結果が出ている。直接熱利用す
るシステムは、熱の輸送効率の観点から発電所の1km程
度の範囲内への供給であれば経済的に成立するといわれ
ている。しかし原子力発電プラントは一般に大都市から
離れた地域に立地しているために、総合熱効率を向上さ
せるための熱需要が近くにない。
[0007] In order to solve this problem, it has been found that the total thermal efficiency can be easily increased to 60% or more by supplying thermal energy produced in a nuclear power plant not only to power generation but also to direct heat utilization. I have. It is said that a system utilizing direct heat is economically feasible if the power is supplied to a power plant within a range of about 1 km from the viewpoint of heat transfer efficiency. However, nuclear power plants are generally located in areas far from large cities, so there is no close demand for heat to improve overall thermal efficiency.

【0008】本発明はかかる従来の事情に対処してなさ
れたものであり、地域にたいして温熱や冷熱を供給する
とともに原子力発電プラントの総合熱効率を高めること
のできる地域コジェネシステムを提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional circumstances, and has as its object to provide a local cogeneration system that can supply hot or cold heat to an area and increase the overall thermal efficiency of a nuclear power plant. I do.

【0009】[0009]

【課題を解決するための手段】請求項1に対応する発明
は、原子炉において生成され発電機を駆動する蒸気ター
ビンに導かれる蒸気を分岐して供給される熱交換器を有
する原子力発電システムと、この原子力発電システムか
ら離れた場所に設置され前記原子力発電システムの熱交
換器において熱交換する循環水から生成された蒸気を貯
蔵する蒸気貯蔵槽およびこの蒸気貯蔵槽に貯蔵された蒸
気を用いて駆動される蒸気タービンを有する貯蔵蒸気発
電システムと、この貯蔵蒸気発電システムの蒸気タービ
ンの排気と熱交換する循環水を供給される地域熱供給シ
ステムとを備えた構成とする。
According to the present invention, there is provided a nuclear power generation system having a heat exchanger that branches and supplies steam generated in a nuclear reactor and guided to a steam turbine that drives a generator. A steam storage tank that is installed at a location remote from the nuclear power generation system and stores steam generated from circulating water that performs heat exchange in the heat exchanger of the nuclear power generation system, and steam stored in the steam storage tank. A storage steam power generation system having a driven steam turbine and a district heat supply system supplied with circulating water that exchanges heat with the exhaust of the steam turbine of the storage steam power generation system are provided.

【0010】本発明の形態の地域コジェネシステムによ
れば、貯蔵蒸気発電システムによって負荷変動対応発電
を行い、排熱を地域に対して温熱を供給し、原子力発電
プラントの総合熱効率を高めることができる。
According to the regional cogeneration system of the embodiment of the present invention, the power generation corresponding to the load fluctuation is performed by the storage steam power generation system, the exhaust heat is supplied to the area, and the overall thermal efficiency of the nuclear power plant can be improved. .

【0011】請求項2に対応する発明は、原子力発電シ
ステムの蒸気タービンの出口に熱交換器を備え、貯蔵蒸
気発電システムの蒸気タービンを駆動して復液した水を
前記熱交換器に導き、この熱交換器において熱交換を行
ってから原子炉において生成した蒸気の分岐蒸気の熱交
換器に導いて熱交換を行うようにした構成とする。本発
明によれば、原子力発電システムの廃熱を回収して、貯
蔵蒸気発電システムとのあいだの循環水を効率よく加熱
することができる。
The invention corresponding to claim 2 is provided with a heat exchanger at the outlet of the steam turbine of the nuclear power generation system, and drives the steam turbine of the storage steam power generation system to guide the reconstituted water to the heat exchanger. After the heat exchange is performed in the heat exchanger, the heat generated is guided to the heat exchanger of the branch steam of the steam generated in the nuclear reactor to perform the heat exchange. ADVANTAGE OF THE INVENTION According to this invention, the waste heat of a nuclear power generation system can be collect | recovered and circulating water between a storage steam power generation system can be heated efficiently.

【0012】請求項3に対応する発明は、地域熱供給シ
ステムは吸収式冷凍機を備え、貯蔵蒸気発電システムの
蒸気貯蔵槽の蒸気を分岐して前記吸収式冷凍機に導いて
冷媒を製造し、この冷媒で地域熱需要施設との循環水を
過冷却して氷を製造して貯蔵し、貯蔵氷をスラリ状で取
出して冷熱供給を行うようにした構成とする。本発明に
よれば、地域熱供給システムから地域熱需要施設に対し
て効率よく冷熱を供給することができる。
According to a third aspect of the present invention, the district heat supply system includes an absorption chiller, and diverges steam from a steam storage tank of the storage steam power generation system and guides it to the absorption chiller to produce a refrigerant. The cooling water is supercooled with the district heat demand facility to produce and store ice, and the stored ice is taken out in the form of a slurry to supply cold heat. According to the present invention, it is possible to efficiently supply cold heat from a district heat supply system to a district heat demand facility.

【0013】請求項4に対応する発明は、原子力発電シ
ステムと貯蔵蒸気発電システムを結ぶ蒸気配管および循
環水配管の途中に熱供給サブシステムを設け、この熱供
給サブシステムは蒸気貯蔵槽を有し、その貯蔵蒸気を取
出して地域熱需要施設との循環水と熱交換するようにし
た構成とする。
According to a fourth aspect of the present invention, a heat supply subsystem is provided in a steam pipe and a circulating water pipe connecting the nuclear power generation system and the storage steam power generation system, and the heat supply subsystem has a steam storage tank. Then, the stored steam is taken out to exchange heat with circulating water with the district heat demand facility.

【0014】本発明によれば、原子力発電システムから
貯蔵蒸気発電システムへの熱輸送ラインの途中に位置す
る比較的小規模の熱需要施設にたいして効率よく熱供給
することができる。
According to the present invention, heat can be efficiently supplied to a relatively small-scale heat demanding facility located in the middle of a heat transport line from a nuclear power generation system to a storage steam power generation system.

【0015】請求項5に対応する発明は、熱供給サブシ
ステムは吸収式冷凍機を備え、その蒸気貯蔵槽の蒸気を
前記吸収式冷凍機に導いて冷媒を製造し、この冷媒で地
域熱需要施設との循環水を過冷却して氷を製造して貯蔵
し、貯蔵氷をスラリ状で取出して冷熱供給を行うように
した構成とする。
According to a fifth aspect of the present invention, the heat supply subsystem includes an absorption chiller, and the steam in the steam storage tank is guided to the absorption chiller to produce a refrigerant. Ice is produced and stored by supercooling the circulating water with the facility, and the stored ice is taken out in a slurry form to supply cold heat.

【0016】本発明によれば、原子力発電システムから
貯蔵蒸気発電システムへの熱輸送ラインの途中に位置す
る比較的小規模の熱需要施設にたいして効率よく冷熱を
供給することができる。
According to the present invention, it is possible to efficiently supply cold heat to a relatively small-scale heat demanding facility located in the middle of a heat transport line from a nuclear power generation system to a storage steam power generation system.

【0017】請求項6に対応する発明は、貯蔵蒸気発電
システムを地下埋設設置とした構成とする。請求項7に
対応する発明は、熱供給サブシステムを地下埋設設置と
した構成とする。請求項6または7の発明によれば、地
上の緑を守り、周囲の景観と調和することができる。
According to a sixth aspect of the present invention, the storage steam power generation system is buried underground. The invention corresponding to claim 7 has a configuration in which the heat supply subsystem is buried underground. According to the invention of claim 6 or 7, it is possible to protect the greenery on the ground and harmonize with the surrounding scenery.

【0018】請求項8に対応する発明は、原子力発電シ
ステムと貯蔵蒸気発電システムを結ぶ蒸気配管および循
環水配管を海中または川底に設置した構成とする。本発
明によれば、熱輸送ラインを安価・効率的に敷設するこ
とができる。
According to an eighth aspect of the present invention, a steam pipe and a circulating water pipe connecting the nuclear power generation system and the storage steam power generation system are installed in the sea or on the riverbed. ADVANTAGE OF THE INVENTION According to this invention, a heat transport line can be laid cheaply and efficiently.

【0019】[0019]

【発明の実施の形態】本発明の第1の実施の形態の地域
コジェネシステムは、夜間に原子力発電プラントで発生
した蒸気を分岐して貯蔵蒸気発電システムへの循環水と
熱交換させて蒸気を生成し、この蒸気を長距離輸送して
貯蔵蒸気発電システムの蒸気貯蔵槽に貯蔵し、昼間のピ
ーク電力需要の発生する時に取出して蒸気タービンを回
転させてピーク電力需要対応発電を行い、蒸気タービン
の排気蒸気を地域熱供給システム循環水と熱交換して地
域に熱供給を行い、負荷平準化と地域熱供給を行うよう
にしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A local cogeneration system according to a first embodiment of the present invention branches steam generated in a nuclear power plant at night and exchanges heat with circulating water to a storage steam power generation system to generate steam. The steam is generated, transported over long distances, stored in the steam storage tank of the storage steam power generation system, taken out when peak power demand occurs during the day, and the steam turbine is rotated to generate power corresponding to the peak power demand. Exhaust steam is exchanged with the circulating water of the district heat supply system to supply heat to the area, thereby performing load leveling and district heat supply.

【0020】以下、図1を参照してこの第1の実施の形
態の地域コジェネシステムを詳細に説明する。図1は、
原子力発電システム1より蒸気を貯蔵蒸気発電システム
2に輸送し貯蔵してピーク発電を行い、そのタービン排
気熱を地域熱供給システム3に導いて地域熱需要施設5
に供給し、また、原子力発電システム1から貯蔵蒸気発
電システム2へ輸送する蒸気を分岐して熱供給サブシス
テム4に用いる、蒸気や水のフローを示したものであ
る。
Hereinafter, the local cogeneration system of the first embodiment will be described in detail with reference to FIG. FIG.
The steam is transported from the nuclear power generation system 1 to the storage steam power generation system 2 and stored to perform peak power generation, and the turbine exhaust heat is led to the district heat supply system 3 to supply the district heat demand facility 5
FIG. 2 shows the flow of steam and water which is used to supply heat to the heat supply subsystem 4 by branching steam transported from the nuclear power generation system 1 to the storage steam power generation system 2.

【0021】原子力発電システム1は、沸騰水型の原子
炉6、蒸気タービン7、発電機8、復水器9、循環ポン
プ10、熱交換器11,12などで構成される。原子炉6で発
生した蒸気は、分岐されて水蒸気タービン7と熱交換器
11に導かれ、蒸気タービン7を駆動した蒸気は、熱交換
器12に導かれ、貯蔵蒸気発電システム2からの循環水で
熱交換をし、復水器9に導かれ、海水等で冷却されて復
水する。
The nuclear power generation system 1 comprises a boiling water reactor 6, a steam turbine 7, a generator 8, a condenser 9, a circulation pump 10, heat exchangers 11 and 12, and the like. The steam generated in the reactor 6 is branched and split into a steam turbine 7 and a heat exchanger.
The steam that is guided to 11 and drives the steam turbine 7 is guided to the heat exchanger 12, performs heat exchange with circulating water from the storage steam power generation system 2, is guided to the condenser 9, and is cooled by seawater or the like. To return to water.

【0022】蒸気タービン7の前方で分岐された蒸気は
熱交換器11に導かれ、貯蔵蒸気発電システム2から送給
され水蒸気タービン7の排気と熱交換をした後の循環水
と熱交換を行って復液し、復水器9の復水と合流して循
環ポンプ10で原子炉6に環流する。
The steam branched in front of the steam turbine 7 is led to the heat exchanger 11 and exchanges heat with the circulating water after heat exchange with the exhaust gas of the steam turbine 7 sent from the storage steam power generation system 2. The liquid is condensed with the condensate of the condenser 9 and returned to the reactor 6 by the circulation pump 10.

【0023】貯蔵蒸気発電システム2は、蒸気貯蔵槽1
3、蒸気タービン14、発電機15、熱交換器16、貯水槽1
7、循環ポンプ18等で構成される。循環ポンプ18で加圧
された循環水は、原子力発電システム1の熱交換器12、
11に導かれ、熱交換を行って蒸気に変換し、蒸気を長距
離輸送し、蒸気貯蔵槽13に貯蔵され、ピーク電力需要の
発生する昼間に貯蔵した蒸気を取出し、蒸気タービン14
を駆動し、その排気は熱交換器16で地域熱供給システム
3からの循環水と熱交換をして復液し、貯水槽17に貯蔵
される。
The storage steam power generation system 2 includes a steam storage tank 1
3, steam turbine 14, generator 15, heat exchanger 16, water tank 1
7. It is composed of a circulation pump 18 and the like. The circulating water pressurized by the circulation pump 18 is supplied to the heat exchanger 12 of the nuclear power generation system 1,
11 to perform heat exchange to convert the steam to steam, transport the steam over a long distance, and store the steam stored in the steam storage tank 13 during the daytime when peak power demand occurs.
The exhaust gas exchanges heat with the circulating water from the district heat supply system 3 in the heat exchanger 16 to recover the liquid, and is stored in the water storage tank 17.

【0024】地域熱供給システム3は、貯水槽19、循環
ポンプ20、温水貯蔵槽34、循環ポンプ35等で構成され
る。貯水槽19に貯蔵された循環水を貯蔵蒸気発電システ
ム2の熱交換器16の熱交換部に導いて温水とし、温水貯
蔵槽34に貯蔵する。地域熱需要施設5で熱需要が発生す
ると温水貯蔵槽34の温水を循環ポンプ35で加圧して輸送
し、熱交換を行って低温になった循環水を貯水槽19に貯
蔵する。
The district heat supply system 3 includes a water storage tank 19, a circulation pump 20, a hot water storage tank 34, a circulation pump 35, and the like. The circulating water stored in the water storage tank 19 is led to the heat exchange section of the heat exchanger 16 of the storage steam power generation system 2 to generate hot water, and is stored in the hot water storage tank 34. When heat demand is generated in the district heat demand facility 5, the hot water in the hot water storage tank 34 is transported by pressurizing with the circulating pump 35, and the circulating water that has been cooled by the heat exchange is stored in the water storage tank 19.

【0025】熱供給サブシステム4は、蒸気貯蔵槽21、
熱交換器22、貯水槽36、循環ポンプ23,37等で構成され
る。原子力発電システム1から貯蔵蒸気発電システム2
への蒸気輸送配管25より蒸気を分岐して蒸気貯蔵槽21に
貯蔵し、地域熱需要施設24への循環水と熱交換を行って
復液した水を貯水槽36に貯水し、循環ポンプ37で復水を
貯蔵蒸気発電システム2から原子力発電システム1への
戻り水配管26に戻す。地域熱需要施設24で熱需要が発生
すると蒸気貯蔵槽21に貯蔵する蒸気を取出して熱交換器
22に流し、地域熱需要施設24からの循環水を循環ポンプ
23で加圧して熱交換器22に流して加熱する。
The heat supply subsystem 4 includes a steam storage tank 21,
It is composed of a heat exchanger 22, a water storage tank 36, circulation pumps 23 and 37, and the like. From nuclear power generation system 1 to storage steam power generation system 2
The steam is branched from the steam transport pipe 25 to the steam storage tank 21 and stored in the steam storage tank 21. To return the condensed water from the storage steam power generation system 2 to the return water pipe 26 to the nuclear power generation system 1. When heat demand is generated in the district heat demand facility 24, the steam stored in the steam storage tank 21 is taken out and the heat exchanger is taken out.
22 and circulates water from district heat demand facility 24
It is pressurized at 23 and flows through the heat exchanger 22 for heating.

【0026】図2は、上記第1の実施の形態の地域コジ
ェネシステムの立地概念を示し、原子力発電システム1
より蒸気を水中敷設配管30および川底埋設配管31を経由
して途中の熱供給サブセンタ29に供給しながら貯蔵蒸気
発電システム2に輸送し、発電および地域熱供給を行う
ようにしたものである。
FIG. 2 shows the location concept of the regional cogeneration system of the first embodiment, and the nuclear power generation system 1
The steam is transported to the storage steam power generation system 2 while being supplied to the heat supply sub-center 29 on the way via the underwater laying pipe 30 and the riverbed buried pipe 31, thereby performing power generation and district heat supply.

【0027】水中敷設配管30は、太陽光の到達限界の水
深20m程度の深さで中性浮力を持たせた状態で敷設す
る。川底埋設配管31の敷設には、川底に深さ2m程度の
溝を掘り、配管を川に浮かべた状態で組み立て、溝が掘
れた段階で浮力を取り除いて溝に一気に設置する工法を
採用する。
The underwater laying pipe 30 is laid with a neutral buoyancy at a depth of about 20 m, which is the limit of sunlight reach. When laying the riverbed buried pipe 31, a method of digging a groove of about 2m depth in the riverbed, assembling the pipe with the pipe floating on the river, removing buoyancy at the stage when the groove is dug, and installing at once in the groove is adopted.

【0028】熱供給サブセンタ29および貯蔵蒸気発電シ
ステム2は地下埋設とし、その上にハウス栽培施設33や
植物工場32のほか、園芸治療施設、温泉施設、スケート
リンク施設、冷凍貯蔵施設、液体空気分離施設等を設置
し、周囲の景観と調和をとる構成とする。また、熱供給
サブセンタ29を校庭、公園、病院周辺の駐車場の地下等
に設置して防災拠点としての機能を持たせる構成とす
る。
The heat supply sub-center 29 and the storage steam power generation system 2 are buried underground. On top of that, in addition to the house cultivation facility 33 and the plant factory 32, horticultural treatment facilities, hot spring facilities, skating rink facilities, frozen storage facilities, liquid air separation Facilities will be set up to harmonize with the surrounding landscape. Further, the heat supply sub-center 29 is installed in a schoolyard, a park, a basement of a parking lot around a hospital, or the like to have a function as a disaster prevention base.

【0029】上記のような構成の本発明の第1の実施の
形態の地域コジェネシステムは次のように動作する。す
なわち、夜間の電力需要の少ない時に、原子炉6で生成
した蒸気の約20%程度を分岐して熱交換器11に導く、熱
交換器11に導いた蒸気は、貯蔵蒸気発電システム2の貯
水槽17に貯蔵された水が循環ポンプ18で戻り水配管26ま
たは川底埋設配管31および水中敷設配管30を経由して送
られてきた循環水と熱交換を行って復液し、循環ポンプ
10の入口側に導かれる。熱交換器11において熱交換を行
った循環水は蒸気化し、蒸気輸送配管25または川底埋設
配管31および水中配管30を経由して貯蔵蒸気発電システ
ム2の蒸気貯水槽13に輸送され貯蔵される。また蒸気
は、蒸気輸送配管25の途中より分岐されて熱供給サブシ
ステム4の蒸気貯蔵槽21に貯蔵される。
The local cogeneration system according to the first embodiment of the present invention configured as described above operates as follows. That is, when nighttime power demand is low, about 20% of the steam generated in the reactor 6 is branched and led to the heat exchanger 11. The steam led to the heat exchanger 11 is stored in the storage steam power generation system 2. The water stored in the tank 17 is returned by the circulation pump 18, exchanges heat with the circulating water sent via the water pipe 26 or the riverbed buried pipe 31 and the submerged laying pipe 30, and is returned to the circulation pump.
Guided to the 10 entrance side. The circulating water that has undergone heat exchange in the heat exchanger 11 is vaporized, transported and stored in the steam storage tank 13 of the storage steam power generation system 2 via the steam transport pipe 25 or the riverbed buried pipe 31 and the underwater pipe 30. The steam is branched from the middle of the steam transport pipe 25 and stored in the steam storage tank 21 of the heat supply subsystem 4.

【0030】電力需要のピークが発生する昼間には、原
子力発電システム1の原子炉6で生成した蒸気を熱交換
器11に分岐せずに、全部の蒸気を蒸気タービン7に導い
てこれを駆動し、同軸に結合された発電機8で発電を行
う。また、貯蔵蒸気発電システム2の蒸気貯蔵槽13に貯
蔵した蒸気を取出して蒸気タービン14に導き、これを駆
動して同軸に結合する発電機15で発電を行ってピーク電
力需要に対応する。
During the daytime when the peak of the power demand occurs, the steam generated in the nuclear reactor 6 of the nuclear power generation system 1 is not branched to the heat exchanger 11 but all the steam is led to the steam turbine 7 to drive it. Then, power is generated by the generator 8 coaxially coupled. In addition, the steam stored in the steam storage tank 13 of the stored steam power generation system 2 is taken out and guided to a steam turbine 14, which is driven to generate electric power by a coaxially coupled generator 15 to meet peak power demand.

【0031】蒸気タービン14の排気は熱交換器16に送ら
れ、地域熱供給システム3の貯水槽19に貯水された水を
循環ポンプ20で加圧して送られる地域熱供給用循環水が
流れる熱交換部で熱交換を行って復水し、貯水槽17に貯
蔵される。熱交換器16で加熱された地域熱供給用の循環
水は温水貯蔵槽34に貯蔵され、ハウス栽培施設、植物工
場、園芸治療施設、温泉施設、一般家庭等からなる地域
熱需要施設5の熱需要に応じて温水供給を行う。地域熱
需要施設5において熱交換を行って低温になった循環水
は貯水槽19に戻って貯水される。
The exhaust gas of the steam turbine 14 is sent to a heat exchanger 16, and the water stored in a water storage tank 19 of the district heat supply system 3 is pressurized by a circulation pump 20 and sent there. The water is condensed by performing heat exchange in the exchange unit and stored in the water storage tank 17. The circulating water for district heat supply heated by the heat exchanger 16 is stored in a hot water storage tank 34, and heat of the district heat demand facility 5 consisting of a house cultivation facility, a plant factory, a horticultural treatment facility, a hot spring facility, a general home, and the like. Supply hot water according to demand. The circulating water that has been cooled down by performing heat exchange in the district heat demand facility 5 returns to the water storage tank 19 and is stored therein.

【0032】熱供給サブシステム4の蒸気貯蔵槽21に夜
間に貯蔵した蒸気は、ハウス栽培施設、植物工場、園芸
治療施設、温泉施設、スケートリンク施設、冷凍貯蔵施
設、液体空気分離施設、学校、病院、一般家庭等からな
る地域熱需要施設24の需要に応じて熱交換器22に導か
れ、地域熱需要施設24より送られる地域熱供給用循環水
が流れる熱交換部で熱交換を行って復水する。この復水
を貯水槽36に貯蔵し、夜間に循環ポンプ37で戻り水配管
26に戻して、原子力発電システム1で蒸気を生成するの
に用いる。
The steam stored in the steam storage tank 21 of the heat supply subsystem 4 at night is house cultivation facility, plant factory, horticultural treatment facility, hot spring facility, skating rink facility, frozen storage facility, liquid air separation facility, school, The heat is exchanged in the heat exchange section where the circulating water for district heat supply, which is guided to the heat exchanger 22 according to the demand of the district heat demand facility 24 composed of a hospital, a general home, etc. and is sent from the district heat demand facility 24, flows. Condensate. This condensed water is stored in a water storage tank 36 and returned to the water pipe by a circulation pump 37 at night.
Returning to 26, it is used for generating steam in the nuclear power generation system 1.

【0033】上記のような構成によって動作する第1の
実施の形態の地域コジェネシステムは次のような効果を
生ずる。すなわち、原子力発電システム1で発生する熱
エネルギーを熱交換して蒸気で取出してタービン14を駆
動して発電を行いピーク電力需要に対処することができ
る。また、その時のタービン排出蒸気を地域熱供給循環
水と熱交換を行って地域に熱供給を行うことによって、
貯蔵蒸気発電システム2の周辺に排熱を温熱として供給
できるために原子力発電システム1の総合熱効率を高く
することができる。
The local cogeneration system of the first embodiment, which operates according to the above configuration, has the following effects. That is, heat energy generated in the nuclear power generation system 1 is exchanged with heat, extracted with steam, and the turbine 14 is driven to generate power, thereby meeting peak power demand. In addition, by performing heat exchange of the turbine exhaust steam at that time with the district heat supply circulating water and supplying heat to the area,
Since the exhaust heat can be supplied as heat to the periphery of the stored steam power generation system 2, the overall thermal efficiency of the nuclear power generation system 1 can be increased.

【0034】また、貯蔵蒸気発電システム2のような大
容量の熱需要施設を原子力発電システム1の設置位置よ
り遠距離に設置することにより、熱輸送の途中の少量の
熱需要施設に蒸気を順次供給することができる。こうし
て効率的に熱供給をおこなうことができるので、熱需要
の少ない地域でも経済的に広域熱供給システムを構築す
ることができる。熱需要の大きな貯蔵蒸気発電システム
を最初から設置して蒸気を長距離輸送し、途中の熱需要
施設の建設に関係なく熱利用を行うシステムにすること
で、従来の広域熱利用で熱需要施設の建設が計画通りす
すまないために運営が苦しくなるという問題が発生して
いたのが解消できる。
Further, by installing a large-capacity heat demanding facility such as the storage steam power generation system 2 farther from the installation position of the nuclear power generation system 1, steam can be sequentially supplied to a small number of heat demanding facilities during heat transport. Can be supplied. Since heat can be efficiently supplied in this manner, a wide-area heat supply system can be economically constructed even in an area where the heat demand is small. By installing a storage steam power generation system with high heat demand from the beginning to transport steam over long distances and use heat regardless of the construction of heat demand facilities on the way, conventional heat demand facilities can be used with wide area heat utilization. The problem that the operation of the building became difficult because the construction of the building did not go as planned can be resolved.

【0035】原子力発電システム1は多くの場合、半島
の先端等の人家の密集地域より離れた場所に設置される
が、熱輸送配管を海中の水深20m程度に中性浮力を付け
て敷設することにより、短距離で効率良く人家の密集地
域に熱輸送を行うことができる。また、河川の川底に配
管を埋設することにより敷設工事が容易になり、土地の
買収の必要が無く、システム構築を短期間で達成でき
る。
In many cases, the nuclear power generation system 1 is installed at a place away from a densely populated area such as the tip of a peninsula, but it is necessary to lay a heat transport pipe at a depth of about 20 m underwater with neutral buoyancy. Accordingly, heat can be efficiently transported to a densely populated area over a short distance. In addition, by burying pipes at the bottom of the river, laying work is facilitated, and there is no need to acquire land, and system construction can be achieved in a short time.

【0036】図3は、本発明の第2の実施の形態を示
し、先に説明した図1の地域熱供給システム3の代り
に、蒸気貯蔵槽13からの蒸気を分岐して供給される冷媒
生成システム38と、高温水生成システム39、および、熱
交換器16からの熱を利用する温水生成システム41を設け
た熱供給システム43とし、また図1の熱供給サブシステ
ム4の代りに、冷媒生成システム40と温水生成システム
42を備えた熱供給サブシステム44とした地域コジェネシ
ステムのフローを示すものである。
FIG. 3 shows a second embodiment of the present invention. Instead of the district heat supply system 3 of FIG. 1 described above, refrigerant supplied by branching the steam from the steam storage tank 13 is supplied. The heat supply system 43 includes a generation system 38, a high-temperature water generation system 39, and a hot water generation system 41 using heat from the heat exchanger 16, and a refrigerant is used instead of the heat supply subsystem 4 in FIG. Generation system 40 and hot water generation system
It shows the flow of a regional cogeneration system as a heat supply subsystem 44 with 42.

【0037】熱供給システム43内の温水生成システム41
は、図1の熱供給システム3と同じ構成である。高温水
生成システム39は、蒸気貯蔵槽13より分岐された蒸気を
導く熱交換器と、この熱交換器の熱交換部に給水する加
圧ポンプ等で構成される。地域熱需要施設5よりの戻り
水が加圧ポンプで加圧されて熱交換部に導かれ、蒸気と
熱交換を行って高温水となり、地域熱需要施設5に導か
れる。
The hot water generation system 41 in the heat supply system 43
Has the same configuration as the heat supply system 3 of FIG. The high-temperature water generation system 39 includes a heat exchanger that guides the steam branched from the steam storage tank 13, a pressure pump that supplies water to a heat exchange unit of the heat exchanger, and the like. The return water from the district heat demanding facility 5 is pressurized by the pressurizing pump and guided to the heat exchanging section, and performs heat exchange with steam to become high-temperature water, which is guided to the district heat demanding facility 5.

【0038】冷媒生成システム38は、吸収式冷凍機、過
冷却器、過冷却解除槽、氷貯蔵槽、送水ポンプ、貯水槽
等で構成される。吸収式冷凍機に分岐蒸気を導き、冷媒
を生成して過冷却器に導き、貯水槽より導かれる水を過
冷却状態にし、また過冷却解除槽に導き、過冷却を解除
して氷を生成して氷貯蔵槽に貯蔵する。貯蔵した氷を氷
スラリー状にして地域熱需要施設5に供給する。地域熱
需要施設5で熱交換を行った水は貯水槽17に戻ってきて
貯水される。
The refrigerant generation system 38 comprises an absorption refrigerator, a subcooler, a subcooling release tank, an ice storage tank, a water pump, a water storage tank, and the like. Guides the branch steam to the absorption refrigerator, generates the refrigerant, guides it to the supercooler, puts the water guided from the water storage tank into a supercooled state, and guides it to the subcooling release tank to release the supercooling and generate ice. And store in an ice storage tank. The stored ice is made into an ice slurry and supplied to the district heat demand facility 5. The water that has exchanged heat in the district heat demand facility 5 returns to the water storage tank 17 and is stored.

【0039】熱供給サブシステム44は、蒸気貯蔵槽21、
冷媒生成システム40および温水生成システム42で構成さ
れる。冷媒生成システム40は、吸収式冷凍機、過冷却
器、過冷却解除槽、送水ポンプ、貯水槽等で構成され
る。温水生成システム42は、図1の熱供給サブシステム
4の熱交換器22、循環ポンプ23、37貯水槽36からなる構
成と同じである。
The heat supply subsystem 44 includes the steam storage tank 21,
It is composed of a refrigerant generation system 40 and a hot water generation system 42. The refrigerant generation system 40 includes an absorption refrigerator, a subcooler, a subcooling release tank, a water pump, a water storage tank, and the like. The hot water generation system 42 has the same configuration as the heat supply subsystem 4 of FIG. 1 including the heat exchanger 22, the circulation pumps 23, and the water tank 36.

【0040】この第2の実施の形態の地域コジェネシス
テムによれば、負荷変動対応発電を行い、地域に対して
温熱を供給し、さらに地域に対して冷熱を供給すること
ができる。そうすることによって原子力発電システム1
の総合熱効率を1年を通して高めることができる。
According to the regional cogeneration system of the second embodiment, it is possible to generate power in response to load fluctuations, supply heat to the area, and supply cool heat to the area. By doing so, nuclear power system 1
Overall thermal efficiency throughout the year.

【0041】[0041]

【発明の効果】本発明の形態の地域コジェネシステムに
よれば、地域に対して温熱や冷熱を供給し、原子力発電
プラントの総合熱効率を高めることができる。
According to the regional cogeneration system of the embodiment of the present invention, it is possible to supply hot or cold heat to the area and to increase the overall thermal efficiency of the nuclear power plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の地域コジェネシス
テムのフロー図。
FIG. 1 is a flowchart of a local cogeneration system according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の地域コジェネシス
テムの立地概念図。
FIG. 2 is a conceptual diagram of a location of the local cogeneration system according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態の地域コジェネシス
テムのフロー図。
FIG. 3 is a flowchart of a regional cogeneration system according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…原子力発電システム、2…貯蔵蒸気発電システム、
3…地域熱供給システム、4…熱供給サブシステム、5
…地域熱需要施設、6…原子炉、7…蒸気タービン、8
…発電機、9…復水器、10…循環ポンプ、11…熱交換
器、12…熱交換器、13…蒸気貯蔵槽、14…蒸気タービ
ン、15…発電機、16…熱交換器、17…貯水槽、18…循環
ポンプ、19…貯水槽、20…循環ポンプ、21…蒸気貯蔵
槽、22…熱交換器、23…循環ポンプ、24…地域熱需要施
設、25…蒸気輸送配管、26…戻り水配管、29…熱供給サ
ブセンタ、30…水中敷設配管、31…川底埋設配管、32…
植物工場、33…ハウス栽培施設、34…温水貯蔵槽、35…
循環ポンプ、36…貯水槽、37…循環ポンプ、38…冷媒生
成システム、39…高温水生成システム、40…冷媒生成シ
ステム、41…温水生成システム、42…温水生成システ
ム、43…熱供給システム、44…熱供給サブシステム。
1. Nuclear power generation system, 2. Storage steam power generation system,
3 ... district heat supply system, 4 ... heat supply subsystem, 5
… District heat demand facility, 6… Reactor, 7… Steam turbine, 8
... generator, 9 ... condenser, 10 ... circulation pump, 11 ... heat exchanger, 12 ... heat exchanger, 13 ... steam storage tank, 14 ... steam turbine, 15 ... generator, 16 ... heat exchanger, 17 … Water tank, 18… circulation pump, 19… water tank, 20… circulation pump, 21… steam storage tank, 22… heat exchanger, 23… circulation pump, 24… district heat demand facility, 25… steam transport piping, 26 … Return water piping, 29… Heat supply sub-center, 30… Submerged piping, 31… River bottom buried piping, 32…
Plant factory, 33… House cultivation facility, 34… Hot water storage tank, 35…
Circulation pump, 36 ... water storage tank, 37 ... circulation pump, 38 ... refrigerant generation system, 39 ... high temperature water generation system, 40 ... refrigerant generation system, 41 ... hot water generation system, 42 ... hot water generation system, 43 ... heat supply system, 44… Heat supply subsystem.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮沢 竜雄 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 日置 秀明 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 3L093 AA01 BB26  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuo Miyazawa 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Head Office (72) Inventor Hideaki Hioki 8-8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa F-term in Toshiba Yokohama Office (reference) 3L093 AA01 BB26

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 原子炉において生成され発電機を駆動す
る蒸気タービンに導かれる蒸気を分岐して供給される熱
交換器を有する原子力発電システムと、この原子力発電
システムから離れた場所に設置され前記原子力発電シス
テムの熱交換器において熱交換する循環水から生成され
た蒸気を貯蔵する蒸気貯蔵槽およびこの蒸気貯蔵槽に貯
蔵された蒸気を用いて駆動される蒸気タービンを有する
貯蔵蒸気発電システムと、この貯蔵蒸気発電システムの
蒸気タービンの排気と熱交換する循環水を供給される地
域熱供給システムとを備えたことを特徴とする地域コジ
ェネシステム。
1. A nuclear power generation system having a heat exchanger that branches and supplies steam generated in a nuclear reactor and guided to a steam turbine that drives a generator, and a heat exchanger installed at a location remote from the nuclear power generation system. A storage steam power generation system having a steam storage tank for storing steam generated from circulating water that performs heat exchange in a heat exchanger of a nuclear power generation system and a steam turbine driven using the steam stored in the steam storage tank; A regional cogeneration system comprising: a district heat supply system supplied with circulating water for exchanging heat with exhaust gas from a steam turbine of the storage steam power generation system.
【請求項2】 原子力発電システムの蒸気タービンの出
口に熱交換器を備え、貯蔵蒸気発電システムの蒸気ター
ビンを駆動して復液した水を前記熱交換器に導き、この
熱交換器において熱交換を行ってから原子炉において生
成した蒸気の分岐蒸気の熱交換器に導いて熱交換を行う
ようにしたことを特徴とする請求項1記載の地域コジェ
ネシステム。
2. A heat exchanger is provided at an outlet of a steam turbine of a nuclear power generation system, and a steam turbine of a storage steam power generation system is driven to guide condensed water to the heat exchanger, where heat exchange is performed. 2. The local cogeneration system according to claim 1, wherein the heat exchange is performed by conducting the heat exchange to a heat exchanger of a branch steam of the steam generated in the nuclear reactor.
【請求項3】 地域熱供給システムは吸収式冷凍機を備
え、貯蔵蒸気発電システムの蒸気貯蔵槽の蒸気を分岐し
て前記吸収式冷凍機に導いて冷媒を製造し、この冷媒で
地域熱需要施設との循環水を過冷却して氷を製造して貯
蔵し、貯蔵氷をスラリ状で取出して冷熱供給を行うよう
にしたことを特徴とする請求項1記載の地域コジェネシ
ステム。
3. The district heat supply system includes an absorption chiller. The steam in the steam storage tank of the storage steam power generation system is branched and guided to the absorption chiller to produce a refrigerant. 2. The regional cogeneration system according to claim 1, wherein the circulating water with the facility is supercooled to produce and store ice, and the stored ice is taken out in a slurry form to supply cold heat.
【請求項4】 原子力発電システムと貯蔵蒸気発電シス
テムを結ぶ蒸気配管および循環水配管の途中に熱供給サ
ブシステムを設け、この熱供給サブシステムは蒸気貯蔵
槽を有し、その貯蔵蒸気を取出して地域熱需要施設との
循環水と熱交換するようにしたことを特徴とする請求項
1記載の地域コジェネシステム。
4. A heat supply subsystem is provided in a steam pipe and a circulating water pipe connecting the nuclear power generation system and the storage steam power generation system. The heat supply subsystem has a steam storage tank, and the stored steam is taken out. 2. The local cogeneration system according to claim 1, wherein heat exchange is performed with circulating water with a district heat demand facility.
【請求項5】 熱供給サブシステムは吸収式冷凍機を備
え、その蒸気貯蔵槽の蒸気を前記吸収式冷凍機に導いて
冷媒を製造し、この冷媒で地域熱需要施設との循環水を
過冷却して氷を製造して貯蔵し、貯蔵氷をスラリ状で取
出して冷熱供給を行うようにしたことを特徴とする請求
項4記載の地域コジェネシステム。
5. The heat supply subsystem includes an absorption chiller, and guides the steam in the steam storage tank to the absorption chiller to produce a refrigerant, and the refrigerant circulates water with a district heat demand facility. 5. The local cogeneration system according to claim 4, wherein the ice is produced by cooling and stored, and the stored ice is taken out in a slurry form to supply cold heat.
【請求項6】 貯蔵蒸気発電システムを地下埋設設置と
したことを特徴とする請求項1記載の地域コジェネシス
テム。
6. The local cogeneration system according to claim 1, wherein the stored steam power generation system is buried underground.
【請求項7】 熱供給サブシステムを地下埋設設置とし
たことを特徴とする請求項4または5記載の地域コジェ
ネシステム。
7. The regional cogeneration system according to claim 4, wherein the heat supply subsystem is buried underground.
【請求項8】 原子力発電システムと貯蔵蒸気発電シス
テムを結ぶ蒸気配管および循環水配管を海中または川底
に設置したことを特徴とする請求項1記載の地域コジェ
ネシステム。
8. The local cogeneration system according to claim 1, wherein a steam pipe and a circulating water pipe connecting the nuclear power generation system and the storage steam power generation system are installed in the sea or on the riverbed.
JP2000047662A 2000-02-24 2000-02-24 Regional cogeneration system Pending JP2001235585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047662A JP2001235585A (en) 2000-02-24 2000-02-24 Regional cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047662A JP2001235585A (en) 2000-02-24 2000-02-24 Regional cogeneration system

Publications (1)

Publication Number Publication Date
JP2001235585A true JP2001235585A (en) 2001-08-31

Family

ID=18569879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047662A Pending JP2001235585A (en) 2000-02-24 2000-02-24 Regional cogeneration system

Country Status (1)

Country Link
JP (1) JP2001235585A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568753B1 (en) * 2003-11-06 2006-04-07 코리아코젠(주) District heating system utilizing combined heat and power plant
CN115507416A (en) * 2021-06-23 2022-12-23 中核核电运行管理有限公司 Modularized nuclear energy heating energy-saving device
JP7524316B2 (en) 2019-10-31 2024-07-29 テラパワー, エルエルシー Nuclear heat plants with load-following generation.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568753B1 (en) * 2003-11-06 2006-04-07 코리아코젠(주) District heating system utilizing combined heat and power plant
JP7524316B2 (en) 2019-10-31 2024-07-29 テラパワー, エルエルシー Nuclear heat plants with load-following generation.
CN115507416A (en) * 2021-06-23 2022-12-23 中核核电运行管理有限公司 Modularized nuclear energy heating energy-saving device
CN115507416B (en) * 2021-06-23 2024-06-11 中核核电运行管理有限公司 Modularized nuclear energy heating energy-saving device

Similar Documents

Publication Publication Date Title
KR100893828B1 (en) Hybrid heat pump system for cooling and heating with integrated power generation system
EP2122257B1 (en) Co2 based district energy system
CN103124845B (en) For the method and apparatus producing electric energy supplement
Tabor et al. The Beith Ha'Arava 5 MW (e) solar pond power plant (SPPP)—progress report
EP2914919B1 (en) Method for operating an arrangement for storing thermal energy
EP2829729A1 (en) Ground source cooling apparatus for solar energy electricity generating system
KR20220087530A (en) Heat energy transfer method using water and carbon dioxide
JP2001235585A (en) Regional cogeneration system
Assad et al. Heating and cooling by geothermal energy
CN213841382U (en) Photovoltaic and photo-thermal renewable energy multi-storage recycling system
CN213687359U (en) Distributed energy system
CN112361628A (en) Photovoltaic and photo-thermal renewable energy multi-storage recycling system
KR101095213B1 (en) Efficient Composition of District Air-conditioning and Warm Water Supply System by Using Seawater and Ancillary Operation Methods
RU2683059C1 (en) Method of extraction and use of geothermal heat for cooling soils around subway tunnels
Bronicki Power/energy: A solar-pond power plant: Israel reviews an experiment which got under way more then a year ago: Will it prove a model for more like it?
JP2021113638A (en) Device for making daily temperature difference into temperature energy to produce hot water and cold water, and preserving/supplying the hot water and cold water
JP2003270383A (en) Atomic power using heat supply system
KR101166332B1 (en) Applicable heat-exchanging circulation water terminal pool system for large quantity requirement of seawater heat and/or geothermal heating and warm water supply, and it's effective operation method
JP2002195101A (en) Cogeneration system
CA3194331C (en) Power plant cooling systems
JP2000338278A (en) Nuclear cogeneration plant
RU2826330C1 (en) Heat and cold supply method
RU2749471C1 (en) Heliogeothermal power complex
CN217685926U (en) Energy storage power generation system based on solar energy and geothermal energy coupling utilization
KR20100000001A (en) The cyclone wind power station or system which can produce electricity by sola heat