JP2001235525A - Characteristic evaluation method of lead storage battery and characteristic evaluation device of lead storage battery - Google Patents

Characteristic evaluation method of lead storage battery and characteristic evaluation device of lead storage battery

Info

Publication number
JP2001235525A
JP2001235525A JP2000050539A JP2000050539A JP2001235525A JP 2001235525 A JP2001235525 A JP 2001235525A JP 2000050539 A JP2000050539 A JP 2000050539A JP 2000050539 A JP2000050539 A JP 2000050539A JP 2001235525 A JP2001235525 A JP 2001235525A
Authority
JP
Japan
Prior art keywords
storage battery
lead storage
resistance value
value
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000050539A
Other languages
Japanese (ja)
Other versions
JP4477185B2 (en
Inventor
Toshiyuki Sato
敏幸 佐藤
Michihiro Shimada
道宏 島田
Yoshio Maruyama
義雄 丸山
Tetsuya Kano
哲也 加納
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000050539A priority Critical patent/JP4477185B2/en
Publication of JP2001235525A publication Critical patent/JP2001235525A/en
Application granted granted Critical
Publication of JP4477185B2 publication Critical patent/JP4477185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for evaluating a lead storage battery simply and accurately. SOLUTION: Concerning this evaluation device 10 of the lead storage battery, in a measuring device 12, internal impedances of the lead storage battery are measured on plural frequencies of three or more points for prescribing a circle on two-dimensional coordinates prescribed by plotting the real part of the internal impedance selected in the frequency range of 1-100 Hz on the X-axis and a value obtained by multiplying the imaginary part by -1 on the Y-axis. In a calculation means 14, RΩ, Rct and Cd are obtained by referring values of plural internal impedances measured on the plural frequencies relative to a relation between RΩ, Rct and Cd derived from an equivalent circuit composed of a series circuit between a parallel circuit between a charge-transfer resistance value (Rct) and an electric double layer capacity value (Cd), and an electrolyte solution resistance value (RΩ), and the plural internal impedances of the lead storage battery measured on the plural frequencies. In a determination means 16, the remaining capacity and/or the deteriorated state of a test lead storage battery are determined from the calculation means 14 and the calculated RΩ, Rct and Cd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池の特性評価
方法およびその装置に関するものであり、特に、自動車
などの車両に搭載する鉛蓄電池の残存容量ならびに劣化
状態の実用的かつ効果的な特性評価方法(検査方法)と
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for evaluating the characteristics of a lead storage battery, and more particularly to a practical and effective evaluation of the remaining capacity and deterioration of a lead storage battery mounted on a vehicle such as an automobile. The present invention relates to a method (inspection method) and its device.

【0002】[0002]

【従来の技術】自動車などの車両に二次電池として鉛蓄
電池を搭載し、エンジン始動、自動車装備などの動力源
として用いている。そのような場合、鉛蓄電池の残存容
量および劣化状態を正確に評価することが、特に、必要
になる。たとえば、自動車を停止する場合、次回にエン
ジンを始動するに十分なだけの残存容量が鉛蓄電池に残
存していないと、停止後に、エンジンを始動させること
ができない。もちろん、その他の場合においても、鉛蓄
電池などの二次蓄電池の残存容量および劣化状態を正確
に評価することが望まれている。
2. Description of the Related Art A lead-acid battery is mounted on a vehicle such as an automobile as a secondary battery, and is used as a power source for starting an engine, automobile equipment, and the like. In such a case, it is particularly necessary to accurately evaluate the remaining capacity and the state of deterioration of the lead storage battery. For example, when an automobile is stopped, the engine cannot be started after the stop unless the lead storage battery has sufficient remaining capacity to start the engine next time. Of course, in other cases, it is desired to accurately evaluate the remaining capacity and the state of deterioration of a secondary storage battery such as a lead storage battery.

【0003】そのような鉛蓄電池の残存容量ならびに劣
化状態の検査方法に関しては、種々の方法が提案されて
いる。たとえば、鉛蓄電池を完全に放電させてその静電
容量を測定し、測定した静電容量から劣化状態を判定す
る方法が提案されている。しかしながら、この方法は、
鉛蓄電池を完全に放電することが必要なため、放電に起
因する電力の無駄がある他、使用中の鉛蓄電池にその検
査方法を適用することができないという問題がある。さ
らに、この検査方法は放電しきるまでに時間がかかり、
結局、測定時間も長くなるので実用的な方法ではなかっ
た。そこで、短時間に、かつ、電力消費の浪費を防止し
て、鉛蓄電池の検査を行うことができる方法が種々開発
されてきた。
Various methods have been proposed for testing the state of charge and the state of deterioration of such lead storage batteries. For example, a method has been proposed in which a lead storage battery is completely discharged, its capacitance is measured, and a deterioration state is determined from the measured capacitance. However, this method
Since it is necessary to completely discharge the lead storage battery, there is a problem that the inspection method cannot be applied to the lead storage battery in use, in addition to waste of power due to the discharge. In addition, this test method takes time to discharge completely,
After all, the measurement time was long, so it was not a practical method. Therefore, various methods have been developed that can inspect a lead storage battery in a short time while preventing waste of power consumption.

【0004】特開平4−95788号公報(特許第25
36257号)は、鉛蓄電池の内部インピーダンスの測
定結果を、鉛蓄電池のインダクタンス成分(L),電解
液抵抗値(Rs),電荷移動抵抗値(θ),電気二重層
容量値(Cd),ワークブルグインピーダンス(W),
ワークブルグ係数(σ)からなる下記式(1−1)で表
される等価回路に当てはめて最適解を求め、インダクタ
ンス成分(L),電解液抵抗値(Rs),電荷移動抵抗
値(θ),電気二重層容量値(Cd),ワークブルグイ
ンピーダンス(W),ワークブルグ係数(σ)の少なく
とも一つを初期の値と比較することで、鉛蓄電池の寿命
を判定する方法を開示している。
Japanese Patent Application Laid-Open No. Hei 4-95788 (Patent No. 25)
No. 36257) describes the measurement results of the internal impedance of a lead-acid battery by calculating the inductance component (L), the electrolyte resistance (Rs), the charge transfer resistance (θ), the electric double layer capacitance (Cd), and the work of the lead-acid battery. Burg impedance (W),
The optimum solution is obtained by applying the equivalent circuit represented by the following equation (1-1) consisting of the Workburg coefficient (σ), and the inductance component (L), the electrolyte resistance value (Rs), and the charge transfer resistance value (θ) are obtained. , An electric double layer capacity value (Cd), a workburg impedance (W), and a workburg coefficient (σ) are compared with an initial value to determine a life of the lead storage battery. .

【0005】[0005]

【数1】 (Equation 1)

【0006】特開平4−141966号公報(特許第2
546050号)は、鉛蓄電池の内部インピーダンスの
測定のうち、位相が0になる周波数のインピーダンス
と、周波数が0.1〜10Hzの間で、インピーダンス
の虚数部の周波数に対する変化分をインピーダンスの実
数部の周波数に対する変化分で除算した値が−1程度に
最も近づく周波数でのインピーダンスから、鉛蓄電池の
劣化状態を判定する方法を開示している。
Japanese Patent Application Laid-Open No. 4-141966 (Patent No. 2)
No. 546050) describes the measurement of the internal impedance of a lead-acid battery as the impedance of the frequency at which the phase becomes 0 and the change of the imaginary part of the impedance with respect to the frequency between 0.1 and 10 Hz. Discloses a method for determining the deterioration state of a lead storage battery from the impedance at a frequency at which a value obtained by dividing by a change amount with respect to the frequency approaches −1.

【0007】特開平5−135806号公報(特許第2
792784号)は、(a)0.001〜1Hzの間の
2〜3点の周波数で、鉛蓄電池の内部インピーダンスを
測定し、インピーダンスの虚数部を測定周波数の−0.
5乗(f-1/2)に対してプロットし、そのY切片の値か
ら、鉛蓄電池の残存容量を判定し、(a)さらに、0.
01〜0.05Hzの周波数で内部インピーダンスを測
定し、その実部を虚数部に対してプロットし、その勾配
の値から、鉛蓄電池の残存容量を判定する方法を開示し
ている。
Japanese Patent Application Laid-Open No. 5-135806 (Patent No. 2)
No. 792784) (a) measures the internal impedance of a lead-acid battery at a frequency of two to three points between 0.001 and 1 Hz, and determines the imaginary part of the impedance to be −0.
Plotted against the fifth power (f -1/2 ), the remaining capacity of the lead storage battery is determined from the value of the Y intercept, and (a)
A method is disclosed in which the internal impedance is measured at a frequency of 01 to 0.05 Hz, the real part is plotted against the imaginary part, and the remaining capacity of the lead storage battery is determined from the value of the gradient.

【0008】[0008]

【発明が解決しようとする課題】上記した方法はそれぞ
れ、下記に述べる問題点があり、鉛蓄電池、特に自動車
などの車両に搭載される鉛蓄電池の特性評価には実用
上、有効に使用することができなかった。下記に詳述す
る。
The above-mentioned methods have the following problems, respectively, and are practically and effectively used for evaluating the characteristics of lead-acid batteries, particularly lead-acid batteries mounted on vehicles such as automobiles. Could not. It is described in detail below.

【0009】特開平4−95788号公報に記載された
方法は、鉛蓄電池の内部インピーダンスの測定結果か
ら、式(1−1)に示した、インダクタンス成分
(L),電解液抵抗値(Rs),電荷移動抵抗値
(θ),電気二重層容量値(Cd),ワークブルグイン
ピーダンス(W),ワークブルグ係数(σ)の6つのパ
ラメータを求める必要がある。そのため、内部インピー
ダンスの測定は少なくとも6つの周波数で行うことが必
要であり、6つのパラメータの最適解を求めるための演
算が非常に煩雑になるという問題点があった。すなわ
ち、特開平4−95788号公報に記載されている多数
の周波数での測定、並びに煩雑な演算は、測定時間が長
くなるだけでなく、測定装置の価格が高くなり、特に、
車両に搭載した鉛蓄電池の評価には実用的でないという
問題点があった。
The method described in Japanese Patent Application Laid-Open No. 4-95788 discloses an inductance component (L) and an electrolyte resistance (Rs) shown in equation (1-1) based on the measurement results of the internal impedance of a lead storage battery. , Charge transfer resistance (θ), electric double layer capacitance (Cd), Workburg impedance (W), and Workburg coefficient (σ). For this reason, it is necessary to measure the internal impedance at least at six frequencies, and there has been a problem that the calculation for obtaining the optimum solution of the six parameters becomes very complicated. That is, the measurement at a number of frequencies and the complicated calculation described in JP-A-4-95788 not only increase the measurement time but also increase the price of the measurement device,
There is a problem that it is not practical to evaluate a lead storage battery mounted on a vehicle.

【0010】特開平4−141966号公報に記載され
た方法は、内部インピーダンスの位相が0になる周波数
を探し出して測定を行う必要があり、さらに、周波数が
0.1〜10Hzの間でインピーダンスの虚部の周波数
に対する変化分をインピーダンスの実部の周波数に対す
る変化分で除算した値が−1程度になる周波数を探し出
して測定を行う必要がある。すなわち、特開平4−14
1966号公報の方法は、内部インピーダンスの値が特
定の条件を満たすような周波数を探し出す必要がある。
そのため、周波数を変化させて測定を可能とする装置が
必要となる他、上述した特定の条件を満たすことの判定
を行う装置も必要になる。このような処理のためには複
雑な測定装置が必要になり、装置価格が高くなり、特
に、車両に搭載した鉛蓄電池の特性評価には実用的でな
いという問題点があった。
In the method described in Japanese Patent Application Laid-Open No. 4-141966, it is necessary to search for a frequency at which the phase of the internal impedance becomes zero and perform measurement. It is necessary to find and measure a frequency at which the value obtained by dividing the change in the imaginary part with respect to the frequency by the change in the impedance with respect to the real part is about -1. That is, Japanese Unexamined Patent Publication No.
In the method of 1966, it is necessary to find a frequency at which the value of the internal impedance satisfies a specific condition.
Therefore, a device that enables measurement by changing the frequency is required, and a device that determines whether the above-described specific condition is satisfied is also required. Such a process requires a complicated measuring device, which increases the price of the device, and is particularly impractical for evaluating the characteristics of a lead storage battery mounted on a vehicle.

【0011】特開平5−135806号公報に記載され
た方法は、0.001〜1Hzでの内部インピーダンス
の値を指標にしている。しかしながら、このような1H
z以下の低周波領域の測定は、1Hz以上の領域での測
定と比較して、測定装置、特に周波数発振回路の構成が
複雑化し、装置の価格が高騰する要因となり、また、測
定時間が長くなるという問題点がある。また、0.00
1〜1Hzでの内部インピーダンスは温度によって値が
大きく変化する傾向にあるため、たとえば、車両に搭載
した鉛蓄電池のように、温度が大きく変化する場所に設
置された鉛蓄電池の測定にあっては、温度により補正が
不可欠になるという問題点があった。
The method described in Japanese Patent Application Laid-Open No. 5-135806 uses the value of the internal impedance at 0.001 to 1 Hz as an index. However, such 1H
The measurement in the low-frequency region below z is more complicated than the measurement in the region above 1 Hz, which complicates the configuration of the measuring device, especially the frequency oscillating circuit, and increases the price of the device. There is a problem that becomes. Also, 0.00
Since the value of the internal impedance at 1 to 1 Hz tends to greatly change depending on the temperature, for example, when measuring a lead-acid battery installed in a place where the temperature greatly changes, such as a lead-acid battery mounted on a vehicle, However, there is a problem that correction becomes indispensable depending on the temperature.

【0012】[0012]

【課題を解決するための手段】上記した課題を解決する
ために、本願発明者が、鋭意検討を重ねた結果、本発明
の鉛蓄電池の特性評価方法を発明するに至った。本発明
の鉛蓄電池の特性評価方法の要旨を図1〜図3を参照し
て、下記に述べる。なお、本発明において、鉛蓄電池の
残存容量、劣化状態などの検査を総称して、鉛蓄電池の
特性評価と言う。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention have made intensive studies and as a result, have come to invent a method for evaluating the characteristics of a lead storage battery of the present invention. The gist of the method for evaluating the characteristics of the lead storage battery of the present invention will be described below with reference to FIGS. In the present invention, the inspection of the residual capacity, the deterioration state, and the like of the lead storage battery are collectively referred to as the characteristic evaluation of the lead storage battery.

【0013】本発明の鉛蓄電池の特性評価方法は、ま
ず、鉛蓄電池の等価回路を簡略化して、等価回路を、図
1または図2に図解したように、少なくとも電荷移動抵
抗値(Rct)と電気二重層容量値(Cd)との並列回
路と電解液抵抗値(RΩ)との直列回路で構成し、イン
ピーダンスが下記式で規定される等価回路として表す。
等価回路の詳細について後述する。
According to the lead storage battery characteristic evaluation method of the present invention, first, the equivalent circuit of the lead storage battery is simplified, and the equivalent circuit has at least a charge transfer resistance value (Rct) as illustrated in FIG. 1 or FIG. It is composed of a parallel circuit with the electric double layer capacitance value (Cd) and a series circuit with the electrolytic solution resistance value (RΩ), and the impedance is represented as an equivalent circuit defined by the following equation.
Details of the equivalent circuit will be described later.

【0014】 〔RΩ+(Rct/(1+jωCd))〕 ・・・(A−1) ただし、ω=2πf[RΩ + (Rct / (1 + jωCd))] (A-1) where ω = 2πf

【0015】本発明の鉛蓄電池の評価特性方法において
は、図3に図解したように、(1)鉛蓄電池の内部イン
ピーダンスの実部をX軸に虚部に−1を乗じた値をY軸
にプロットして規定される二次元座標におけるインピー
ダンス円を規定する、1〜100Hzの周波数の範囲で
選ばれた、3点以上の複数の周波数について、鉛蓄電池
の内部インピーダンスを測定する。
In the lead-acid battery evaluation characteristic method of the present invention, as shown in FIG. 3, (1) the value obtained by multiplying the imaginary part by -1 with the real part of the internal impedance of the lead-acid battery on the Y-axis The internal impedance of the lead-acid battery is measured for a plurality of frequencies at three or more points selected in the frequency range of 1 to 100 Hz, which define the impedance circle in the two-dimensional coordinates defined by plotting in FIG.

【0016】さらに本発明の鉛蓄電池の評価特性方法に
おいては、図3に図解したように、(2)電荷移動抵抗
値(Rct)と電気二重層容量値(Cd)との並列回路
と、電解液抵抗値(RΩ)との直列回路で構成した等価
回路から導出される電解液抵抗値(RΩ),電荷移動抵
抗値(Rct),電気二重層容量値(Cd)と、複数の
周波数において測定した複数の鉛蓄電池の内部インピー
ダンスとの関係式に、複数の周波数において測定した複
数の内部インピーダンスの値を参照して前記電解液抵抗
値(RΩ),前記電荷移動抵抗値(Rct),前記電気
二重層容量値(Cd)を求める。
Further, in the method for evaluating the characteristics of a lead storage battery according to the present invention, as illustrated in FIG. 3, (2) a parallel circuit of a charge transfer resistance value (Rct) and an electric double layer capacitance value (Cd); Electrolyte resistance (RΩ), charge transfer resistance (Rct), electric double layer capacitance (Cd), and measured at multiple frequencies derived from an equivalent circuit composed of a series circuit with the liquid resistance (RΩ) The electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric resistance value are referred to the relational expression with the internal impedance of the plurality of lead storage batteries by referring to the plurality of internal impedance values measured at a plurality of frequencies. The double layer capacitance value (Cd) is determined.

【0017】最後に、本発明の鉛蓄電池の評価特性方法
においては、図3に図解したように、(3)算出した電
解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気
二重層容量値(Cd)の全てまたは少なくとも1つから
供試した鉛蓄電池の残存容量および/または劣化状態を
判定する。
Finally, in the method for evaluating the characteristics of a lead storage battery of the present invention, as shown in FIG. 3, (3) the calculated electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer The remaining capacity and / or deterioration state of the tested lead storage battery is determined from all or at least one of the capacity values (Cd).

【0018】また、本発明の鉛蓄電池の評価装置は、上
述した鉛蓄電池の評価方法を実施する装置であり、測定
手段と、算出手段と、判定手段とを有する。測定手段は
上述した(1)の処理を行い、算出手段は上述した
(2)の処理を行い、判定手段は上述した(3)の処理
を行う。
Further, an apparatus for evaluating a lead storage battery according to the present invention is an apparatus for implementing the above-described method for evaluating a lead storage battery, and includes a measuring unit, a calculating unit, and a determining unit. The measuring unit performs the above-described process (1), the calculating unit performs the above-described process (2), and the determining unit performs the above-described process (3).

【0019】[0019]

【発明の実施の形態】以下、本発明の鉛蓄電池の特性評
価方法および鉛蓄電池の特性評価装置の実施の形態を添
付図面を参照して述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the lead storage battery characteristic evaluation method and lead storage battery characteristic evaluation device of the present invention will be described below with reference to the accompanying drawings.

【0020】等価回路 図1および図2に本発明で適用した等価回路の回路例を
示す。図1は本発明で使用する第1の等価回路として
の、電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)からなる等価回路の構
成図である。図1の等価回路は、電荷移動抵抗値(Rc
t)と電気二重層容量値(Cd)とが並列に接続され、
この並列回路に電解液抵抗値(RΩ)が直列に接続され
ている。したがって、その等価回路のインピーダンスは
下記式で規定される。
[0020] shows a circuit example of an equivalent circuit using the present invention in an equivalent circuit diagram 1 and 2. FIG. 1 is a diagram showing a first equivalent circuit used in the present invention, the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rc).
FIG. 3 is a configuration diagram of an equivalent circuit including an electric double layer capacitance value (Cd). The equivalent circuit of FIG. 1 has a charge transfer resistance value (Rc
t) and the electric double layer capacitance value (Cd) are connected in parallel,
An electrolyte resistance value (RΩ) is connected in series to this parallel circuit. Therefore, the impedance of the equivalent circuit is defined by the following equation.

【0021】 〔RΩ+(Rct/(1+jωCd))〕 ・・・(A−2) ただし、ω=2πf[RΩ + (Rct / (1 + jωCd))] (A-2) where ω = 2πf

【0022】図2は本発明で使用する第2の等価回路と
しての、電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t’とRct’’),電気二重層容量値(Cd’とC
d’’)からなる等価回路の構成図である。図2の等価
回路は、図1の電気二重層容量値(Cd)を第1の電気
二重層容量値(Cd’)と第2の電気二重層容量値(C
d’’)に置き換え、図1の電荷移動抵抗値(Rct)
を第1の電荷移動抵抗値(Rct’)と第2の電荷移動
抵抗値(Rct’’)に置き換えたものである。図2の
等価回路のインピーダンスは下記式で規定される。
FIG. 2 shows a second equivalent circuit used in the present invention, which is a resistance value of an electrolyte (RΩ) and a resistance value of a charge transfer (Rc).
t ′ and Rct ″), the electric double layer capacitance value (Cd ′ and C
3 is a configuration diagram of an equivalent circuit composed of d ″). FIG. In the equivalent circuit of FIG. 2, the electric double layer capacitance value (Cd) of FIG. 1 is converted into the first electric double layer capacitance value (Cd ′) and the second electric double layer capacitance value (Cd).
d ''), and the charge transfer resistance value (Rct) of FIG.
Are replaced with a first charge transfer resistance value (Rct ′) and a second charge transfer resistance value (Rct ″). The impedance of the equivalent circuit of FIG. 2 is defined by the following equation.

【0023】 〔RΩ+(Rct’/(1+jωCd’)) +(Rct’’/(1+jωCd’’))〕 ・・・(B−1) ただし、ω=2πf[RΩ + (Rct ′ / (1 + jωCd ″)) + (Rct ″ / (1 + jωCd ″))) (B-1) where ω = 2πf

【0024】特開平4−95788号公報には、式1−
1に示したように、6つのパラメータで構成される等価
回路が示されている。鉛蓄電池の特性を正確に把握する
には、特開平4−95788号公報の等価回路による解
析が望ましいが、たとえば、車両の搭載した鉛蓄電池の
評価などのような場合には、本発明で適用する図1また
は図2で表現される等価回路での解析で十分である。む
しろ、本発明の図1または図2に示した等価回路を適用
して求めるパラメータの数を少なくすることで、測定周
波数を少なくし、演算に係わる時間,コストを低減する
方が実用的価値が高い。特に、自動車に搭載する鉛蓄電
池の残存容量の判定を行う場合、有効数字2桁で十分で
あり、特開平4−95788号公報の方法より、本発明
の方法が実用的である。
Japanese Patent Application Laid-Open No. 4-95788 discloses a formula 1
As shown in FIG. 1, an equivalent circuit including six parameters is shown. In order to accurately grasp the characteristics of the lead-acid battery, it is desirable to analyze the equivalent circuit disclosed in Japanese Patent Application Laid-Open No. 4-95788. However, for example, in the case of evaluation of a lead-acid battery mounted on a vehicle, the present invention is applied. The analysis using the equivalent circuit shown in FIG. 1 or 2 is sufficient. Rather, it is more practical to reduce the number of parameters obtained by applying the equivalent circuit shown in FIG. 1 or 2 of the present invention to reduce the measurement frequency and the time and cost involved in the calculation. high. In particular, when determining the remaining capacity of a lead storage battery mounted on an automobile, two significant figures are sufficient, and the method of the present invention is more practical than the method disclosed in JP-A-4-95788.

【0025】3点の測定結果と円の関係 図8に例示として、3点の測定結果と円の関係を図解し
た。すなわち、式Aまたは式Bで規定したインピーダン
スに対応させて、鉛蓄電池の内部インピーダンスの実部
をX軸に虚部に−1を乗じた値をY軸にプロットして規
定される二次元座標におけるインピーダンス円を規定す
る少なくとも3点以上の複数の周波数において、鉛蓄電
池の内部インピーダンスを測定する。
FIG. 8 illustrates the relationship between the measurement result at three points and the circle as an example in FIG. That is, two-dimensional coordinates defined by plotting a value obtained by multiplying the real part of the internal impedance of the lead-acid battery by the X-axis and the imaginary part by −1 on the Y-axis in correspondence with the impedance defined by the equation A or the equation B. The internal impedance of the lead-acid battery is measured at a plurality of frequencies at least at three or more points that define the impedance circle in the above.

【0026】測定周波数 本発明では、1〜100Hzの周波数の範囲で選ばれた
任意の3〜5点(多くても6点)の周波数で測定を行
う。
Measurement Frequency In the present invention, measurement is performed at any three to five points (at most six points) selected in a frequency range of 1 to 100 Hz.

【0027】まず、1〜100Hzの周波数の範囲を選
択した理由について述べる。上記した周波数の範囲が、
鉛蓄電池の電解液抵抗値(RΩ),電荷移動抵抗値(R
ct),電気二重層容量値(Cd)を求める上で特に効
果的な周波数の範囲であることによる。すなわち、1H
z以上であれば、測定上かつ装置上、容易に実施できる
し、100Hz以内であるから、商用周波数の2倍程度
の周波数であり、高周波ではないから、測定上かつ装置
構成上から問題はない。
First, the reason why the frequency range of 1 to 100 Hz is selected will be described. The above frequency range is
Electrolyte resistance (RΩ), charge transfer resistance (R
ct), because the frequency range is particularly effective for obtaining the electric double layer capacitance value (Cd). That is, 1H
If it is not less than z, it can be easily implemented on the measurement and on the device, and it is within 100 Hz, which is about twice the commercial frequency, and it is not high frequency, so there is no problem on the measurement and the device configuration. .

【0028】特開平5−135806号公報の方法で
は、0.001〜1Hzでの間の2〜3点の周波数にお
ける鉛蓄電池の内部インピーダンスから、鉛蓄電池の残
存容量を判定している。しかしながら、発明者らの検討
によれば、上記したように、0.001〜1Hzでの測
定データを用いるより、本発明の実施の形態による1〜
100Hzの測定データを用いる方が、鉛蓄電池の残留
静電容量を判定する上で効果的であり、容易であった。
In the method disclosed in Japanese Patent Application Laid-Open No. 5-135806, the remaining capacity of the lead-acid battery is determined from the internal impedance of the lead-acid battery at two or three frequencies between 0.001 and 1 Hz. However, according to the study by the inventors, as described above, rather than using the measurement data at 0.001 to 1 Hz, 1 to 1 according to the embodiment of the present invention is used.
The use of 100 Hz measurement data was more effective and easier in determining the residual capacitance of a lead storage battery.

【0029】次いで、3〜5,6点の周波数で測定を行
う理由について述べる。電解液抵抗値(RΩ),電荷移
動抵抗値(Rct),電気二重層容量値(Cd)を求め
る上でインピーダンス円(図8参照)を規定するには最
低3点の周波数で測定する必要がある。異なる周波数で
の測定は多いほど、電解液抵抗値(RΩ),電荷移動抵
抗値(Rct),電気二重層容量値(Cd)を求める精
度が高くなる。しかしながら、測定数が多くなると、測
定時間がかかるし、可変周波数発振回路が複雑になり、
測定後の演算が長くなる。したがって、実用的には、3
〜5点の周波数、多くても6点の周波数で測定する。
Next, the reason why measurement is performed at three to five or six frequencies will be described. In determining the electrolyte resistance (RΩ), charge transfer resistance (Rct), and electric double layer capacitance (Cd), it is necessary to measure at least three frequencies to define the impedance circle (see FIG. 8). is there. The greater the number of measurements at different frequencies, the higher the accuracy of determining the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd). However, when the number of measurements increases, the measurement time increases, and the variable frequency oscillation circuit becomes complicated,
Calculation after measurement becomes longer. Therefore, in practice, 3
The measurement is performed at frequencies of up to 5 points, at most 6 points.

【0030】次に、電解液抵抗値(RΩ),電荷移動抵
抗値(Rct),電気二重層容量値(Cd)と、鉛蓄電
池の残存容量および/または劣化状態との関係について
考察する。
Next, the relationship between the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), the electric double layer capacity value (Cd), and the remaining capacity and / or deterioration state of the lead storage battery will be considered.

【0031】鉛蓄電池の残存容量および/または劣化状
態との関係について第1の実施の形態 図4は電気二重層容量値(Cd)と鉛蓄電池の残存容量
との関係を例示するグラフである。本発明の検査方法に
おける鉛蓄電池の残存容量の判定においては予め,図4
に図解したように、電気二重層容量値(Cd)と鉛蓄電
池の残存容量の関係式を求めておき、内部インピーダン
スの複数の測定結果から求めた電気二重層容量値(C
d)を、上記関係式に照合することで鉛蓄電池の残存容
量の判定を行うことができる。
[0031] Remaining capacity and / or deterioration state of lead storage battery
First Embodiment FIG. 4 is a graph illustrating the relationship between the electric double layer capacity (Cd) and the remaining capacity of a lead storage battery. In the determination of the remaining capacity of the lead storage battery in the inspection method of the present invention, FIG.
As shown in FIG. 3, a relational expression between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery is obtained in advance, and the electric double layer capacity value (C) obtained from a plurality of measurement results of the internal impedance is obtained.
By comparing d) with the above relational expression, the remaining capacity of the lead storage battery can be determined.

【0032】なお、鉛蓄電池の残存容量は下記のごとく
電気二重層容量値(Cd)との間に直線関係があること
が判った。
It was found that the residual capacity of the lead storage battery had a linear relationship with the electric double layer capacity (Cd) as described below.

【0033】 残存容量(%)=α×Cd+β …(C)Residual capacity (%) = α × Cd + β (C)

【0034】なお、αおよびβは、鉛蓄電池の温度に依
存して変化する。
Note that α and β change depending on the temperature of the lead storage battery.

【0035】鉛蓄電池の残存容量および/または劣化状
態との関係について第2の実施の形態 図5は電荷移動抵抗値(Rct)と鉛蓄電池の残存容量
との関係を例示するグラフである。本発明の検査方法に
おける鉛蓄電池の残存容量の判定においては予め,図5
に図解したように、電荷移動抵抗値(Rct)と鉛蓄電
池の残存容量の関係式を求めておき、内部インピーダン
スの複数の測定結果から求めた電荷移動抵抗値(Rc
t)を上記関係式に照合することで鉛蓄電池の残存容量
の判定を行うことができる。
Remaining capacity and / or deterioration status of lead storage battery
Second Embodiment FIG. 5 is a graph illustrating the relationship between the charge transfer resistance (Rct) and the remaining capacity of a lead storage battery. In the determination of the remaining capacity of the lead storage battery in the inspection method of the present invention, FIG.
As shown in FIG. 2, a relational expression between the charge transfer resistance value (Rct) and the remaining capacity of the lead storage battery is obtained, and the charge transfer resistance value (Rc) obtained from a plurality of measurement results of the internal impedance is obtained.
The remaining capacity of the lead storage battery can be determined by comparing t) with the above relational expression.

【0036】なお、鉛蓄電池の残存容量は下記のごとく
電荷移動抵抗値(Rct)との間に直線関係があること
が判った。
It has been found that the residual capacity of the lead storage battery has a linear relationship with the charge transfer resistance (Rct) as described below.

【0037】 残存容量(%)=γ×Rct+δ …(D)Remaining capacity (%) = γ × Rct + δ (D)

【0038】なお、γおよびδは、鉛蓄電池の温度に依
存して変化する。
Note that γ and δ change depending on the temperature of the lead storage battery.

【0039】鉛蓄電池の残存容量および/または劣化状
態との関係について第3の実施の形態 本発明の鉛蓄電池の評価方法における鉛蓄電池の劣化状
態の判定においてはさらに、予め、電解液抵抗値(R
Ω),電荷移動抵抗値(Rct),電気二重層容量値
(Cd)と、鉛蓄電池の劣化状態の関係式を求めてお
き、内部インピーダンスの測定結果から求めた電解液抵
抗値(RΩ),電荷移動抵抗値(Rct),電気二重層
容量値(Cd)を、上記関係式に照合することで鉛蓄電
池の劣化状態の判定を行うことができる。
Remaining capacity and / or deterioration status of lead storage battery
Third Embodiment Regarding the relationship with the state of the lead-acid battery In the evaluation method of the lead-acid battery according to the present invention, the determination of the deterioration state of the lead-acid battery is further performed in advance by determining the electrolyte resistance (R
Ω), the charge transfer resistance (Rct), the electric double layer capacitance (Cd), and the relationship between the deterioration state of the lead storage battery and the electrolyte resistance (RΩ) obtained from the measurement results of the internal impedance. By comparing the charge transfer resistance value (Rct) and the electric double layer capacitance value (Cd) with the above relational expression, it is possible to determine the deterioration state of the lead storage battery.

【0040】鉛蓄電池の残存容量は、電池の劣化状態並
びに温度に影響を受けることがある。そこで、上記のよ
うに求めた鉛蓄電池の残存容量の値を、電池の劣化状態
並びに温度の値で補正(補間)する必要が生じる場合が
ある。その際、電気二重層容量値(Cd)から求めた鉛
蓄電池の残存容量を、電解液抵抗値(RΩ),電荷移動
抵抗値(Rct)から求めた電池の劣化状態の判定結果
によって補正を行うことができる。
The remaining capacity of a lead-acid battery may be affected by the state of deterioration of the battery and the temperature. Therefore, it may be necessary to correct (interpolate) the value of the remaining capacity of the lead storage battery obtained as described above with the value of the battery deterioration state and the temperature. At this time, the remaining capacity of the lead storage battery determined from the electric double layer capacity value (Cd) is corrected based on the determination result of the battery deterioration state determined from the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rct). be able to.

【0041】残存容量に対する温度の影響 予め、鉛蓄電池の温度と、電解液抵抗値(RΩ),電荷
移動抵抗値(Rct)の関係を求めておき、電解液抵抗
値(RΩ),電荷移動抵抗値(Rct)の測定結果をそ
の関係と照合することで、鉛蓄電池の温度を求めること
が可能であるので、電解液抵抗値(RΩ),電荷移動抵
抗値(Rct)から求めた鉛蓄電池の温度によって、残
存容量に対する温度の影響を補正することも可能であ
る。
Effect of Temperature on Remaining Capacity The relationship between the temperature of the lead storage battery and the electrolyte resistance (RΩ) and charge transfer resistance (Rct) is determined in advance, and the electrolyte resistance (RΩ) and charge transfer resistance are determined. By comparing the measurement result of the value (Rct) with the relationship, the temperature of the lead-acid battery can be obtained. Therefore, the lead-acid battery of the lead-acid battery obtained from the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rct) can be obtained. The influence of the temperature on the remaining capacity can be corrected by the temperature.

【0042】上記した鉛蓄電池の残存容量、劣化状態の
判定にあたっては、温度を本発明の方法とは別に測定
し、その測定値を用いて、残存容量、劣化状態に対する
温度の影響を補正することも可能である。
In determining the state of charge and deterioration of the lead storage battery, the temperature is measured separately from the method of the present invention, and the measured value is used to correct the influence of temperature on the state of charge and deterioration. Is also possible.

【0043】電解液抵抗値(RΩ),電荷移動抵抗値
(Rct),電気二重層容量値(Cd)の算出方法 図1および図2の等価回路から導出される、電解液抵抗
値(RΩ),電荷移動抵抗値(Rct),電気二重層容
量値(Cd)と、鉛蓄電池の内部インピーダンスの関係
式に、上記複数の周波数において実測した複数の内部イ
ンピーダンスの値を参照することで、電解液抵抗値(R
Ω),電荷移動抵抗値(Rct),電気二重層容量値
(Cd)を求めるための具体的方法例としては、統計的
な手法、たとえば、最小二乗法により最適解を求める方
法が好ましい。
Electrolyte resistance (RΩ), charge transfer resistance
(Rct), Method of Calculating Electric Double Layer Capacitance (Cd) Electrolyte resistance (RΩ), charge transfer resistance (Rct), electric double layer capacitance (derived from the equivalent circuits of FIGS. 1 and 2) By referring to a plurality of values of the internal impedance actually measured at the above-mentioned plurality of frequencies in the relational expression between Cd) and the internal impedance of the lead storage battery, the electrolyte resistance value (R
Ω), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) are preferably a statistical method, for example, a method of obtaining an optimal solution by a least square method.

【0044】しかしながら、車両に搭載した鉛蓄電池の
特性評価に際しては、より簡便に最適解を求めることが
望ましい。最小二乗法より簡便な方法として、以下に示
す方法を挙げることができる。
However, when evaluating the characteristics of a lead storage battery mounted on a vehicle, it is desirable to find the optimum solution more easily. As a simpler method than the least square method, the following method can be mentioned.

【0045】第1の方法M 上述した1〜100Hzのうち、5〜100Hzの周波
数の範囲で選ばれた任意の3〜4点の第1の周波数(F
a)と、1〜5Hzの周波数の範囲で選ばれた任意の1
点の第2の周波数(Fb)で、鉛蓄電池の内部インピー
ダンスの測定を複数回行い、その測定値から電解液抵抗
値(RΩ),電荷移動抵抗値(Rct),電気二重層容
量値(Cd)を求める。
First Method M Among the above-mentioned 1 to 100 Hz, the first frequency (F) at any three to four points selected in the frequency range of 5 to 100 Hz.
a) and any one selected in the frequency range of 1 to 5 Hz.
At the second frequency (Fb) at the point, the internal impedance of the lead-acid battery is measured a plurality of times, and from the measured values, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) ).

【0046】第1の方法Mでは、第1の周波数(Fa)
で測定された3〜4点の内部インピーダンスについて、
図6に図解したように、内部インピーダンスの実数部を
X軸に、内部インピーダンスの虚数部の値に−1を乗じ
た値をY軸にプロット(cole cole plo
t)した3〜4点を通過する円の軌道を求め、軌道のX
軸切片Xa,Xb(Xa<Xb)を求め、Xaを電解液
抵抗値(RΩ)とし、Xb−Xaを電荷移動抵抗値(R
ct)とし、(Xa+Xb)×0.5をXm とし、さら
に、内部インピーダンスの実数部をY軸に、周波数をX
軸とした座標Cmに、第1の周波数Faの内の最も低い
周波数Fa’と第2の周波数Fbでの測定値をプロット
し、両プロット点を結んだ直線上の、上記したXm に相
当する周波数をωm とし、電気二重層容量値Cdを(R
ct×ωm -1とする。
In the first method M, the first frequency (Fa)
About the internal impedance of 3-4 points measured by
As illustrated in FIG. 6, the real part of the internal impedance is plotted on the X-axis, and the value obtained by multiplying the value of the imaginary part of the internal impedance by −1 is plotted on the Y-axis (cole colle plot).
t) Obtain the trajectory of the circle passing through the three or four points and calculate the trajectory X
The shaft intercepts Xa and Xb (Xa <Xb) are obtained, Xa is defined as the electrolyte resistance value (RΩ), and Xb−Xa is defined as the charge transfer resistance value (R).
and ct), (a Xa + Xb) × 0.5 and X m, further, the real part of the internal impedance in the Y-axis, the frequency X
The coordinates C m which is the axis, plotted lowest frequency Fa 'and the measured value of the second frequency Fb of the first frequency Fa, a straight line of which connecting the two plotted points, the X m described above the corresponding frequency is omega m, the electric double layer capacitance Cd (R
ct × ω m ) −1 .

【0047】図1および図2に示した等価回路から導出
される、電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)と内部インピーダンス
の関係式のように、求めるべきパラメータが5点以下で
あっても、上記した関係式のパラメータを数学的に厳密
に解くことは、演算が煩雑になり、演算装置の規模が増
大し、価格が高騰することにつながる。そこで、本発明
のように、簡単な演算で電解液抵抗値(RΩ),電荷移
動抵抗値(Rct),電気二重層容量値(Cd)を求め
ることの実用的価値は極めて高い。
Electrolyte resistance (RΩ) and charge transfer resistance (Rc) derived from the equivalent circuits shown in FIGS.
t), even when the number of parameters to be obtained is five or less, as in the relational expression between the electric double layer capacitance value (Cd) and the internal impedance, mathematically and strictly solving the parameters of the above relational expression requires an operation. Is complicated, the scale of the arithmetic unit is increased, and the price is increased. Therefore, the practical value of obtaining the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) by simple calculations as in the present invention is extremely high.

【0048】上述した簡便な第1の方法Mを行う場合に
あっては、測定する周波数を、5〜10Hzの周波数の
範囲で選ばれた任意の3〜4点の第1の周波数Faと、
1〜5Hzの周波数の範囲で選ばれた任意の1点の第2
の周波数Fbとすることが特に好ましい。その理由は、
上記したcole cole plotにおける円の軌
跡を求める上で、5〜100Hzの周波数の範囲の測定
値を用いることが好ましいためである。また、円の軌跡
を求めるために、測定点は3点以上であることが必要で
ある。円の軌跡を求める上で、さらに好ましくは、第1
の測定周波数Faの周波数が5〜10Hzの中の1点、
10〜30Hzの中の1点、50〜100Hzの中の1
点となることが挙げられる。
In the case where the above-mentioned simple first method M is performed, the frequency to be measured is set to the first frequency Fa at any three to four points selected in the frequency range of 5 to 10 Hz,
The second of any one point selected in the frequency range of 1 to 5 Hz
It is particularly preferable to set the frequency to Fb. The reason is,
This is because it is preferable to use a measured value in a frequency range of 5 to 100 Hz in obtaining the trajectory of the circle in the above-mentioned cole cole plot. Further, in order to obtain the locus of a circle, it is necessary that the number of measurement points is three or more. In obtaining the trajectory of the circle, more preferably, the first
One point of the measurement frequency Fa of 5 to 10 Hz,
1 point in 10-30 Hz, 1 point in 50-100 Hz
This is a point.

【0049】本願発明者は、座標Cm において、内部イ
ンピーダンスの実部と周波数に直線関係が得られる周波
数の範囲は、およそ1〜10Hzの範囲であることを見
いだした。そこで、第1の周波数Fbの範囲は、およそ
1〜5Hzであることが好ましく、さらに、第1の周波
数Faの内、最も低い周波数Fa’は、5〜10Hzの
中の1点が選ばれることが好ましい。
The present inventors, in the coordinates C m, a linear relationship to the real part and the frequency of the internal impedance in the range of frequency obtained was found to be approximately in the range of 1 to 10 Hz. Therefore, the range of the first frequency Fb is preferably about 1 to 5 Hz, and the lowest frequency Fa ′ among the first frequencies Fa is selected from one point of 5 to 10 Hz. Is preferred.

【0050】特開平4−141966号公報の方法で
は、内部インピーダンスの値が特定の条件を満たすよう
な周波数を探し出す必要があり、そのため、周波数を変
化させた測定を可能とする装置が必要となり、特定の条
件を満たすことの判定を行う装置が必要になる。そのた
め、測定装置が複雑になり、価格も高くなるという問題
点があった。これに対して、本発明の方法では、測定す
る周波数を予め決めておくことが可能であるので、上記
した問題点がなく、実用上好ましい。
In the method disclosed in Japanese Patent Application Laid-Open No. 4-141966, it is necessary to search for a frequency at which the value of the internal impedance satisfies a specific condition. Therefore, a device capable of performing measurement with changing the frequency is required. A device for determining whether a specific condition is satisfied is required. Therefore, there has been a problem that the measuring device is complicated and the price is high. On the other hand, in the method of the present invention, since the frequency to be measured can be determined in advance, the above-mentioned problem is not caused, and it is practically preferable.

【0051】また本発明の上述した実施の形態の方法
は、本発明の実施の形態の方法による鉛蓄電池の特性評
価(検査)を、適切な時間間隔をもって行い、前回まで
の検査で求められた電解液抵抗値(RΩ),電荷移動抵
抗値(Rct),電気二重層容量値(Cd)の値のうち
少なくとも一つ以上の値を、当回の検査で求めた電解液
抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重
層容量値(Cd)の値のうち少なくとも一つ以上の値と
比較し、その比較結果を、鉛蓄電池の残存容量と劣化状
態の判定の補正に用いるという方法を併用することが可
能である。
In the method of the above-described embodiment of the present invention, the characteristic evaluation (inspection) of the lead storage battery according to the method of the embodiment of the present invention is performed at an appropriate time interval, and is obtained by the previous inspection. At least one of the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) is determined as the electrolyte resistance value (RΩ) obtained in the current inspection. , The charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) are compared with at least one of the values, and the comparison result is used to correct the determination of the remaining capacity and the deterioration state of the lead storage battery. Can be used together.

【0052】上記した方法を併用することにより、鉛蓄
電池の残存容量と劣化状態の判定の精度を向上させるこ
と、および/または、判定のための演算をより簡便にす
ることが可能である。
By using the above method together, it is possible to improve the accuracy of the determination of the state of charge and the state of deterioration of the lead storage battery and / or to simplify the calculation for the determination.

【0053】自動車などの車両に搭載された鉛蓄電池の
判定にあたっては、数秒から数十秒までの適切な時間間
隔で検査を繰り返すことにより、温度などの周囲環境の
影響を、簡単に補正できるので、特に有効である。
In determining the lead storage battery mounted on a vehicle such as an automobile, the influence of the surrounding environment such as temperature can be easily corrected by repeating the inspection at appropriate time intervals from several seconds to several tens of seconds. Especially effective.

【0054】また、本発明の鉛蓄電池の評価方法を自動
車などの車両に搭載された鉛蓄電池に対して用いる場
合、運転者がエンジンを始動させる直前に本発明の検査
方法を実施し、その検査結果をその検査以降の検査にお
ける判定の補正に用いることがさらに効果的である。そ
の理由は、運転者が車両のエンジンを始動させる前の環
境は、稼働している自動車の装置、機器が少ないため、
それらの影響を受けず、本発明の検査の環境が良好なた
めである。
When the method for evaluating a lead storage battery of the present invention is used for a lead storage battery mounted on a vehicle such as an automobile, the inspection method of the present invention is implemented immediately before the driver starts the engine, and the inspection is performed. It is more effective to use the result to correct the judgment in the tests after the test. The reason is that the environment before the driver starts the engine of the vehicle is because there are few devices and equipment of the running car,
This is because the environment of the inspection of the present invention is favorable without being affected by those.

【0055】また、本発明の鉛蓄電池の評価方法を、自
動車に搭載された鉛蓄電池に対して用いる場合、自動車
のエンジンの停止中に行うことが効果的である。その理
由は、エンジンが停止中で、オルタネータが停止してい
る状況では、本発明の方法で測定が必要な周波数の範囲
に、大きなノイズが発生する可能性が低いからである。
When the method for evaluating a lead storage battery of the present invention is used for a lead storage battery mounted on a vehicle, it is effective to perform the method while the engine of the vehicle is stopped. The reason is that in a situation where the engine is stopped and the alternator is stopped, it is unlikely that large noise will occur in the frequency range that needs to be measured by the method of the present invention.

【0056】本発明の鉛蓄電池の評価方法を、自動車が
停止した際のアイドリングストップの可否の判定に用い
る場合には、上記した理由により、エンジンが停止した
直後に、本発明の検査方法を実施することが好ましい。
When the method for evaluating a lead storage battery according to the present invention is used for determining whether or not to stop idling when a vehicle stops, the inspection method of the present invention is implemented immediately after the engine stops for the above-described reason. Is preferred.

【0057】[0057]

【実施例】上述した本発明の鉛蓄電池の評価方法の実施
の形態についての具体的な実施例(実験例)を、添付図
面を参照して述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example (experimental example) of an embodiment of the above-described method for evaluating a lead storage battery of the present invention will be described with reference to the accompanying drawings.

【0058】本発明の実施例において、電解液抵抗値
(RΩ),電荷移動抵抗値(Rct),電気二重層容量
値(Cd)によって構成される等価回路は、図1および
図2に示したものである。
In the embodiment of the present invention, an equivalent circuit composed of the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) is shown in FIGS. Things.

【0059】図4は、あらかじめ、75Ahの鉛蓄電池
の残存容量を調整して、鉛蓄電池の残存容量と電気二重
層容量値(Cd)との関係を求めた結果を例示したグラ
フである。電気二重層容量値(Cd)は、鉛蓄電池の内
部インピーダンスの測定結果から後述する演算式から計
算した。鉛蓄電池の残存容量と電気二重層容量値(C
d)の関係は、温度依存性はあるが、ほぼ線形性(直線
性)を示しており、電気二重層容量値(Cd)が判れば
鉛蓄電池の残存容量を推定することが可能である。劣化
がない正常な鉛蓄電池の残存容量は、下記式(1)で規
定される。
FIG. 4 is a graph exemplifying a result obtained by adjusting the remaining capacity of the lead-acid battery of 75 Ah in advance and determining the relationship between the remaining capacity of the lead-acid battery and the electric double layer capacity value (Cd). The electric double layer capacity value (Cd) was calculated from a measurement result of the internal impedance of the lead storage battery by an arithmetic expression described later. Residual capacity and electric double layer capacity value (C
The relationship d) shows temperature dependence, but shows almost linearity (linearity). If the electric double layer capacity value (Cd) is known, the remaining capacity of the lead storage battery can be estimated. The remaining capacity of a normal lead storage battery without deterioration is defined by the following equation (1).

【0060】[0060]

【数2】 残存容量(%)=0.181×Cd+0.064 …(1)## EQU2 ## Remaining capacity (%) = 0.181 × Cd + 0.064 (1)

【0061】鉛蓄電池の測定条件および測定結果 (1)100%充電状態の鉛蓄電池に、(a)15Aの
電流で1時間放電させた後、または、(b)30Aの電
流で10分間放電させた後、鉛蓄電池の残存容量を判定
した。 (2)電池の周囲温度を20°Cに設定しておいた。 (3)測定した内部インピーダンスを求めて計算した結
果、電気二重層容量値(Cd)は3.6〔F〕となっ
た。 (4)式(1)により残存容量を判定した結果、72%
となった。実際の残存容量は73%であることから、本
発明の鉛蓄電池の評価方法によりかなり精確に残量判定
が可能であることが分かった。
Measurement Conditions and Results of Lead-Acid Batteries (1) A 100% -charged lead-acid battery was discharged for 1 hour at a current of 15A or (b) discharged for 10 minutes at a current of 30A. After that, the remaining capacity of the lead storage battery was determined. (2) The ambient temperature of the battery was set at 20 ° C. (3) As a result of obtaining and calculating the measured internal impedance, the electric double layer capacitance value (Cd) was 3.6 [F]. (4) As a result of determining the remaining capacity by equation (1), 72%
It became. Since the actual remaining capacity is 73%, it has been found that the remaining amount can be determined fairly accurately by the lead storage battery evaluation method of the present invention.

【0062】以上のように、あらかじめ電気二重層容量
値(Cd)と鉛蓄電池の残存容量の関係を求めておき、
内部インピーダンスの測定結果から求めた電気二重層容
量値(Cd)の値を、上記関係に照合することで、鉛蓄
電池の残存容量を判定することが可能である。
As described above, the relationship between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery is determined in advance,
The remaining capacity of the lead storage battery can be determined by comparing the value of the electric double layer capacity value (Cd) obtained from the measurement result of the internal impedance with the above relationship.

【0063】また、式(1)は、周囲温度が20°Cの
ものであるが、図3に図解したように、鉛蓄電池の温度
を20°C、40°C、60°Cと変化させた場合に
は、特性がシフトする傾向があり、鉛蓄電池の温度が分
かれば残存容量を補間して算出することが可能である。
従って、ある温度について特性を調べておき、任意の温
度について鉛蓄電池に取り付けた温度センサー等によっ
て検知し、その温度に応じて予め求めた特性(残存容量
値)をシフトして(補間して)、その温度における特性
(残存容量値)を算出することができる。
In the equation (1), the ambient temperature is 20 ° C., but as shown in FIG. 3, the temperature of the lead storage battery is changed to 20 ° C., 40 ° C., and 60 ° C. In such a case, the characteristics tend to shift, and if the temperature of the lead storage battery is known, the remaining capacity can be calculated by interpolation.
Therefore, the characteristics are checked at a certain temperature, the temperature is detected by a temperature sensor or the like attached to the lead storage battery at an arbitrary temperature, and the characteristics (remaining capacity value) obtained in advance are shifted (interpolated) according to the temperature. , The characteristic (remaining capacity value) at that temperature can be calculated.

【0064】鉛蓄電池が劣化した場合には、正常な鉛蓄
電池に対して残存容量が減少するものの、その特性は正
常な鉛蓄電池と同様に線形性が見られることから、劣化
の程度が分かれば残存容量を補正することが可能であ
る。
When the lead storage battery is deteriorated, although the remaining capacity is reduced with respect to the normal lead storage battery, its characteristics show linearity similarly to the normal lead storage battery. It is possible to correct the remaining capacity.

【0065】判定の際の電池の劣化状態による補正と電
池の温度のよる補正は、内部インピーダンスの測定結果
から求めた電解液抵抗値(RΩ)を用いて行うこともで
きる。
The correction based on the state of deterioration of the battery and the correction based on the temperature of the battery at the time of the determination can also be performed using the electrolyte resistance value (RΩ) obtained from the measurement result of the internal impedance.

【0066】図6は正常な鉛蓄電池および劣化した鉛蓄
電池の温度による電解液抵抗値(RΩ)と鉛蓄電池の残
存容量(SOC)の関係を示すグラフである。電解液抵
抗値(RΩ)は残存容量(SOC)によっては変化せ
ず、温度および劣化度合いにより変化する。従って、内
部インピーダンスの測定結果から求めた電解液抵抗値
(RΩ)を用いて残存容量を補正することが可能であ
る。
FIG. 6 is a graph showing the relationship between the electrolyte resistance (RΩ) and the remaining capacity (SOC) of a normal lead storage battery and a deteriorated lead storage battery depending on the temperature. The electrolyte resistance value (RΩ) does not change depending on the remaining capacity (SOC), but changes depending on the temperature and the degree of deterioration. Therefore, the remaining capacity can be corrected using the electrolyte resistance value (RΩ) obtained from the measurement result of the internal impedance.

【0067】電荷移動抵抗値(Rct)と鉛蓄電池の残
存容量との関係 なお、図5に図解した電荷移動抵抗値(Rct)と鉛蓄
電池の残存容量との関係からも、上述した電気二重層容
量値(Cd)と鉛蓄電池の残存容量との関係との関係か
ら鉛蓄電池の残存容量を求めたように、鉛蓄電池の残存
容量を求めることができた。
The charge transfer resistance (Rct) and the remaining amount of the lead-acid battery
The relationship between the charge transfer resistance (Rct) illustrated in FIG. 5 and the remaining capacity of the lead-acid battery also indicates the relationship between the electric double-layer capacity (Cd) and the remaining capacity of the lead-acid battery. Thus, the remaining capacity of the lead-acid battery could be determined in the same manner as the remaining capacity of the lead-acid battery was determined from the relationship.

【0068】電解液抵抗値(RΩ),電荷移動抵抗値
(Rct),電気二重層容量値(Cd)の算出方法 次に、自動車用鉛蓄電池の残存容量を測定する際の電解
液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二
重層容量値(Cd)の導出方法についての具体例を述べ
る。内部インピーダンスの測定周波数は、100Hz、
20Hz、6Hz、2Hzの4点とし、この4点の内部
インピーダンスの測定結果から電解液抵抗値(RΩ),
電荷移動抵抗値(Rct),電気二重層容量値(Cd)
を演算した。この4点の周波数を選んだ理由は下記によ
る。
Electrolyte resistance (RΩ), charge transfer resistance
(Rct), Calculation method of electric double layer capacity value (Cd) Next, electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer capacity when measuring the remaining capacity of a lead storage battery for an automobile A specific example of a method for deriving the value (Cd) will be described. The measurement frequency of the internal impedance is 100 Hz,
The four points of 20 Hz, 6 Hz and 2 Hz were used. From the measurement results of the internal impedance at these four points, the electrolyte resistance (RΩ),
Charge transfer resistance (Rct), electric double layer capacitance (Cd)
Was calculated. The reasons for choosing these four frequencies are as follows.

【0069】図7に図解したように、周波数を変化させ
て内部インピーダンスを測定し、内部インピーダンスの
実部をX軸に、虚部に−1を乗じたY軸をプロットした
(cole cole plot)。図7に図解したよ
うに、特性は、円弧の特性を示す部分と直線状のような
特性の2つの部分で示すことができる。ここで、円弧の
特性は、図1に示す等価回路によって表すことが可能で
あるため、円弧の軌道を把握することにより、電解液抵
抗値(RΩ),電荷移動抵抗値(Rct),電気二重層
容量値(Cd)を導出することが可能である。
As illustrated in FIG. 7, the internal impedance was measured while changing the frequency, and the real part of the internal impedance was plotted on the X-axis and the imaginary part was multiplied by −1 (cole colle plot). . As illustrated in FIG. 7, the characteristic can be represented by two parts, a part indicating a characteristic of an arc and a characteristic like a straight line. Here, since the characteristics of the arc can be represented by the equivalent circuit shown in FIG. 1, by grasping the trajectory of the arc, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric It is possible to derive the multilayer capacitance value (Cd).

【0070】例えば、3点を通過する円の軌道は一義的
に決定されるため、非常に簡単に円の式を求めることが
できる。従って、3つの周波数100Hz、20Hz、
6Hzにより円の軌跡を把握した。図7に示すように2
Hz付近のプロットは、円の軌跡から外れており、円の
式を精度良く求めるためには、測定する周波数を5〜1
00Hzの周波数の範囲とするのが好ましい。
For example, since the trajectory of a circle passing through three points is uniquely determined, the equation of the circle can be obtained very easily. Therefore, three frequencies 100 Hz, 20 Hz,
The locus of the circle was grasped by 6 Hz. As shown in FIG.
The plot around Hz deviates from the locus of the circle, and the frequency to be measured must be 5 to 1 in order to obtain the equation of the circle with high accuracy.
The frequency is preferably in the range of 00 Hz.

【0071】測定周波数の数としては、円の式を求める
上で、最低限3点の測定点が必要であり、測定点が増加
することに伴う実用的価値の低下を考慮して、最大で
も、5〜6点、できれば、3〜4点以下が望ましい。さ
らには、円の軌跡を求めるプロットが円周上に等間隔に
なっている場合が最も精度がよいため、第1の測定周波
数Faの周波数は、5〜10Hzの中の1点、10〜3
0Hzの中の1点、50〜100Hzの中の1点を使用
することが最も望ましい。
As for the number of measurement frequencies, a minimum of three measurement points are required for obtaining the equation of the circle, and at the maximum, considering the decrease in practical value due to the increase in the number of measurement points, , 5-6 points, preferably 3-4 points or less. Further, since the accuracy is highest when the plots for obtaining the trajectory of the circle are equally spaced on the circumference, the frequency of the first measurement frequency Fa is one of 5 to 10 Hz, 10 to 3 Hz.
It is most desirable to use one point out of 0 Hz and one point out of 50-100 Hz.

【0072】図7は、後述する方法により求めた円の式
から計算した円弧(破線)を示している。円軌道のX軸
切片をXa,Xb(Xa<Xb)とすると、Xaが電解
液抵抗値(RΩ)に対応し、(Xb−Xa)が電荷移動
抵抗値(Rct)に対応する。3点を通過する円の式に
おいて、虚部を0とすることによりXaとXb(Xa<
Xb)を求められ、Xaが電解液抵抗値(RΩ)、(X
b−Xa)が電荷移動抵抗値(Rct)として計算され
る。
FIG. 7 shows an arc (broken line) calculated from a circle formula obtained by a method described later. Assuming that the X-axis intercept of the circular orbit is Xa, Xb (Xa <Xb), Xa corresponds to the electrolyte resistance value (RΩ), and (Xb−Xa) corresponds to the charge transfer resistance value (Rct). In the equation of a circle passing through three points, Xa and Xb (Xa <
Xb) is determined, and Xa is the electrolyte resistance value (RΩ), (X
b−Xa) is calculated as the charge transfer resistance value (Rct).

【0073】ここで、(Xa+Xb)×0.5をXm
して求めておく。Xm は、円の中心座標を示すインピー
ダンスの実部である。円の頂点を示す周波数をfmax
すると、電気二重層容量値(Cd)は、(Rct×2π
×fmax -1で計算される。しかし、測定した周波数が
必ずしも円周上の頂点とはならないため、近似的に次の
ような特性から円の頂点を示す周波数を求める。
[0073] Here, previously obtained the (Xa + Xb) × 0.5 as X m. Xm is the real part of the impedance indicating the center coordinates of the circle. If the frequency indicating the top of the circle is f max , the electric double layer capacitance value (Cd) is (Rct × 2π
× f max ) −1 . However, since the measured frequency is not always the vertex on the circumference, the frequency indicating the vertex of the circle is obtained approximately from the following characteristics.

【0074】周波数を変化させて内部インピーダンスを
測定し、周波数をX軸、内部インピーダンスの実部をY
軸として、プロットした結果を図8に示す。内部インピ
ーダンスの実部と周波数に直接関係が得られる周波数の
範囲は、およそ1〜10Hzの範囲であることが判る。
図8中には、6Hzと2Hzの2点の周波数で求めた結
果もプロットしている。2点間を結ぶ直線の式を求める
ことにより、この直線の式にXm を代入して、円の頂点
を近似的に示す周波数fm が求められる。電気二重層容
量値(Cd)は、(Rct×2π×fm -1で計算され
る。
The internal impedance is measured by changing the frequency, the frequency is represented on the X axis, and the real part of the internal impedance is represented by Y.
FIG. 8 shows the plotted results as axes. It can be seen that the frequency range in which a direct relationship is obtained between the real part of the internal impedance and the frequency is in the range of about 1 to 10 Hz.
FIG. 8 also plots results obtained at two frequencies of 6 Hz and 2 Hz. By obtaining a formula of a straight line connecting two points, X m is substituted into the formula of the straight line, and a frequency f m approximately indicating a vertex of a circle is obtained. Electric double layer capacitance (Cd) is calculated by (Rct × 2π × f m) -1.

【0075】周波数fm は、ほとんどの場合4〜5Hz
になるため、上記した方法を行う場合は、1〜5Hzの
周波数の範囲で選ばれた任意の1点の周波数と、5〜1
0Hzの中の1点から選ばれた周波数で測定することが
好ましく、特に、円の軌跡を把握するために測定する周
波数3〜4点の内、最も小さい周波数を使用するとより
効率的である。
[0075] frequency f m is, in most cases 4~5Hz
Therefore, when the above method is performed, the frequency at any one point selected in the frequency range of 1 to 5 Hz and the frequency of 5 to 1
It is preferable to measure at a frequency selected from one point out of 0 Hz. In particular, it is more efficient to use the smallest frequency among three or four frequencies measured to grasp the locus of a circle.

【0076】3点の周波数で測定した場合の電解液抵抗
値(RΩ),電荷移動抵抗値(Rct),電気二重層容
量値(Cd)を求める演算式について述べる。4点の周
波数で測定した場合は、任意の組合せの3点で電解液抵
抗値(RΩ),電荷移動抵抗値(Rct),電気二重層
容量値(Cd)を求め、それぞれの組合せで求めた判定
結果の平均をとることができる。また、測定の安全サイ
ドからそれぞれの組み合わせて求めた判定結果の最小値
を使用しても良い。いずれにしても、4点の周波数で測
定した場合についても、3点で測定した場合と同様の計
算を行う。まず、3点の周波数で測定した内部インピー
ダンスの測定結果から、任意の円の方程式を計算する。
An arithmetic expression for calculating the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) when measured at three frequencies will be described. When measured at four frequencies, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) were determined at three points in any combination, and were determined for each combination. The average of the judgment results can be taken. Alternatively, the minimum value of the determination results obtained by combining each of them from the safety side of the measurement may be used. In any case, the same calculation is performed for the case where measurement is performed at four frequencies, as in the case where measurement is performed at three points. First, an equation of an arbitrary circle is calculated from the measurement results of the internal impedance measured at three frequencies.

【0077】図9は3点の周波数f1 ,f2 ,f3 で測
定した内部インピーダンスをプロットした座標を示すグ
ラフである。下記のような3つの式が得られ、未知数が
3つで、式が3つあることから、円の軌跡を定める係数
a,b,rを求めることができる。
FIG. 9 is a graph showing coordinates plotting internal impedances measured at three points of frequencies f 1 , f 2 and f 3 . The following three equations are obtained, and there are three unknowns and three equations. Therefore, coefficients a, b, and r that determine the trajectory of the circle can be obtained.

【0078】[0078]

【数3】 f1 で測定: (X1 −a)2 +(Y1 −b)2 =r2 …(2) f2 で測定: (X2 −a)2 +(Y2 −b)2 =r2 …(3) f3 で測定: (X3 −a)2 +(Y3 −b)2 =r2 …(4)[Number 3] measured in f 1: (X 1 -a) 2 + (Y 1 -b) 2 = measured by r 2 ... (2) f 2 : (X 2 -a) 2 + (Y 2 -b) 2 = measured by r 2 ... (3) f 3 : (X 3 -a) 2 + (Y 3 -b) 2 = r 2 ... (4)

【0079】上記3つの式(2)〜(4)を解いた結
果、係数a,b,rはそれぞれ下記のようになる。
As a result of solving the above three equations (2) to (4), the coefficients a, b, and r are as follows.

【0080】[0080]

【数4】 (Equation 4)

【0081】ここで、係数(因子)A〜Fはそれぞれ下
記で表される。
Here, the coefficients (factors) A to F are expressed as follows.

【0082】[0082]

【数5】 A=X1 −X2 …(8) B=X2 −X3 …(9) C=Y1 −Y2 …(10) D=Y2 −Y3 …(11) E=X1 2 −X2 2 +Y1 2 −Y2 2 …(12) F=X2 2 −X3 2 +Y2 2 −Y3 2 …(13)A = X 1 −X 2 (8) B = X 2 −X 3 (9) C = Y 1 −Y 2 (10) D = Y 2 −Y 3 (11) E = X 1 2 -X 2 2 + Y 1 2 -Y 2 2 ... (12) F = X 2 2 -X 3 2 + Y 2 2 -Y 3 2 ... (13)

【0083】図9において、RCTは実軸上の円の弦であ
ることから、円の式からY=0となる2点のXを求め、
この2点間の距離からRCTを計算する。
In FIG. 9, since R CT is the chord of a circle on the real axis, X at two points where Y = 0 is obtained from the equation of the circle.
RCT is calculated from the distance between these two points.

【0084】[0084]

【数6】 (X−a)2 =r2 …(14) X=a±r …(15) RCT =2・r …(16) RΩ =a−r …(17)(X−a) 2 = r 2 (14) X = a ± r (15) R CT = 2 · r (16) RΩ = ar (17)

【0085】図10は4点目の周波数で測定した内部イ
ンピーダンスをプロットした座標を示すグラフである。
円の頂点を示す周波数fm については、fm を挟む周波
数範囲における内部インピーダンスの実数部と周波数の
関係は、図8に示すように、ある範囲について、ほぼ線
形性があることから、直線近似により求めることができ
る。第1の周波数f1 で測定した時の実数成分をX1
第4の周波数f4 で測定したときの実数成分をX4 とす
ると、fm は下式で表される。ここで、f1 >fm>f
4 である。
FIG. 10 is a graph showing coordinates plotting the internal impedance measured at the fourth frequency.
The frequency f m which indicate the vertices of the circle, the real and the relationship of the frequency of the internal impedance in the frequency range sandwiching the f m, as shown in FIG. 8, for a range, since there is almost linearity, linear approximation Can be obtained by The real component measured at the first frequency f 1 is X 1 ,
Assuming that a real component measured at the fourth frequency f 4 is X 4 , f m is represented by the following equation. Where f 1 > f m > f
4

【0086】[0086]

【数7】 (Equation 7)

【0087】よって、電気二重層容量値(Cd)は次式
で表される。
Therefore, the electric double layer capacitance value (Cd) is expressed by the following equation.

【0088】[0088]

【数8】 (Equation 8)

【0089】自動車に搭載された鉛蓄電池の判定にあっ
ては、数秒から数十秒までの適切な間隔で検査を繰り返
すことにより、温度などの周囲環境の影響を簡単に補正
できるので、本発明の鉛蓄電池の評価方法は特に有効で
ある。
In the determination of a lead storage battery mounted on an automobile, the influence of the surrounding environment such as temperature can be easily corrected by repeating the inspection at appropriate intervals from several seconds to several tens of seconds. Is particularly effective.

【0090】残存容量判定はアイドリングストップ時に
1分経過毎に測定し、過去の判定結果を参照する場合
と、単独で判定した場合を比較した例を下記表1に示
す。
Table 1 below shows an example in which the remaining capacity is measured every minute when idling is stopped, and a comparison is made between a case where the past judgment result is referred to and a case where the judgment is made independently.

【0091】[0091]

【表1】 表1 残存容量の判定方法の比較 残存容量判定:単独 残存容量判定:過去参照 アイドルストップ直後 95% 95% 1分経過後 93% 94% 2分経過後 91% 93% 3分経過後 92% 92.8% 4分経過後 93% 92.8% 5分経過後 94% 93% [Table 1] Table 1 Comparison of remaining capacity determination methods Remaining capacity determination: Single Remaining capacity determination: Refer to the past 95% 95% Immediately after 1 minute 93% 94% After 2 minutes 91% 93% 3 minutes After 92% 92.8% After 4 minutes 93% 92.8% After 5 minutes 94% 93%

【0092】過去の判定結果の参照方法は、同じアイド
ルストップ期間中の残存容量判定において、1分経過毎
に測定した判定結果を順次用いて平均値を使用した。単
独の場合の残存容量は、アイドルストップ直後から2分
経過まで低下し、3分経過後の判定では逆に増加傾向を
示している。対して、過去参照の残存容量は、3分経過
後までは低下し、それ以降はほぼ一定値を示している。
アイドルストップ期間中においては、蓄電池からの放電
が小さくなることはあっても、蓄電池が充電されること
はない。残存容量が上昇する要因は、主に温度などの周
囲環境の影響が大きい。従って、単独で容量判定を行う
場合より、過去の判定結果を参照して判定した場合の方
が、温度などの周囲環境の影響を簡単に補正できるので
特に有効である。
As a method of referring to the past judgment results, an average value was used in the remaining capacity judgment during the same idle stop period by sequentially using the judgment results measured every minute. The remaining capacity in the case of the single case decreases until immediately after the lapse of 2 minutes from immediately after the idle stop, and the determination after the lapse of 3 minutes shows an increasing tendency. On the other hand, the remaining capacity of the past reference decreases until three minutes have elapsed, and has shown a substantially constant value thereafter.
During the idle stop period, although the discharge from the storage battery may be small, the storage battery is not charged. The cause of the increase in the remaining capacity is largely affected by the surrounding environment such as temperature. Therefore, the case where the determination is made with reference to the past determination result is more effective than the case where the capacity determination is performed alone because the influence of the surrounding environment such as the temperature can be easily corrected.

【0093】鉛蓄電池の評価装置 本発明の鉛蓄電池の特性評価装置は、上述した鉛蓄電池
の評価方法を実施する装置である。その鉛蓄電池の評価
装置の構成を図11に例示する。鉛蓄電池の評価装置1
0は、複数の周波数において鉛蓄電池の内部インピーダ
ンスを測定する測定手段12と、電解液抵抗値(R
Ω),電荷移動抵抗値(Rct),電気二重層容量値
(Cd)を算出する算出手段14と、算出した電解液抵
抗値(RΩ),電荷移動抵抗値(Rct),電気二重層
容量値(Cd)から供試した鉛蓄電池の残存容量および
/または劣化状態を判定する判定手段16とを有する。
Apparatus for Evaluating Lead- Acid Batteries The apparatus for evaluating characteristics of lead-acid batteries according to the present invention is an apparatus for implementing the above-described method for evaluating a lead-acid battery. FIG. 11 illustrates a configuration of the lead storage battery evaluation device. Lead storage battery evaluation device 1
0 is the measuring means 12 for measuring the internal impedance of the lead-acid battery at a plurality of frequencies, and the electrolyte resistance value (R
Ω), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd), and the calculated electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer capacitance value (Cd) determining means 16 for determining the remaining capacity and / or deterioration state of the lead storage battery tested.

【0094】測定手段12は、たとえば、可変周波数発
振回路と、インピーダンス測定装置と、記憶回路を有す
るコンピュータ装置とで構成され、特性を評価すべき鉛
蓄電池に可変周波数発振回路とインピーダンス測定回路
とを接続し、インピーダンス測定回路にコンピュータ装
置を接続する。可変周波数発振回路は、1〜100Hz
の周波数の範囲で選ばれた、内部インピーダンスの実部
をX軸に虚部に−1を乗じた値をY軸にプロットして規
定される二次元座標におけるインピーダンス円を規定す
る少なくとも3点以上の複数の周波数の信号を発振して
鉛蓄電池に印加し、インピーダンス測定装置がそれぞれ
の周波数における鉛蓄電池の内部インピーダンスを測定
する。コンピュータ装置はインピーダンス測定装置が測
定した内部インピーダンスの特定値を入力して記憶回路
に記憶する。
The measuring means 12 comprises, for example, a variable frequency oscillating circuit, an impedance measuring device, and a computer having a storage circuit. The variable frequency oscillating circuit and the impedance measuring circuit are connected to a lead-acid battery whose characteristics are to be evaluated. And connecting a computer device to the impedance measurement circuit. Variable frequency oscillation circuit is 1-100Hz
At least three points that define an impedance circle in two-dimensional coordinates defined by plotting a value obtained by multiplying the real part of the internal impedance by -1 and the imaginary part by −1 and plotting the result on the Y axis, selected in the frequency range of Are oscillated and applied to the lead storage battery, and the impedance measuring device measures the internal impedance of the lead storage battery at each frequency. The computer device inputs the specific value of the internal impedance measured by the impedance measuring device and stores it in the storage circuit.

【0095】算出手段14は、たとえば、上記記憶回路
を有するコンピュータ装置で構成され、このコンピュー
タ装置により、上述した式(A−1)または式(B−
1)で規定される、少なくとも電荷移動抵抗値(Rc
t)と電気二重層容量値(Cd)との並列回路と電解液
抵抗値(RΩ)との直列回路で構成した等価回路から導
出される電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)と複数の周波数におい
て測定した複数の鉛蓄電池の内部インピーダンスとの関
係式に、複数の周波数において測定した複数の内部イン
ピーダンスの値を参照して電解液抵抗値(RΩ),電荷
移動抵抗値(Rct),電気二重層容量値(Cd)を求
める。
The calculating means 14 is constituted by, for example, a computer device having the above-mentioned storage circuit, and the above-described formula (A-1) or (B-
At least the charge transfer resistance (Rc) defined in 1)
t), the resistance value of the electrolyte (RΩ), and the resistance value of the charge transfer (Rc) derived from an equivalent circuit composed of a series circuit of a parallel circuit of the electric double layer capacitance value (Cd) and the resistance value of the electrolyte (RΩ).
t), referring to the relational expression between the electric double layer capacity value (Cd) and the internal impedance of a plurality of lead-acid batteries measured at a plurality of frequencies, referring to the values of the plurality of internal impedances measured at a plurality of frequencies, the electrolyte resistance. The value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) are determined.

【0096】判定手段16は、たとえば、上記コンピュ
ータ装置で構成され、算出手段14で算出したした電解
液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二
重層容量値(Cd)から供試した鉛蓄電池の残存容量お
よび/または劣化状態を判定する。このような判定は、
たとえば、上述した電解液抵抗値(RΩ),電荷移動抵
抗値(Rct),電気二重層容量値(Cd)と残存容量
および/または劣化状態との関係をグラフとしてコンピ
ュータ装置から表示装置に表示して、人間が目視で判定
してもよいし、コンピュータ装置の判断処理で自動的に
行ってもよい。
The judging means 16 is composed of, for example, the above-mentioned computer device and is provided from the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) calculated by the calculating means 14. The remaining capacity and / or deterioration state of the tested lead storage battery is determined. Such a determination is
For example, the relationship between the above-described electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer capacitance value (Cd), and remaining capacity and / or deterioration state is displayed as a graph from a computer device to a display device. Thus, the determination may be made by a human eye or automatically by a determination process of a computer device.

【0097】[0097]

【発明の効果】以上に述べたように、本発明によれば、
1〜100Hzの周波数の範囲で選ばれた、任意の3〜
5点の周波数で内部インピーダンスの測定を行い、測定
結果を演算式に代入することにより鉛蓄電池の残存容量
と劣化状態を判定できるため、短時間でしかも簡単に測
定が可能である。また、測定周波数が3〜5点の固定周
波数であるため、装置のコストを安くすることができ
る。
As described above, according to the present invention,
Arbitrary 3 ~ selected in the frequency range of 1 ~ 100Hz
By measuring the internal impedance at the five frequencies and substituting the measurement results into an arithmetic expression, the remaining capacity and the deterioration state of the lead storage battery can be determined, so that the measurement can be performed in a short time and easily. Further, since the measurement frequency is a fixed frequency of 3 to 5 points, the cost of the apparatus can be reduced.

【0098】本発明によれば、鉛蓄電池の残存容量を精
確に判定できるため、自動車が停車した際のアイドリン
グストップの可否の判定に用いると、とても有効であ
る。
According to the present invention, since the remaining capacity of the lead storage battery can be accurately determined, it is very effective to use it for determining whether or not to stop idling when the vehicle stops.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明で使用する第1の等価回路として
の、電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)からなる等価回路の構
成図である。
FIG. 1 is a diagram showing a first equivalent circuit used in the present invention, which is an electrolyte resistance value (RΩ) and a charge transfer resistance value (Rc).
FIG. 3 is a configuration diagram of an equivalent circuit including an electric double layer capacitance value (Cd).

【図2】図2は本発明で使用する第2の等価回路として
の、電解液抵抗値(RΩ),電荷移動抵抗値(Rct’
とRct’’),電気二重層容量値(Cd’とC
d’’)からなる等価回路の構成図である。
FIG. 2 is a diagram illustrating a second equivalent circuit used in the present invention, which includes an electrolyte resistance value (RΩ) and a charge transfer resistance value (Rct ′).
And Rct ″), and the electric double layer capacitance value (Cd ′ and Cd ′)
3 is a configuration diagram of an equivalent circuit composed of d ″). FIG.

【図3】図3は本発明の鉛蓄電池の評価特性方法の処理
を示すフローチャートである。
FIG. 3 is a flowchart showing a process of a lead storage battery evaluation characteristic method of the present invention.

【図4】図4は電気二重層容量値(Cd)と鉛蓄電池の
残存容量との関係を例示するグラフである。
FIG. 4 is a graph illustrating a relationship between an electric double layer capacity value (Cd) and a remaining capacity of a lead storage battery.

【図5】図5は電荷移動抵抗値(Rct)と鉛蓄電池の
残存容量との関係を例示するグラフである。
FIG. 5 is a graph illustrating a relationship between a charge transfer resistance value (Rct) and a remaining capacity of a lead storage battery.

【図6】図6は正常な鉛蓄電池および劣化した鉛蓄電池
の温度による電解液抵抗値(RΩ)と鉛蓄電池の残存容
量(SOC)の関係を示すグラフである。
FIG. 6 is a graph showing a relationship between the electrolyte resistance (RΩ) and the remaining capacity (SOC) of the lead storage battery depending on the temperature of the normal lead storage battery and the deteriorated lead storage battery.

【図7】図7は電解液抵抗値(RΩ),電荷移動抵抗値
(Rct),電気二重層容量値(Cd)を算出する方法
を図解したグラフである。
FIG. 7 is a graph illustrating a method of calculating an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct), and an electric double layer capacitance value (Cd).

【図8】図8は周波数とインピーダンスの実数成分との
関係を図解したグラフである。
FIG. 8 is a graph illustrating the relationship between frequency and the real component of impedance.

【図9】図9は3点の周波数で測定した内部インピーダ
ンスをプロットした座標を示すグラフである。
FIG. 9 is a graph showing coordinates plotting internal impedance measured at three frequencies.

【図10】図10は4点目の周波数で測定した内部イン
ピーダンスをプロットした座標を示すグラフである。
FIG. 10 is a graph showing coordinates plotting internal impedance measured at a fourth frequency.

【図11】図11は本発明の鉛蓄電池の評価装置の構成
図である。
FIG. 11 is a configuration diagram of a lead storage battery evaluation device of the present invention.

【符号の説明】[Explanation of symbols]

10・・鉛蓄電池の評価装置 12・・測定手段 14・・算出手段 16・・判定手段 10. Lead storage battery evaluation device 12. Measurement means 14. Calculation means 16. Judgment means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島田 道宏 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 丸山 義雄 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 加納 哲也 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社内 (72)発明者 古川 淳 福島県いわき市常磐下船尾町杭出作23−6 古河電池株式会社内 Fターム(参考) 2G016 CA03 CB06 CB12 CC01 CC27 2G028 AA01 BE10 CG08 DH05 5H030 AA08 AS08 FF22 FF41 FF52 ──────────────────────────────────────────────────続 き Continued on the front page (72) Michihiro Shimada Inventor 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Yoshio Maruyama 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Inventor Tetsuya Kano 23-6 Tokiwashita Funamachi, Iwaki City, Fukushima Prefecture 23-6 Inside Furukawa Battery Co., Ltd. 23-23 F-term in Furukawa Battery Co., Ltd. (reference) 2G016 CA03 CB06 CB12 CC01 CC27 2G028 AA01 BE10 CG08 DH05 5H030 AA08 AS08 FF22 FF41 FF52

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】少なくとも電荷移動抵抗値(Rct)と電
気二重層容量値(Cd)との並列回路と電解液抵抗値
(RΩ)との直列回路で構成した、インピーダンスが下
記式で規定される等価回路で表した鉛蓄電池の鉛蓄電池
の評価特性方法であって、 〔RΩ+(Rct/(1+jωCd))〕 ・・・(A) ただし、ω=2πf 前記鉛蓄電池の内部インピーダンスの実部をX軸に虚部
に−1を乗じた値をY軸にプロットして規定される二次
元座標におけるインピーダンス円を規定する、1〜10
0Hzの周波数の範囲で選ばれた、3点以上の複数の周
波数について、鉛蓄電池の内部インピーダンスを測定
し、 前記電荷移動抵抗値(Rct)と電気二重層容量値(C
d)との並列回路と、前記電解液抵抗値(RΩ)との直
列回路で構成した等価回路から導出される電解液抵抗値
(RΩ),電荷移動抵抗値(Rct),電気二重層容量
値(Cd)と、前記複数の周波数において測定した複数
の鉛蓄電池の内部インピーダンスとの関係式に、前記複
数の周波数において測定した複数の内部インピーダンス
の値を参照して前記電解液抵抗値(RΩ),前記電荷移
動抵抗値(Rct),前記電気二重層容量値(Cd)を
求め、 算出した電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)の全てまたは少なくと
も1つから供試した鉛蓄電池の残存容量および/または
劣化状態を判定することを特徴とする鉛蓄電池の評価特
性方法。
An impedance is defined by the following equation, comprising at least a parallel circuit of a charge transfer resistance value (Rct) and an electric double layer capacitance value (Cd) and a series circuit of an electrolyte resistance value (RΩ). It is a method of evaluating the lead storage battery of a lead storage battery expressed by an equivalent circuit, wherein [RΩ + (Rct / (1 + jωCd))] (A) where ω = 2πf The real part of the internal impedance of the lead storage battery is represented by X The value obtained by plotting the value obtained by multiplying the imaginary part by −1 on the axis on the Y axis defines the impedance circle in two-dimensional coordinates defined by 1 to 10.
The internal impedance of the lead-acid battery is measured for a plurality of frequencies at three or more points selected in the frequency range of 0 Hz, and the charge transfer resistance value (Rct) and the electric double layer capacitance value (C
d) Electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer capacitance value derived from an equivalent circuit composed of a series circuit of the parallel circuit with d) and the electrolytic solution resistance value (RΩ) (Cd) and the relational expression between the internal impedances of the plurality of lead-acid batteries measured at the plurality of frequencies, the electrolyte resistance value (RΩ) by referring to the values of the plurality of internal impedances measured at the plurality of frequencies. , The charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd), and the calculated electrolyte resistance value (RΩ) and charge transfer resistance value (Rc
and t) determining a remaining capacity and / or a deterioration state of the tested lead storage battery from all or at least one of the electric double layer capacity values (Cd).
【請求項2】事前に前記電気二重層容量値(Cd)と前
記鉛蓄電池の残存容量の関係式を求めておき、 前記内部インピーダンスについての複数の測定結果から
求めた電気二重層容量値(Cd)の値を前記鉛蓄電池の
残存容量の関係式に照合して鉛蓄電池の残存容量の判定
を行い、 この判定の際の鉛蓄電池の劣化状態による補正と、鉛蓄
電池の温度による補正を行うことを特徴とする、 請求項1記載の鉛蓄電池の評価方法。
2. A relational expression between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery is obtained in advance, and the electric double layer capacity value (Cd) obtained from a plurality of measurement results of the internal impedance is obtained. ) Is checked against the relational expression of the remaining capacity of the lead-acid battery to determine the remaining capacity of the lead-acid battery, and the correction based on the deterioration state of the lead-acid battery and the correction based on the temperature of the lead-acid battery at the time of this determination. The method for evaluating a lead storage battery according to claim 1, wherein:
【請求項3】前記電気二重層容量値(Cd)と前記鉛蓄
電池の残存容量とは、温度に依存した勾配を有した直線
として規定される、 請求項2記載の鉛蓄電池の評価特性方法。
3. The method according to claim 2, wherein the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery are defined as a straight line having a temperature-dependent gradient.
【請求項4】事前に所定の複数の温度について、前記電
気二重層容量値(Cd)と前記鉛蓄電池の残存容量との
関係式を複数作成しておき、 前記鉛蓄電池の温度を測定し、前記複数の関係式のう
ち、近似する2つの温度の関係式を用いて補間して、鉛
蓄電池の温度に応じた鉛蓄電池の特性を評価する、 請求項3記載の鉛蓄電池の評価特性方法。
4. A plurality of relational expressions between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery are prepared for a plurality of predetermined temperatures in advance, and the temperature of the lead storage battery is measured. 4. The lead storage battery evaluation characteristic method according to claim 3, wherein a characteristic of the lead storage battery according to the temperature of the lead storage battery is evaluated by interpolation using a relational expression of two approximate temperatures among the plurality of relational expressions. 5.
【請求項5】前記判定の際の鉛蓄電池の劣化状態による
補正と温度による補正を、前記内部インピーダンスの複
数の測定結果から求めた前記電解液抵抗値(RΩ),前
記電荷移動抵抗値(Rct),前記電気二重層容量値
(Cd)を用いて行うことを特徴とする、 請求項2記載の鉛蓄電池の評価特性方法。
5. The method according to claim 1, wherein the correction based on the deterioration state of the lead-acid battery and the correction based on the temperature at the time of the determination are performed based on the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rct) obtained from a plurality of measurement results of the internal impedance. 3. The method according to claim 2, wherein the evaluation is performed using the electric double layer capacitance value (Cd).
【請求項6】事前に鉛蓄電池の電荷移動抵抗値(Rc
t)と鉛蓄電池の残存容量の関係式を求めておき、 前記内部インピーダンスの複数の測定結果から求めた電
荷移動抵抗値(Rct)を、上記鉛蓄電池の残存容量の
関係式に照合して鉛蓄電池の残存容量の判定を行い、 この判定の際の鉛蓄電池の劣化状態による補正と、鉛蓄
電池の温度による補正を行うことを特徴とする請求項1
記載の鉛蓄電池の評価特性方法。
6. A charge transfer resistance value (Rc) of a lead storage battery in advance.
t) and the relational expression between the remaining capacity of the lead-acid battery and the charge transfer resistance value (Rct) obtained from the plurality of measurement results of the internal impedance are compared with the relational expression for the remaining capacity of the lead-acid battery. 2. The method according to claim 1, wherein the remaining capacity of the storage battery is determined, and a correction based on the deterioration state of the lead storage battery and a correction based on the temperature of the lead storage battery are performed.
The evaluation characteristic method of the lead storage battery described in the above.
【請求項7】前記判定の際の電池の劣化状態のよる補正
と、鉛蓄電池の温度による補正を、前記内部インピーダ
ンスの複数の測定結果から求めた電解液抵抗値(RΩ)
および電気二重層容量値(Cd)を用いて行うことを特
徴とする請求項6記載の鉛蓄電池の評価特性方法。
7. A method according to claim 1, wherein the correction based on the deterioration state of the battery and the correction based on the temperature of the lead-acid battery are performed based on the electrolyte resistance value (RΩ) obtained from the plurality of measurement results of the internal impedance.
7. The method according to claim 6, wherein the evaluation is performed using the electric double layer capacity value (Cd).
【請求項8】前記複数の測定周波数が、 5〜100Hzの周波数の範囲で選ばれた任意の3〜4
点の第1の周波数(Fa)と、 1〜5Hzの周波数の範囲で選ばれた任意の1点の第2
の周波数(Fb)であることを特徴とする請求項1記載
の鉛蓄電池の評価特性方法。
8. The method according to claim 7, wherein the plurality of measurement frequencies are any three to four selected within a frequency range of 5 to 100 Hz.
A first frequency (Fa) of a point, and a second frequency of an arbitrary point selected in a frequency range of 1 to 5 Hz.
2. The method for evaluating characteristics of a lead-acid battery according to claim 1, wherein the frequency is Fb.
【請求項9】前記電解液抵抗値(RΩ),電荷移動抵抗
値(Rct),電気二重層容量値(Cd)の導出を、 (イ)測定された内部インピーダンスの実部をX軸に、
虚部に−1を乗じた値をY軸にプロットし、 (ロ)このうち、第1の周波数(Fa)で測定された3
〜4点のプロットを通過する円の軌道を求め、 (ハ)軌道のX軸切片Xa,Xb(ただし、Xa<X
b)を求め、 (ニ)切片Xaを前記電解液抵抗値(RΩ)とし、(X
b−Xa)を電荷移動抵抗値(Rct)とし、(Xa+
Xb)×0.5をXm とし、 (ホ)内部インピーダンスの実部をY軸に周波数をX軸
とした座標に、第1の周波数(Fa)のうち最も低い周
波数(Fa’)と第2の周波数(Fb)における測定値
をプロットし、両プロットを結んだ直線上の、上記した
m に相当する周波数をωm とし、 (ヘ)前記電気二重層容量値(Cd)を(Rct×
ωm -1として求めることを特徴とする、 請求項1記載の鉛蓄電池の評価特性方法。
9. Derivation of the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd): (a) The real part of the measured internal impedance is set on the X axis,
A value obtained by multiplying the imaginary part by −1 is plotted on the Y axis. (B) Among them, 3 measured at the first frequency (Fa)
(C) X-axis intercepts Xa and Xb of the orbit (where Xa <X
b) is determined, and (d) the section Xa is defined as the electrolyte resistance value (RΩ).
b−Xa) as the charge transfer resistance value (Rct), and (Xa +
The xb) × 0.5 and X m, and (e) the real part of the internal impedance to coordinate the frequency is X axis to the Y axis, the lowest frequency of the first frequency (Fa) (Fa ') the plotting the measured values in the second frequency (Fb), a straight line of which connecting the two plots, the frequency corresponding to X m described above and omega m and (f) the electric double layer capacitance (Cd) (Rct ×
and obtaining the omega m) -1, evaluation properties method of the lead storage battery of claim 1, wherein.
【請求項10】前記第1の測定周波数(Fa)が、 5〜10Hzの中の1点、 10〜30Hzの中の1点、 50〜100Hzの中の1点を含むことを特徴とする請
求項6記載の鉛蓄電池の評価方法。
10. The method according to claim 1, wherein the first measurement frequency (Fa) includes one of 5 to 10 Hz, one of 10 to 30 Hz, and one of 50 to 100 Hz. Item 7. The method for evaluating a lead storage battery according to Item 6.
【請求項11】前記鉛蓄電池の特性評価を、所定の時間
間隔で行い、 前回までの特性評価で求められた前記電解液抵抗値(R
Ω),電荷移動抵抗値(Rct),電気二重層容量値
(Cd)の値の少なくとも一つ以上の値を、当回の検査
で求めた電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)の値の少なくとも一つ
以上の値と比較し、 その比較結果を鉛蓄電池の残存容量と劣化状態の判定の
補正に用いることを特徴とする請求項1記載の鉛蓄電池
の評価特性方法。
11. The characteristic evaluation of the lead storage battery is performed at predetermined time intervals, and the electrolyte resistance value (R
Ω), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd), at least one of which is the electrolyte resistance value (RΩ), the charge transfer resistance value ( Rc
and t) comparing at least one of the electric double layer capacitance values (Cd) with each other, and using the comparison result to correct the remaining capacity of the lead storage battery and the deterioration state. The evaluation characteristic method of the lead storage battery described in the above.
【請求項12】車両に搭載された鉛蓄電池に対して、当
該車両のエンジン停止期間に、上記処理を行うことを特
徴とする請求項1〜11記載のいずれか記載の鉛蓄電池
の評価特性方法。
12. A lead storage battery evaluation characteristic method according to claim 1, wherein said process is performed on a lead storage battery mounted on a vehicle during an engine stop period of the vehicle. .
【請求項13】少なくとも電荷移動抵抗値(Rct)と
電気二重層容量値(Cd)との並列回路と電解液抵抗値
(RΩ)との直列回路で構成した、インピーダンスが下
記式で規定される等価回路で表した鉛蓄電池の鉛蓄電池
の評価特性装置であって、 〔RΩ+(Rct/(1+jωCd))〕 ・・・(B) ただし、ω=2πf 1〜100Hzの周波数の範囲で選ばれた、内部インピ
ーダンスの実部をX軸に虚部に−1を乗じた値をY軸に
プロットして規定される二次元座標におけるインピーダ
ンス円を規定する少なくとも3点以上の複数の周波数に
おいて、鉛蓄電池の内部インピーダンスを測定する測定
手段と、 前記電荷移動抵抗値(Rct)と電気二重層容量値(C
d)との並列回路と電解液抵抗値(RΩ)との直列回路
で構成した等価回路、から導出される電解液抵抗値(R
Ω),電荷移動抵抗値(Rct),電気二重層容量値
(Cd)と、前記複数の周波数において測定した複数の
鉛蓄電池の内部インピーダンスとの関係式に前記複数の
周波数において測定した複数の内部インピーダンスの値
を参照して前記電解液抵抗値(RΩ),前記電荷移動抵
抗値(Rct),前記電気二重層容量値(Cd)を求め
る算出手段と、 算出した電解液抵抗値(RΩ),電荷移動抵抗値(Rc
t),電気二重層容量値(Cd)から供試した鉛蓄電池
の残存容量および/または劣化状態を判定する判定手段
とを有する鉛蓄電池の特性評価装置。
13. An impedance constituted by a parallel circuit of at least a charge transfer resistance value (Rct) and an electric double layer capacitance value (Cd) and a series circuit of an electrolyte resistance value (RΩ). This is a lead storage battery evaluation characteristic device of a lead storage battery expressed by an equivalent circuit, [RΩ + (Rct / (1 + jωCd))] (B) where ω = 2πf 1 to 100 Hz is selected. At a plurality of frequencies of at least three points that define an impedance circle in two-dimensional coordinates defined by plotting a value obtained by multiplying the real part of the internal impedance on the X axis and the imaginary part by −1 on the Y axis. Measuring means for measuring the internal impedance of the charge transfer resistance (Rct) and the electric double layer capacitance (C
d) and an equivalent circuit resistance (RΩ) derived from an equivalent circuit composed of a series circuit of the electrolyte resistance (RΩ) and the parallel circuit.
Ω), the charge transfer resistance value (Rct), the electric double layer capacitance value (Cd), and the internal impedance of the plurality of lead-acid batteries measured at the plurality of frequencies. Calculating means for calculating the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) with reference to the impedance value; Charge transfer resistance (Rc
t), a device for evaluating characteristics of a lead-acid battery, comprising: a judging means for judging a remaining capacity and / or a deterioration state of the tested lead-acid battery from the electric double layer capacity value (Cd).
JP2000050539A 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery Expired - Lifetime JP4477185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050539A JP4477185B2 (en) 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050539A JP4477185B2 (en) 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery

Publications (2)

Publication Number Publication Date
JP2001235525A true JP2001235525A (en) 2001-08-31
JP4477185B2 JP4477185B2 (en) 2010-06-09

Family

ID=18572306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050539A Expired - Lifetime JP4477185B2 (en) 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery

Country Status (1)

Country Link
JP (1) JP4477185B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388314B1 (en) * 2001-09-03 2003-06-25 금호석유화학 주식회사 method to group single cells of power sources to build optimal packs using parameters obtained by analysis of impedance spectrum
WO2005031380A1 (en) * 2003-09-26 2005-04-07 Rheinisch-Westfälisch-Technische Hochschule Method and device for determining the charge of a battery
KR100605123B1 (en) * 2003-02-21 2006-07-28 주식회사 맥사이언스 Method and device for evaluating deterioration characteristics of organic light emitting diode by measuring AC impedance
JP2007333494A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP2008141846A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Charging state prediction program, cable-less traffic system and its charging method
JP2010060490A (en) * 2008-09-05 2010-03-18 Tokyo Electric Power Services Co Ltd Stress measurement method of concrete structure
CN102183730A (en) * 2009-12-25 2011-09-14 株式会社东芝 Battery diagnosis device and method
JP2012518781A (en) * 2009-02-24 2012-08-16 エリオン Method for measuring condition of electrochemical device
JP2012220199A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Method and device for determining degradation of secondary battery
JP2013500487A (en) * 2009-07-28 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ How to characterize a battery
JP2013088156A (en) * 2011-10-14 2013-05-13 Furukawa Electric Co Ltd:The Secondary battery state detector and secondary battery state detection method
JP2013519893A (en) * 2010-02-17 2013-05-30 イエフペ エネルジ ヌヴェル In-situ battery diagnostic method by electrochemical impedance spectroscopy
WO2014012659A1 (en) * 2012-07-17 2014-01-23 Technische Universität Braunschweig Method and apparatus for determining the state of batteries
JP5716823B2 (en) * 2011-03-16 2015-05-13 トヨタ自動車株式会社 Deterioration diagnosis method for vehicle and power storage device
EP2778697A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery Battery-state monitoring system
JP2016065832A (en) * 2014-09-25 2016-04-28 プライムアースEvエナジー株式会社 Battery state determination method and battery state determination device
CN113687253A (en) * 2021-08-23 2021-11-23 蜂巢能源科技有限公司 Method for analyzing impedance of internal component of battery cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929338B (en) * 2016-05-30 2018-12-25 北京大学深圳研究生院 A kind of method and its application measuring battery status

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388314B1 (en) * 2001-09-03 2003-06-25 금호석유화학 주식회사 method to group single cells of power sources to build optimal packs using parameters obtained by analysis of impedance spectrum
KR100605123B1 (en) * 2003-02-21 2006-07-28 주식회사 맥사이언스 Method and device for evaluating deterioration characteristics of organic light emitting diode by measuring AC impedance
WO2005031380A1 (en) * 2003-09-26 2005-04-07 Rheinisch-Westfälisch-Technische Hochschule Method and device for determining the charge of a battery
US7541814B2 (en) 2003-09-26 2009-06-02 Rheinische Landschaftspflege Jakob Voets Ing. Grad. Gmbh & Co. Kg Method and device for determining the charge of a battery
JP2007333494A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP2008141846A (en) * 2006-11-30 2008-06-19 Mitsubishi Heavy Ind Ltd Charging state prediction program, cable-less traffic system and its charging method
JP2010060490A (en) * 2008-09-05 2010-03-18 Tokyo Electric Power Services Co Ltd Stress measurement method of concrete structure
JP2012518781A (en) * 2009-02-24 2012-08-16 エリオン Method for measuring condition of electrochemical device
JP2013500487A (en) * 2009-07-28 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ How to characterize a battery
CN102183730A (en) * 2009-12-25 2011-09-14 株式会社东芝 Battery diagnosis device and method
US9239363B2 (en) 2009-12-25 2016-01-19 Toshiba Corporation Battery diagnosis device and method
EP2339361A3 (en) * 2009-12-25 2015-02-11 Kabushiki Kaisha Toshiba Battery diagnosis device and method
JP2013519893A (en) * 2010-02-17 2013-05-30 イエフペ エネルジ ヌヴェル In-situ battery diagnostic method by electrochemical impedance spectroscopy
US9145132B2 (en) 2011-03-16 2015-09-29 Toyota Jidosha Kabushiki Kaisha Vehicle and deterioration diagnosis method for power storage device
JP5716823B2 (en) * 2011-03-16 2015-05-13 トヨタ自動車株式会社 Deterioration diagnosis method for vehicle and power storage device
JP2012220199A (en) * 2011-04-04 2012-11-12 Toyota Motor Corp Method and device for determining degradation of secondary battery
JP2013088156A (en) * 2011-10-14 2013-05-13 Furukawa Electric Co Ltd:The Secondary battery state detector and secondary battery state detection method
EP2778697A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery Battery-state monitoring system
EP2778698A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery Battery-state monitoring system
EP2778699A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery Battery-state monitoring system
US9297859B2 (en) 2011-11-08 2016-03-29 Hitachi Chemical Company, Ltd. Battery-state monitoring system
US9453885B2 (en) 2011-11-08 2016-09-27 Shin-Kobe Electric Machinery Co., Ltd. Battery-state monitoring system
US9459323B2 (en) 2011-11-08 2016-10-04 Hitachi Chemical Company, Ltd. Battery-state monitoring system
WO2014012659A1 (en) * 2012-07-17 2014-01-23 Technische Universität Braunschweig Method and apparatus for determining the state of batteries
JP2016065832A (en) * 2014-09-25 2016-04-28 プライムアースEvエナジー株式会社 Battery state determination method and battery state determination device
CN113687253A (en) * 2021-08-23 2021-11-23 蜂巢能源科技有限公司 Method for analyzing impedance of internal component of battery cell
CN113687253B (en) * 2021-08-23 2023-06-30 蜂巢能源科技有限公司 Method for analyzing impedance of internal components of battery cell

Also Published As

Publication number Publication date
JP4477185B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP2001235525A (en) Characteristic evaluation method of lead storage battery and characteristic evaluation device of lead storage battery
US7898263B2 (en) Onboard battery management device
CN103427133B (en) Determine the method and system of the temperature of the monomer in battery pack
US5539318A (en) Residual capacity meter for electric car battery
US8378688B2 (en) Capacity maintenance ratio determination device, battery system and electric vehicle
US6313607B1 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
EP3214456B1 (en) Secondary battery state detection device and secondary battery state detection method
WO2019171688A1 (en) Remaining capability evaluation method for secondary battery, remaining capability evaluation program for secondary battery, computation device, and remaining capability evaluation system
US20150120225A1 (en) Apparatus and method for determining degradation of high-voltage vehicle battery
KR101895619B1 (en) State judging device, battery apparatus, state judging method
US20110301891A1 (en) Method of diagnosing deterioration of cell of battery for vehicle
US20160069963A1 (en) Electricity storage device state inference method
WO2016194082A1 (en) Device for estimating degree of battery degradation, and estimation method
US20080183408A1 (en) Battery Condition Monitor
EP3264120A1 (en) Cell deterioration diagnostic method and cell deterioration diagnostic device
WO2005015252A1 (en) Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
JP5653881B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2016085062A (en) Device and method for determining battery deterioration
EP1900075A1 (en) Method and apparatus of estimating state of health of battery
CN105388426A (en) Method and apparatus for estimating state of health (SOH) of battery
US11977127B2 (en) Method for detecting a faulty cell in an electric battery
JP2005221487A (en) Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
JP2009121931A (en) Battery state management method and battery state management device
JP4668015B2 (en) Secondary battery state detection method and secondary battery state detection device
JP3551767B2 (en) Battery discharge meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R151 Written notification of patent or utility model registration

Ref document number: 4477185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term