JP2001235413A - Method for estimating impact fatigue limit of piezoelectric ceramics - Google Patents

Method for estimating impact fatigue limit of piezoelectric ceramics

Info

Publication number
JP2001235413A
JP2001235413A JP2000048154A JP2000048154A JP2001235413A JP 2001235413 A JP2001235413 A JP 2001235413A JP 2000048154 A JP2000048154 A JP 2000048154A JP 2000048154 A JP2000048154 A JP 2000048154A JP 2001235413 A JP2001235413 A JP 2001235413A
Authority
JP
Japan
Prior art keywords
value
collision
ideal
piezoelectric ceramic
piezoelectric ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000048154A
Other languages
Japanese (ja)
Other versions
JP4220645B2 (en
Inventor
Yoshitake Nishi
義武 西
Ryosuke Kondo
良介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2000048154A priority Critical patent/JP4220645B2/en
Publication of JP2001235413A publication Critical patent/JP2001235413A/en
Application granted granted Critical
Publication of JP4220645B2 publication Critical patent/JP4220645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating the impact fatigue limit of piezoelectric ceramics for a short time using a small number of samples without actually destructing piezoelectric ceramics. SOLUTION: Impact load is successively applied to a test object 1 comprising piezoelectric ceramics while changing a value of ideal impact energy Ec to measure the voltage Vm generated in piezoelectric ceramics when the impact load is applied. On the basis of the relation of the parts where the generated voltage Vm linearly increases with respect to an increase in the ideal impact energy Ec on both logarithmic coordinates, the values of the constant A and constant (n) of regression equation: Vm=A.(Ec)n are calculated. When the difference between the value of generated voltage calculated from this regression equation and the value of the actually generated voltage exceeds a predetermined limit value, the value of the ideal impact energy Ec is set to the estimate value of the impact fatigue limit of the piezoelectric ceramics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電セラミックス
の衝突疲労限を非破壊的に推定する方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively estimating a collision fatigue limit of a piezoelectric ceramic.

【0002】[0002]

【従来の技術】圧電セラミックスは、一般に、繰り返し
衝突によって疲労破壊を起こす。従来、圧電セラミック
スの衝突疲労限を求める際には、数十個の圧電セラミッ
クスの試験体を準備し、衝突疲労試験装置を使用して、
10水準前後の衝突エネルギーを設定して衝撃負荷を繰
り返し与え、所定の繰り返し回数(例えば、10回)
が経過しても試験体が疲労破壊することがない衝突エネ
ルギーの値(衝突疲労限)を求めていた。
2. Description of the Related Art Piezoelectric ceramics generally cause fatigue failure due to repeated collisions. Conventionally, when calculating the collision fatigue limit of piezoelectric ceramics, prepare dozens of piezoelectric ceramic specimens and use a collision fatigue tester to
Set the collision energy of 10 levels before and after giving repeated impact load, a predetermined number of iterations (e.g., 10 3 times)
The value of the collision energy (collision fatigue limit) at which the specimen does not break due to fatigue even after a lapse of time has been determined.

【0003】この様に、従来の方法によって圧電セラミ
ックスの衝突疲労限を求める場合には、多数の試験体に
衝撃負荷を繰り返し与えて、実際に破壊させる必要があ
り、相当な費用がかかるとともに、衝突疲労限が求まる
までに長い時間を要していた。
As described above, when the collision fatigue limit of the piezoelectric ceramic is determined by the conventional method, it is necessary to repeatedly apply an impact load to a large number of test specimens to actually break them, which requires considerable cost, It took a long time before the collision fatigue limit was determined.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の様な
従来の圧電セラミックスの衝突疲労限の測定方法の問題
点に鑑み成されたもので、本発明の目的は、圧電セラミ
ックスを実際に破壊させることなく、少数の試料を用い
て、短時間で圧電セラミックスの衝突疲労限を推定する
ことができる方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional method for measuring the limit of collision fatigue of piezoelectric ceramics. It is an object of the present invention to provide a method capable of estimating the limit of collision fatigue of a piezoelectric ceramic in a short time using a small number of samples without breaking.

【0005】[0005]

【課題を解決するための手段】本発明の圧電セラミック
スの衝突疲労限の推定方法は、圧電セラミックスの衝突
疲労限を、非破壊的に推定する方法であって、圧電セラ
ミックスに、理想的衝突エネルギーEcの値を変えなが
ら、順に衝撃負荷を与え、各衝撃負荷を与えたときに圧
電セラミックスに発生する電圧Vmを測定し、両対数座
標上で、理想的衝突エネルギーEcの増大に対して発生
電圧Vmが直線的に増大する部分の関係に基づいて、次
の回帰式中の定数A及び定数nの値を求め、 Vm=A・(Ec) この回帰式から計算される発生電圧の値と、実際に測定
された発生電圧の値との差が、所定の限界値を超える時
の理想的衝突エネルギーEcの値を、その圧電セラミッ
クスの衝突疲労限の推定値とすることを特徴とする。
The method for estimating the collision fatigue limit of piezoelectric ceramics according to the present invention is a method for non-destructively estimating the collision fatigue limit of piezoelectric ceramics. While changing the value of Ec, an impact load is sequentially applied, and a voltage Vm generated in the piezoelectric ceramics when each impact load is applied is measured. The values of the constants A and n in the following regression equation are obtained based on the relationship of the portion where Vm increases linearly. Vm = A · (Ec) n The value of the generated voltage calculated from this regression equation The value of the ideal collision energy Ec when the difference between the actually measured value of the generated voltage exceeds a predetermined limit value is used as an estimated value of the collision fatigue limit of the piezoelectric ceramic.

【0006】なお、ここで理想的衝突エネルギーEcと
は、圧電セラミックスの上に重錘を自由落下させた時の
衝突エネルギーの値であり、自由落下させた重錘の高さ
より算出された位置エネルギーの値をEpとしたとき、
この位置エネルギーの全てが衝突エネルギーに換算され
る。
Here, the ideal collision energy Ec is the value of the collision energy when the weight is freely dropped on the piezoelectric ceramic, and is the potential energy calculated from the height of the weight that has fallen freely. Is the value of Ep,
All of this potential energy is converted to collision energy.

【0007】例えば、PZT(Pb−Zr−Ti−
)系の圧電セラミックスの場合、理想的衝突エネル
ギーEcの単位をミリジュールとし、発生電圧の単位を
ボルトとしたとき、前記回帰式において、定数Aは7.
5以上11.5以下となり、定数nは0.4以上0.5
以下となる。
For example, PZT (Pb-Zr-Ti-
In the case of an O 3 ) -based piezoelectric ceramic, when the unit of the ideal collision energy Ec is millijoule and the unit of the generated voltage is volt, the constant A in the regression equation is 7.
5 or more and 11.5 or less, and the constant n is 0.4 or more and 0.5 or less.
It is as follows.

【0008】また、この場合、前記所定の限界値は、例
えば、3ボルト程度の値が適当である。
In this case, the predetermined limit value is, for example, approximately 3 volts.

【0009】[0009]

【発明の実施の形態】PZT(Pb−Zr−Ti−
)系の圧電セラミックスを用いて、衝突エネルギー
対発生電圧の関係、及びその衝突疲労限について調べ
た。
DETAILED DESCRIPTION OF THE INVENTION PZT (Pb-Zr-Ti-
Using an O 3 ) -based piezoelectric ceramic, the relationship between the collision energy and the generated voltage and the collision fatigue limit thereof were examined.

【0010】上記圧電セラミックスの試験体を、高圧下
で焼結法により製造した。その組成は、エネルギー分散
型X線分光分析装置(EDX)で測定したところ、 Pb0.55Zr0.24Ti0.21 であった。
[0010] The above-mentioned piezoelectric ceramic specimen was manufactured by a sintering method under high pressure. Its composition was measured by an energy dispersive X-ray spectrometer (EDX) and found to be Pb 0.55 Zr 0.24 Ti 0.21 O 3 .

【0011】図1に、試験体の形状を示す。試験体1は
円柱状の形状を備え、その上端面及び下端面には、それ
ぞれ、Ni製の電極3a及び3bが取り付けられてい
る。上端側の電極3aは、試験体1と同じ直径の円柱状
で、その上端面には半球状の突起部が形成されている。
下端側の電極3bは、矩形の厚板状の形状を備えてい
る。各電極3a及び3bの側面には、それぞれ、リード
線4a及び4bが接続されている。この例では、試験体
1の直径は2.5mmであり、その高さは5mmであ
る。
FIG. 1 shows the shape of the test piece. The test body 1 has a columnar shape, and Ni electrodes 3a and 3b are attached to its upper end surface and lower end surface, respectively. The upper electrode 3a has a columnar shape having the same diameter as the specimen 1, and has a hemispherical projection formed on the upper end surface.
The lower electrode 3b has a rectangular thick plate shape. Lead wires 4a and 4b are connected to side surfaces of the electrodes 3a and 3b, respectively. In this example, the diameter of the test body 1 is 2.5 mm, and its height is 5 mm.

【0012】試験体1の回りには、ゴム製の厚肉のスリ
ーブ2が装着されている。スリーブ2の中心軸部分に
は、円形断面の孔が設けられ、この孔の中を試験体1が
貫通している。この例では、スリーブ2の高さは5mm
であり、中心部の孔の直径は、試験体1をセットする前
において2.0mmである。このスリーブ2を用いて、
試験体1にその側面から圧力を加えることにより、試験
体1の径方向断面に静的な圧縮応力を発生させることが
できる。
A thick sleeve 2 made of rubber is mounted around the test body 1. A hole having a circular cross section is provided in the center axis portion of the sleeve 2, and the test body 1 passes through the hole. In this example, the height of the sleeve 2 is 5 mm
And the diameter of the hole at the center is 2.0 mm before the test piece 1 is set. Using this sleeve 2,
By applying pressure to the specimen 1 from its side, a static compressive stress can be generated in a radial cross section of the specimen 1.

【0013】図2に、衝突疲労試験装置の概要を示す。
なお、圧電セラミックスの理想的衝突エネルギーEc対
発生電圧Vmの関係も、この衝突疲労試験装置を用いて
測定した。
FIG. 2 shows an outline of a collision fatigue test apparatus.
The relationship between the ideal collision energy Ec of the piezoelectric ceramic and the generated voltage Vm was also measured using this collision fatigue test apparatus.

【0014】圧電セラミックスの試験体1に対して、そ
の上方の高さ“h”の位置から上端面の電極3aに向け
て、質量“m”の鉄製の重錘6を落下させる。この例で
は、重錘6の質量“m”は、38.5グラムである。落
下前の重錘6の位置エネルギーEpは、重力加速度の値
を“g”[m/s]とすると、“Ep=m・g・h”
で表される。なお、この場合、理想的衝突エネルギーE
cの値は、自由落下させた重錘の高さより算出された位
置エネルギーEpの値に等しい。
An iron weight 6 having a mass of "m" is dropped from a position "h" above the piezoelectric ceramic specimen 1 toward the electrode 3a on the upper end surface. In this example, the mass “m” of the weight 6 is 38.5 grams. The potential energy Ep of the weight 6 before falling is “Ep = m · gh · h” where the value of the gravitational acceleration is “g” [m / s 2 ].
It is represented by In this case, the ideal collision energy E
The value of c is equal to the value of the potential energy Ep calculated from the height of the free-fall weight.

【0015】試験体1の上下の電極3a及び3bの側面
に取り付けられたリード線4a及び4bは、それぞれオ
ッシロスコープ5に接続されている。重錘6が落下して
試験体1に衝突したとき、試験体1の内部に発生する電
圧Vm(ピーク値)は、このオッシロスコープ5で測定
される。
The lead wires 4a and 4b attached to the side surfaces of the upper and lower electrodes 3a and 3b of the specimen 1 are connected to an oscilloscope 5, respectively. The voltage Vm (peak value) generated inside the test piece 1 when the weight 6 falls and collides with the test piece 1 is measured by the oscilloscope 5.

【0016】次に、この装置を用いて行った上記圧電セ
ラミックスの衝突疲労試験の結果、及びその際に測定さ
れた理想的衝突エネルギー対発生電圧の関係について説
明する。
Next, the results of the collision fatigue test of the piezoelectric ceramics performed using this apparatus and the relationship between the ideal collision energy and the generated voltage measured at that time will be described.

【0017】図3に、圧電セラミックスの衝突疲労試験
の結果の一例を示す。図3において、横軸は衝突の繰り
返し数Nc、縦軸は理想的衝突エネルギーEcの値[ミ
リジュール]を表す。図中の符号の意味は、“×”は衝
突疲労試験において試験体が破壊したことを表し、
“〇”は試験体が破壊しなかったことを表している。な
お、破壊の有無についての判定は、SEM(走査型電子
顕微鏡)を用いてクラック発生の有無を調べることによ
って行った。
FIG. 3 shows an example of the results of a collision fatigue test of a piezoelectric ceramic. In FIG. 3, the horizontal axis represents the number of collision repetitions Nc, and the vertical axis represents the value [millijoules] of the ideal collision energy Ec. The symbol “x” in the figure indicates that the specimen was destroyed in the impact fatigue test,
“〇” indicates that the specimen did not break. The determination as to whether or not there was breakage was made by examining whether or not cracks had occurred using an SEM (scanning electron microscope).

【0018】なお、図3に示した衝突疲労試験は、スリ
ーブ2(図1)を用いて試験体1にその側面から圧力を
加え、試験体1の径方向断面に静的な圧縮応力(約1.
0kg/mm:9.8MPa)を発生させた状態で実
施されたものである。
In the collision fatigue test shown in FIG. 3, a pressure is applied to the specimen 1 from the side surface using the sleeve 2 (FIG. 1), and a static compressive stress (about 1.
0 kg / mm 2 : 9.8 MPa).

【0019】図3から分かる様に、衝突の繰り返し数N
c対理想的衝突エネルギーEcの関係図の中を、非破壊
の領域、破壊の領域、及び両者の中間の遷移領域の三つ
の領域に区分けすることができる。また、衝突疲労限が
現れており、この条件の場合、その値は16.1±2.
9ミリジュールである。
As can be seen from FIG. 3, the number of collisions N
The relationship between c and the ideal collision energy Ec can be divided into three regions: a non-destructive region, a destructive region, and a transition region intermediate between the two. In addition, a collision fatigue limit appears, and under this condition, the value is 16.1 ± 2.
9 millijoules.

【0020】図4に、圧電セラミックスの衝突疲労試験
の結果の他の例を示す。この衝突疲労試験は、スリーブ
2(図1)を使用せずに、従って、試験体1の径方向断
面に静的な圧縮応力が無い状態で実施されたものであ
る。
FIG. 4 shows another example of the results of a collision fatigue test of a piezoelectric ceramic. This impact fatigue test was carried out without using the sleeve 2 (FIG. 1), and thus without any static compressive stress in the radial cross section of the test piece 1.

【0021】先の例と同様に、Nc対Ecの関係図の中
を、非破壊の領域、破壊の領域、及び両者の中間の遷移
領域の三つの領域に区分けすることができる。また、衝
突疲労限が現れており、この条件の場合、その値は9.
3±1.4ミリジュールである。
As in the previous example, the relationship between Nc and Ec can be divided into three regions: a non-destructive region, a destructive region, and a transition region between the two. In addition, a collision fatigue limit appears, and under this condition, the value is 9.
3 ± 1.4 mJ.

【0022】図5に、静的な圧縮応力下での衝突疲労試
験(図3に示したもの)の際に測定された理想的衝突エ
ネルギー対発生電圧の関係を示す。
FIG. 5 shows a relationship between an ideal collision energy and a generated voltage measured in a collision fatigue test under static compressive stress (shown in FIG. 3).

【0023】図5において、横軸は理想的衝突エネルギ
ーEcの値[ミリジュール]、縦軸は衝突によって発生
した電圧Vm[ボルト]を表す。図中の符号の意味は、
“〇”は衝突疲労試験において試験体が破壊しなかった
ことを、“△”は衝撃負荷を繰り返し受けた後に試験体
が破壊したことを、“×”は最初の衝撃負荷で試験体が
破壊したことを表している。
In FIG. 5, the horizontal axis represents the value [millijoule] of the ideal collision energy Ec, and the vertical axis represents the voltage Vm [volt] generated by the collision. The meaning of the symbols in the figure is
“〇” indicates that the test piece did not break in the impact fatigue test, “△” indicates that the test piece broke after repeatedly receiving the impact load, and “×” indicates that the test piece failed in the first impact load. It means that you did.

【0024】図5から分かる様に、衝突疲労試験におい
て試験体が破壊しない理想的衝突エネルギーEcの値の
範囲では、発生電圧Vm対理想的衝突エネルギーEcの
関係は、両対数座標上で一本の直線上に並ぶ。即ち、両
者の関係は、次の回帰式で表すことができる。
As can be seen from FIG. 5, in the range of the value of the ideal collision energy Ec in which the specimen does not break in the collision fatigue test, the relationship between the generated voltage Vm and the ideal collision energy Ec is one line on the log-logarithmic coordinate. On a straight line. That is, the relationship between them can be expressed by the following regression equation.

【0025】Vm=A・(Ec) この条件の場合、上記回帰式の定数A及び定数nの値
は、それぞれ、以下の様になる。
Vm = A · (Ec) n Under this condition, the values of the constant A and the constant n in the above regression equation are as follows.

【0026】A=11.1 n=0.428 理想的衝突エネルギーEcの値が、衝突疲労限(この場
合には、16.1±2.9ミリジュール)を超えると、
両者の関係は、上記の回帰式から外れる。この範囲で
は、理想的衝突エネルギーEcの増加に伴ない、発生電
圧が急激に増大した後、ほぼ一定の値(約200ボル
ト)程度の値で安定する。更に、理想的衝突エネルギー
Ecの値が増加すると(約1000ミリジュール)、最
初の衝撃負荷で試験体が破壊する様になる。
A = 11.1 n = 0.428 When the value of the ideal collision energy Ec exceeds the collision fatigue limit (in this case, 16.1 ± 2.9 mJ),
The relationship between the two deviates from the above regression equation. In this range, the generated voltage sharply increases with an increase in the ideal collision energy Ec, and then stabilizes at a substantially constant value (about 200 volts). Furthermore, when the value of the ideal collision energy Ec increases (about 1000 mJ), the specimen will break at the first impact load.

【0027】図6に、試験体1の径方向断面に静的な圧
縮応力がない状態で、衝突疲労試験(図4に示したも
の)の際に測定された理想的衝突エネルギー対発生電圧
の関係を示す。
FIG. 6 shows the ideal collision energy versus generated voltage measured during a collision fatigue test (shown in FIG. 4) in a state where there is no static compressive stress in the radial cross section of the test piece 1. Show the relationship.

【0028】図5と同様に、衝突疲労試験において試験
体が破壊しない理想的衝突エネルギーEcの値の範囲で
は、発生電圧Vm対理想的衝突エネルギーEcの関係
は、両対数座標上で一本の直線上に並ぶ。この例では、
前記回帰式(Vm=A・(Ec))の定数A及び定数
nの値は、それぞれ、以下の様になる。
Similarly to FIG. 5, in the range of the value of the ideal collision energy Ec in which the test specimen does not break in the collision fatigue test, the relationship between the generated voltage Vm and the ideal collision energy Ec is represented by one line on the log-logarithmic coordinate. Line up on a straight line. In this example,
The values of the constant A and the constant n in the regression equation (Vm = A · (Ec) n ) are as follows.

【0029】A=7.9 n=0.412 理想的衝突エネルギーEcの値が、衝突疲労限(この場
合には、9.3±1.4ミリジュール)を超えると、両
者の関係は、上記の回帰式から外れる。この範囲では、
理想的衝突エネルギーEcの増加に伴ない、発生電圧が
急激に増大した後、ほぼ一定の値(約150ボルト)程
度の値で安定する。更に、理想的衝突エネルギーEcの
値が増加すると(約60ミリジュール)、最初の衝撃負
荷で試験体が破壊する様になる。
A = 7.9 n = 0.412 When the value of the ideal collision energy Ec exceeds the collision fatigue limit (in this case, 9.3 ± 1.4 mJ), the relationship between the two becomes: Deviates from the above regression equation. In this range,
After the generated voltage sharply increases with an increase in the ideal collision energy Ec, it stabilizes at a substantially constant value (about 150 volts). Furthermore, when the value of the ideal collision energy Ec increases (about 60 mJ), the specimen will break at the first impact load.

【0030】図5及び図6から分かる様に、圧電セラミ
ックスに衝撃負荷を与えたときの、理想的衝突エネルギ
ーEc対発生電圧Vmの関係は、理想的衝突エネルギー
Ecの値が小さい範囲では、両対数座標上で一本の直線
上に並び、理想的衝突エネルギーEcがある値を超える
と、急激に発生電圧Vmが増大し始める。この様に直線
関係から外れ始めるときの理想的衝突エネルギーEcの
値は、その圧電セラミックスの衝突疲労限と良く一致し
ている。
As can be seen from FIGS. 5 and 6, when an impact load is applied to the piezoelectric ceramics, the relationship between the ideal collision energy Ec and the generated voltage Vm is such that the relationship between the ideal collision energy Ec and the generated voltage Vm is small when the value of the ideal collision energy Ec is small. When the ideal collision energy Ec exceeds a certain value, the generated voltage Vm suddenly starts to increase. As described above, the value of the ideal collision energy Ec at the time of starting to deviate from the linear relationship is in good agreement with the collision fatigue limit of the piezoelectric ceramic.

【0031】従って、圧電セラミックスに衝撃負荷を与
え、理想的衝突エネルギーEc及び発生電圧Vmを測定
し、両者の関係を両対数座標上にプロットして、両者の
間の前記回帰式(Vm=A・(Ec))の定数A及び
定数nの値を求め、この回帰式から計算される発生電圧
と、実際に測定された発生電圧の値の差が、所定の限界
値を超える時の理想的衝突エネルギーEcの値を求めれ
ば、衝突疲労試験を行わずに、その圧電セラミックスの
衝突疲労限を推定することができる。
Therefore, an impact load is applied to the piezoelectric ceramic, the ideal collision energy Ec and the generated voltage Vm are measured, and the relationship between the two is plotted on a logarithmic coordinate system, and the regression equation (Vm = Am) between the two is plotted. The values of the constants A and n of (Ec) n ) are obtained, and the ideal value when the difference between the generated voltage calculated from the regression equation and the actually measured generated voltage exceeds a predetermined limit value. If the value of the dynamic collision energy Ec is obtained, the collision fatigue limit of the piezoelectric ceramic can be estimated without performing a collision fatigue test.

【0032】なお、この例で用いたPZT系の圧電セラ
ミックスの場合、前記回帰式において、定数Aは7.5
以上11.5以下となり、定数nは0.4以上0.5以
下となる。また、この場合、前記所定の限界値は、例え
ば、3ボルト程度の値が適当である。
In the case of the PZT piezoelectric ceramic used in this example, the constant A in the regression equation is 7.5.
And the constant n is 0.4 or more and 0.5 or less. In this case, the predetermined limit value is, for example, approximately 3 volts.

【0033】[0033]

【発明の効果】本発明の方法によれば、圧電セラミック
スを実際に破壊させることなく、少数の試料を用いて、
短時間で容易に圧電セラミックスの衝突疲労限を推定す
ることができる。
According to the method of the present invention, a small number of samples can be used without actually destroying the piezoelectric ceramic.
The collision fatigue limit of the piezoelectric ceramic can be easily estimated in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】衝突疲労試験で使用される試験体の形状を示す
図、(a)は平面図、(b)は立面図、(c)は軸方向
断面図である。
FIG. 1 is a view showing a shape of a test body used in a collision fatigue test, (a) is a plan view, (b) is an elevation view, and (c) is an axial sectional view.

【図2】衝突疲労試験装置の概要を示す図。FIG. 2 is a diagram showing an outline of a collision fatigue test device.

【図3】静的圧縮応力下での圧電セラミックスの衝突疲
労試験の結果を示す図。
FIG. 3 is a view showing a result of a collision fatigue test of a piezoelectric ceramic under a static compressive stress.

【図4】静的圧縮応力が無い状態での圧電セラミックス
の衝突疲労試験の結果を示す図。
FIG. 4 is a view showing a result of a collision fatigue test of a piezoelectric ceramic in a state where there is no static compressive stress.

【図5】静的圧縮応力下での理想的衝突エネルギーと発
生電圧の関係を示す図。
FIG. 5 is a diagram showing a relationship between ideal collision energy and generated voltage under static compressive stress.

【図6】静的圧縮応力が無い状態での理想的衝突エネル
ギーと発生電圧の関係を示す図。
FIG. 6 is a diagram showing a relationship between ideal collision energy and generated voltage in a state where there is no static compressive stress.

【符号の説明】[Explanation of symbols]

1・・・試験体、 2・・・スリーブ、 3a、3b・・・電極、 4a、4b・・・リード線、 5・・・オッシロスコープ、 6・・・重錘。 DESCRIPTION OF SYMBOLS 1 ... Test body, 2 ... Sleeve, 3a, 3b ... Electrode, 4a, 4b ... Lead wire, 5 ... Oscilloscope, 6 ... Weight.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧電セラミックスの衝突疲労限を、非破
壊的に推定する方法であって、 圧電セラミックスに、理想的衝突エネルギーEcの値を
変えながら、順に衝撃負荷を与え、 各衝撃負荷を与えたときに圧電セラミックスに発生する
電圧Vmを測定し、 両対数座標上で、理想的衝突エネルギーEcの増大に対
して発生電圧Vmが直線的に増大する部分の関係に基づ
いて、次の回帰式中の定数A及び定数nの値を求め、 Vm=A・(Ec) この回帰式から計算される発生電圧の値と、実際に測定
された発生電圧の値との差が、所定の限界値を超える時
の理想的衝突エネルギーEcの値を、その圧電セラミッ
クスの衝突疲労限の推定値とすることを特徴とする圧電
セラミックスの衝突疲労限の推定方法。
1. A method for non-destructively estimating a collision fatigue limit of a piezoelectric ceramic, comprising sequentially applying an impact load to the piezoelectric ceramic while changing a value of an ideal collision energy Ec. When the voltage Vm generated in the piezoelectric ceramic is measured, the following regression equation is obtained on the logarithmic coordinate based on the relationship between the portion where the generated voltage Vm increases linearly with the increase in the ideal collision energy Ec. Vm = A · (Ec) n The difference between the value of the generated voltage calculated from this regression equation and the value of the actually measured generated voltage is a predetermined limit. A method for estimating the collision fatigue limit of piezoelectric ceramics, wherein the value of the ideal collision energy Ec when the value exceeds the value is used as the estimated value of the collision fatigue limit of the piezoelectric ceramic.
【請求項2】 前記圧電セラミックスは、PZT系の圧
電セラミックスであることを特徴とする請求項1に記載
の圧電セラミックスの衝突疲労限の推定方法。
2. The method according to claim 1, wherein the piezoelectric ceramic is a PZT-based piezoelectric ceramic.
【請求項3】 前記回帰式において、理想的衝突エネル
ギーEcの単位をミリジュールとし、発生電圧の単位を
ボルトとしたとき、定数Aが7.5以上11.5以下で
あり、定数nが0.4以上0.5以下であることを特徴
とする請求項2に記載の圧電セラミックスの衝突疲労限
の推定方法。
3. In the regression equation, when the unit of the ideal collision energy Ec is millijoule and the unit of the generated voltage is volt, the constant A is not less than 7.5 and not more than 11.5, and the constant n is 0. 3. The method according to claim 2, wherein the value is not less than 4 and not more than 0.5.
【請求項4】 前記所定の限界値を、3ボルトとするこ
とを特徴とする請求項2に記載の圧電セラミックスの衝
突疲労限の推定方法。
4. The method according to claim 2, wherein the predetermined limit value is 3 volts.
JP2000048154A 2000-02-24 2000-02-24 Method for estimating impact fatigue limit of piezoelectric ceramics Expired - Fee Related JP4220645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048154A JP4220645B2 (en) 2000-02-24 2000-02-24 Method for estimating impact fatigue limit of piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048154A JP4220645B2 (en) 2000-02-24 2000-02-24 Method for estimating impact fatigue limit of piezoelectric ceramics

Publications (2)

Publication Number Publication Date
JP2001235413A true JP2001235413A (en) 2001-08-31
JP4220645B2 JP4220645B2 (en) 2009-02-04

Family

ID=18570278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048154A Expired - Fee Related JP4220645B2 (en) 2000-02-24 2000-02-24 Method for estimating impact fatigue limit of piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JP4220645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553421A2 (en) * 2004-01-12 2005-07-13 Siemens Aktiengesellschaft Method and device for testing a piezoelectric actuator
JP2006337335A (en) * 2005-06-06 2006-12-14 Canon Inc Identifying apparatus
CN115468866A (en) * 2022-09-22 2022-12-13 宁波大学 Test method for Hopkinson one-dimensional dynamic compression force electrical characteristics of piezoelectric material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553421A2 (en) * 2004-01-12 2005-07-13 Siemens Aktiengesellschaft Method and device for testing a piezoelectric actuator
DE102004001692A1 (en) * 2004-01-12 2005-08-25 Siemens Ag Test method and test device for a piezo actuator
DE102004001692B4 (en) * 2004-01-12 2005-12-15 Siemens Ag Test method and test device for a piezo actuator
EP1553421A3 (en) * 2004-01-12 2006-07-19 Siemens Aktiengesellschaft Method and device for testing a piezoelectric actuator
JP2006337335A (en) * 2005-06-06 2006-12-14 Canon Inc Identifying apparatus
CN115468866A (en) * 2022-09-22 2022-12-13 宁波大学 Test method for Hopkinson one-dimensional dynamic compression force electrical characteristics of piezoelectric material
CN115468866B (en) * 2022-09-22 2023-07-28 宁波大学 Test method for Hopkinson one-dimensional dynamic compression force-electricity characteristics of piezoelectric material

Also Published As

Publication number Publication date
JP4220645B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP2001235413A (en) Method for estimating impact fatigue limit of piezoelectric ceramics
JP2010243387A (en) Delayed destructive test method and tester by indentation method
Jonestt et al. Fracture strength of polycrystalline silicon
Unterreitmeier et al. An acoustic emission sensor system for thin layer crack detection
JP2713106B2 (en) Method for detecting property change of rubber body
Mason et al. The Use of High‐Power Ultrasonics (Macrosonics) in Studying Fatigue in Metals
JPS59214721A (en) Vibration detecting set of portable vibrometer
JPH01150829A (en) Method for adjusting mechanical impact force in processing electronic chip parts and mechanical impact force sensor
Fernandez et al. Leadframe-to-mold adhesion performance of different leadframe surface morphologies
Srinivasan et al. Tensile strength evaluation of polycrystalline SiC fibers
EP1898213A1 (en) Method for reduction of ultrasonic power during control of a component, in particular a solid component, by ultrasonically excited thermography
JP3020619B2 (en) Insulation inspection method for columnar insulator
JPS5899760A (en) Probe device
Kirkpatrick et al. On the bending strength of single-crystal silicon theta-like specimens
JP5356148B2 (en) Prober apparatus and inspection method
JPH06123684A (en) Fatigue test piece
Zhao Dynamic damage analysis of thin film stacked structures for microelectronic devices
JP2631339B2 (en) Method for processing the tip of metal ultrafine wire and jig for tip processing
JPH07225180A (en) Measuring method of fracture toughness
Borger et al. Strength characterisation of small ceramic discs using the ball on three balls test.
JP2017138142A (en) Improvement method of fatigue life and manufacturing method of structure
SU1227808A1 (en) Method of determining the strength of rock
Reiner et al. MEMS Based Transducer Designs for Monitoring High Speed Impacts
DE3641688A1 (en) Method of quality testing an electrode layer on a semiconductor component
CN113466038A (en) Detection sample for fracture toughness and detection method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees