JP2001233627A - Method and apparatus for manufacturing spherical silica powder - Google Patents

Method and apparatus for manufacturing spherical silica powder

Info

Publication number
JP2001233627A
JP2001233627A JP2000044196A JP2000044196A JP2001233627A JP 2001233627 A JP2001233627 A JP 2001233627A JP 2000044196 A JP2000044196 A JP 2000044196A JP 2000044196 A JP2000044196 A JP 2000044196A JP 2001233627 A JP2001233627 A JP 2001233627A
Authority
JP
Japan
Prior art keywords
spherical silica
silica powder
powder
cooling gas
temperature flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000044196A
Other languages
Japanese (ja)
Other versions
JP4294191B2 (en
Inventor
Kazuya Yamamoto
一也 山本
Hideaki Nagasaka
英昭 長坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000044196A priority Critical patent/JP4294191B2/en
Publication of JP2001233627A publication Critical patent/JP2001233627A/en
Application granted granted Critical
Publication of JP4294191B2 publication Critical patent/JP4294191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To stably produce, in an industrial scale, spherical silica powder having excellent dispersibility fluidity, filling property and the like, and excellent as a filter to be used for preparing various resin compositions. SOLUTION: This process comprises the steps in which siliceous raw material powder is injected into high temperature flame formed by a combustible gas and a supporting gas to heat-treat the siliceous powder, subsequently the treated powder is classified, and spherical silica particles of desired particle sizes are collected, wherein cooling gas is supplied from the position higher than the top of the high temperature flame, being separated from the flame. The apparatus for manufacturing spherical silica powder is provided with a burner (2) on the upper part of the furnace body of a vertical type furnace (6), and a collecting apparatus linked to the lower part of the furnace. In the manufacturing apparatus, a partition wall (4) is placed in such a state that the high temperature flame (3) formed by the above burner is surrounded, and a feeding port (5) for a cooling gas is placed on a side wall of the furnace body so that the cooling gas can be supplied between the partition wall and the above furnace body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球状シリカ粉末の
製造方法及び製造装置に関する。より詳細には、分散性
・流動性・充填性等に優れ、各種樹脂組成物に使用され
る充填材として良質な球状シリカ粉末を工業的規模で安
定して製造する方法とその装置に関するものである。
The present invention relates to a method and an apparatus for producing spherical silica powder. More specifically, the present invention relates to a method and an apparatus for stably producing, on an industrial scale, high-quality spherical silica powder having excellent dispersibility, fluidity, and filling properties, and as a filler used in various resin compositions. is there.

【0002】[0002]

【従来の技術】純度の高いシリカを高温で溶融し、冷却
したものは非晶質網目構造を持ち、低膨脹性で耐熱衝撃
性があり、しかも熱伝導率が低いため、耐熱材料として
古くから用いられている。また、その粉末も化学的に安
定で、高い絶縁性を持ち、高周波誘電体損失も低いこと
から、特に半導体封止材用フィラーとして賞用されてい
る。
2. Description of the Related Art Silica of high purity, which has been melted at a high temperature and cooled, has an amorphous network structure, low expansion properties, thermal shock resistance, and low thermal conductivity. Used. In addition, the powder is chemically stable, has high insulation properties, and has a low high-frequency dielectric loss.

【0003】半導体封止材用フィラーとして従来は、破
砕状シリカ粉末が使用されていたが、近年の表面実装方
式の採用、デバイスの高性能化、更にはチップの大型化
とパッケージの薄型化が進むのに伴い、封止材の半田耐
熱性改善の要求が高まる中、高充填でき、かつ流動性に
優れる球状シリカ粉末が使用されるようになった。
Conventionally, crushed silica powder has been used as a filler for a semiconductor encapsulant. However, in recent years, adoption of a surface mounting method, enhancement of device performance, and increase in size of a chip and reduction in the thickness of a package have been required. As the demand for improving the solder heat resistance of the encapsulant increases with the progress, spherical silica powder that can be highly filled and has excellent fluidity has come to be used.

【0004】しかしながら、封止材中に占めるフィラー
の比率を単に高めていった場合、成形時の流動性は低下
し、チップを搭載したダイが変位したり金ワイヤーの流
れや切断を伴う等、様々な成形性悪化を招く問題があ
る。
However, if the ratio of the filler in the encapsulant is simply increased, the fluidity at the time of molding decreases, and the die on which the chip is mounted is displaced, and the flow or cutting of the gold wire is accompanied. There is a problem that various deterioration of the moldability is caused.

【0005】そこで、フィラーの高充填下で封止時の成
形性を損なわせぬよう封止材の流動性を改善する技術と
して、例えば、ロジンラムラー線図で表示した直線の勾
配を0.6〜0.95とし粒度分布を広げる方法(特開
平6―80863号公報)、ワーデルの球形度で0.7
〜1.0とし粒子の球形度をより高くする方法(特開平
3―66151号公報)、更には封止材の流動性をより
高めるため、平均粒子径が0.1〜1μm程度の球状微
小粉末を少量添加配合する方法(特開平5―23932
1号公報)等が提案され実用化に至っている。
Therefore, as a technique for improving the fluidity of the sealing material so as not to impair the moldability at the time of sealing under high filling of the filler, for example, the gradient of a straight line represented by a rosin-Rammler diagram is set to 0.6 to 100%. A method of expanding the particle size distribution to 0.95 (Japanese Patent Laid-Open No. 6-80863);
A method of increasing the sphericity of particles to 1.0 or less (Japanese Patent Application Laid-Open No. 3-66151), and in order to further enhance the fluidity of the sealing material, spherical fine particles having an average particle diameter of about 0.1 to 1 μm. A method of adding and blending a small amount of powder (Japanese Patent Laid-Open No. 5-23932)
No. 1) has been proposed and has been put to practical use.

【0006】このような球状シリカ粉末の製造方法とし
ては、例えば、金属アルコラートを特定の条件でゾルゲ
ル法により析出させ球状化する方法、二酸化珪素(石英
粉、珪石粉等)を高温火炎中で溶融又は軟化により球状
化する方法、金属シリコン微粒子を火炎中に投じて酸化
反応させながら球状化する方法等があるが、粒子径の異
なる粒子群を同時に幅広く多量に生産できることから二
酸化珪素の火炎球状化法が現在主流である。
As a method for producing such a spherical silica powder, for example, a method in which a metal alcoholate is precipitated by a sol-gel method under specific conditions to form a spherical form, a method in which silicon dioxide (quartz powder, silica powder, etc.) is melted in a high-temperature flame Alternatively, there is a method of spheroidizing by softening, a method of spheroidizing metal silicon fine particles by throwing them into a flame and causing an oxidation reaction, and the like. The law is currently mainstream.

【0007】火炎球状化法としては、炉頂にバーナーを
備えた縦型炉を使用した技術が主体である。例えば、実
公平6―39785号公報には、溶融効率改善による生
産性向上を図るため、球状化バーナーにより形成された
高温火炎を包囲させる筒体を炉体の上部に設けた縦型炉
の使用が記載されている。
As the flame spheroidizing method, a technique using a vertical furnace having a burner on the furnace top is mainly used. For example, Japanese Utility Model Publication No. Hei 6-39785 discloses the use of a vertical furnace in which a cylindrical body surrounding a high-temperature flame formed by a spheroidizing burner is provided at the upper part of a furnace body in order to improve productivity by improving melting efficiency. Is described.

【0008】また、特開平10―85577号公報に
は、特殊構造のバーナーを炉体上部に設置し、バーナー
や炉内からの塊状物の発生を抑える目的で、溶融粉体が
炉内壁に付着しないよう接線方向下向きに空気を導入す
る遮断空気導入孔の設けられた縦型炉の使用が記載され
ている。
Japanese Patent Application Laid-Open No. H10-85577 discloses that a burner having a special structure is installed at the upper part of a furnace body and molten powder adheres to the furnace inner wall for the purpose of suppressing generation of lumps from the burner and the furnace. The use of a vertical furnace provided with a shut-off air introduction hole for introducing air tangentially downward so as not to disturb is described.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、実公平
6―39785号公報に記載された構造の縦型炉を用い
ることによって、火炎温度をより高温に維持させること
は可能であるも、火炎包囲筒内壁への塊状溶融物(イン
ゴット状)の発生は不可避であり、これが成長すること
によって筒内閉塞を招いたり、塊状溶融物が落下して炉
体下部を閉塞させたりする等、即操業停止を余儀なくさ
れる事態を伴い、低燃費操業が可能な反面、生産性に問
題が残る。
However, it is possible to maintain a higher flame temperature by using a vertical furnace having a structure described in Japanese Utility Model Publication No. 6-39785. It is unavoidable that a lump of molten material (ingot shape) will be generated on the inner wall, and the growth of the lump will cause blockage in the cylinder, or the lump of molten lump will drop and block the lower part of the furnace body. With the necessity, fuel-efficient operation is possible, but there remains a problem in productivity.

【0010】また、特開平10―85577号公報記載
の縦型炉では、炉内壁に溶融粉体の付着を効果的に防止
することができるが、旋回空気が火炎と干渉し合って火
炎温度の大幅低下を招き、サイクロンで捕集される粉末
の溶融化率が大幅に低下するばかりか、流入空気の急冷
によってバッグフィルターで捕集される気相析出粒子成
分主体の微小粉末の粒子径制御が困難となり、平均粒子
径が0.1μmよりも著しく小さくなって、流動性に優
れる良質な球状シリカ粉末を得ることができない。
Further, in the vertical furnace described in Japanese Patent Application Laid-Open No. H10-85577, adhesion of the molten powder to the furnace inner wall can be effectively prevented, but the swirling air interferes with the flame and the flame temperature becomes lower. Not only does this significantly reduce the melting rate of the powder collected by the cyclone, but also controls the particle size of the fine powder mainly composed of vapor-phase precipitated particles collected by the bag filter due to rapid cooling of the inflow air. As a result, the average particle diameter becomes significantly smaller than 0.1 μm, and a high-quality spherical silica powder having excellent fluidity cannot be obtained.

【0011】上記したように、従来の縦型炉を使用した
球状シリカ粉末の製造方法では、流動性・分散性に優れ
る良質な球状シリカ粉末を安定して大量生産することが
困難であり、新たな技術の開発が待たれていた。
As described above, in the conventional method for producing spherical silica powder using a vertical furnace, it is difficult to stably mass-produce high-quality spherical silica powder having excellent fluidity and dispersibility. The development of new technologies has been awaited.

【0012】本発明は上記に鑑みてなされたものであ
り、その目的は、上記問題を払拭し、流動性に優れる溶
融化率の高い球状粉末と、気相成長で得られたフューム
ド粒子主体で構成される球状微小粉末とを効率よく長期
間安定して製造することのできる球状シリカ粉末の製造
方法及び製造装置を提供することである。
The present invention has been made in view of the above, and an object of the present invention is to eliminate the above-mentioned problems, and to provide a spherical powder having excellent fluidity and a high melting rate, and fumed particles obtained by vapor phase growth. An object of the present invention is to provide a method and an apparatus for producing a spherical silica powder capable of efficiently and stably producing the constituted spherical fine powder.

【課題を解決するための手段】[Means for Solving the Problems]

【0013】即ち、本発明は、可燃ガスと助燃ガスとに
よって形成された高温火炎中にシリカ質原料粉末を噴射
し加熱処理した後、分級を行い、所望粒子径の球状シリ
カ粉末を捕集する製造方法において、上記高温火炎の末
端部よりも上部位置から、高温火炎と隔離させて冷却ガ
スを供給することを特徴とする球状シリカ粉末の製造方
法である。特に、冷却ガス量が可燃ガス量の10〜15
0体積倍量であって、しかも旋回流を与えて供給し、平
均粒子径0.1〜60μmの球状シリカ粉末を捕集する
ことが好ましい。
That is, according to the present invention, the silica-based raw material powder is injected into a high-temperature flame formed by the combustible gas and the auxiliary combustion gas, heated, and then classified to collect spherical silica powder having a desired particle diameter. A method for producing a spherical silica powder, characterized in that a cooling gas is supplied from a position above an end portion of the high-temperature flame while being isolated from the high-temperature flame. In particular, the cooling gas amount is 10 to 15 times the combustible gas amount.
It is preferable to supply the mixture with a volume of 0 times and supplying a swirling flow to collect spherical silica powder having an average particle diameter of 0.1 to 60 μm.

【0014】また、本発明は、縦型炉(6)の炉体上部
にバーナー(2)が設置され、炉体下部に捕集装置が接
続されてなる球状シリカ粉末の製造装置において、上記
バーナーによって形成された高温火炎(3)を囲周する
隔壁(4)を設け、しかもその隔壁と上記炉体との間に
冷却ガスを供給できるように、冷却ガス供給口(5)を
炉体側壁に設けてなることを特徴とする球状シリカ粉末
の製造装置である。特に、旋回流を与えて冷却ガスを供
給できるように、冷却ガス供給口(5)が設けられてな
ることが好ましい。
Further, the present invention relates to an apparatus for producing spherical silica powder, wherein a burner (2) is installed on an upper part of a furnace body of a vertical furnace (6) and a collector is connected to a lower part of the furnace body. A partition (4) surrounding the high-temperature flame (3) formed by the above is provided, and a cooling gas supply port (5) is provided at a side of the furnace body so that a cooling gas can be supplied between the partition and the furnace body. A spherical silica powder production apparatus characterized in that the apparatus is provided. In particular, it is preferable that a cooling gas supply port (5) is provided so that a cooling gas can be supplied by giving a swirling flow.

【0015】更に、本発明は、上記球状シリカ粉末の製
造装置を用いて、シリカ質原料を加熱処理した後、分級
を行い、所望粒子径の球状シリカ粉末を捕集することを
特徴とする球状シリカ粉末の製造方法である。
Furthermore, the present invention provides a spherical silica powder characterized in that the silica-based raw material is subjected to heat treatment using the above-mentioned apparatus for producing a spherical silica powder, and then classified to collect a spherical silica powder having a desired particle diameter. This is a method for producing silica powder.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して更に詳しく
本発明について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0017】図1は、本発明の製造方法又は製造装置の
一例を示す概略図であり、図2はその縦型炉(6)の概
略平面図である。図3は、従来例の一例を示す概略図で
ある。いずれも、原料フィーダー(1)と縦型炉(6)
と捕集装置(9、10等)とを基本構成としている。ま
た、その捕集装置のいずれもは、高温火炎(3)の高温
排ガス中で溶融した球状シリカ粉末とこれに混在する気
相析出した微小球状粉末(フュームド粉末成分)とを、
ブロワ(11)による吸引で分級するための、例えばサ
イクロン(9)と、サイクロンでは捕集できなかった微
小球状粉末を回収するバッグフィルター(10)とによ
り構成されている。(12)は吸引ガス量制御ダンパ、
(13)はガス排気口、(14)は粉体抜き取り装置で
ある。
FIG. 1 is a schematic view showing an example of the manufacturing method or apparatus according to the present invention, and FIG. 2 is a schematic plan view of the vertical furnace (6). FIG. 3 is a schematic diagram showing an example of a conventional example. In each case, raw material feeder (1) and vertical furnace (6)
And a trapping device (9, 10, etc.). In addition, each of the trapping devices is composed of a spherical silica powder melted in a high-temperature exhaust gas of a high-temperature flame (3) and a fine spherical powder (fumed powder component) mixed in a vapor phase,
It comprises, for example, a cyclone (9) for classification by suction by a blower (11), and a bag filter (10) for collecting fine spherical powder that could not be collected by the cyclone. (12) is a suction gas amount control damper,
(13) is a gas exhaust port, and (14) is a powder extracting device.

【0018】本発明の大きな特徴は、縦型炉(6)の構
造、特に炉体本体の上部構造にあって、隔壁(4)と冷
却ガス吸引口(5)とを備えていることである。
A major feature of the present invention is that the structure of the vertical furnace (6), particularly the upper structure of the furnace body, is provided with a partition (4) and a cooling gas suction port (5). .

【0019】隔壁は、特に高温火炎の末端付近の乱れを
なくするために、少なくとも高温火炎(3)の末端部か
ら高温火炎の任意位置までの間にわたって、しかも高温
火炎を囲周して設けることが必要である。好ましくは、
高温火炎の中央付近から末端部までの間、特に好ましく
は高温火炎の長さ全体にわたって設けることである。図
1には、高温火炎の長さ全体にわたって設けられた例が
示されている。高温火炎の末端部から更に下部方法への
隔壁は、設けても設けなくてもよい。
The partition wall is provided at least from the end of the high-temperature flame (3) to an arbitrary position of the high-temperature flame and around the high-temperature flame in order to eliminate disturbance near the end of the high-temperature flame. is necessary. Preferably,
It is provided from near the center to the end of the hot flame, particularly preferably over the entire length of the hot flame. FIG. 1 shows an example provided over the entire length of the high-temperature flame. Partitions from the end of the hot flame to the lower method may or may not be provided.

【0020】隔壁と炉体の材質は、耐火材貼り、金属製
等、特に制限はないが、炉体自体を高温火炎の冷却器と
して機能させる場合には、例えばSUS304系、31
6系等のステンレスなどの金属製であることが好まし
く、適切な冷媒で冷却保護できる構造であることが特に
好ましい。隔壁は、炉体に螺合・溶接等によって設置さ
れる。
The material of the partition wall and the furnace body is not particularly limited, such as refractory material sticking, metal, etc. However, when the furnace body itself functions as a high-temperature flame cooler, for example, SUS304 series, 31
It is preferable to be made of a metal such as stainless steel of series 6 or the like, and it is particularly preferable to have a structure that can be cooled and protected by an appropriate refrigerant. The partition is installed on the furnace body by screwing, welding, or the like.

【0021】炉体の形状は、直胴型であってもよいが、
炉内壁への粉付着抑制効果を十分に確保するために、旋
回流の下向きの速度ベクトルを消滅させないよう勾配6
0〜85°のコーン型であることが好ましい。
The shape of the furnace body may be a straight body type,
In order to sufficiently secure the effect of suppressing powder adhesion to the inner wall of the furnace, the gradient 6 is set so as not to eliminate the downward velocity vector of the swirling flow.
It is preferably a cone of 0 to 85 °.

【0022】冷却ガス吸引口は、上記隔壁の設けられた
炉体側壁に、螺合・溶接等によって設けられる。これに
よって、冷却ガスは、高温火炎の末端部よりも上部位置
から、高温火炎と隔離させて供給されることになる。好
ましくは、冷却ガスが炉内壁を旋回して流れるように、
冷却ガス吸引口の開口部を炉体内壁に対して40〜90
°なる法線角度を設けて設置することである。開口部の
形状は、矩形、円形、多角形、楕円等のいずれであって
もよい。
The cooling gas suction port is provided by screwing, welding, or the like on the side wall of the furnace body provided with the partition wall. As a result, the cooling gas is supplied from a position above the end of the high-temperature flame and is separated from the high-temperature flame. Preferably, the cooling gas is swirled through the furnace inner wall,
The opening of the cooling gas suction port is set at 40 to 90
The angle is set at a normal angle of °. The shape of the opening may be any of a rectangle, a circle, a polygon, an ellipse, and the like.

【0023】従来は、図3に示されるように、隔壁を設
けないで、高温火炎の末端部よりも下部位置から冷却ガ
スが供給されていたので、炉内壁に溶融粉が付着成長
し、これが落下・成長を繰り返すことによって歩留まり
が小さくなり、場合によっては成長した粉体層が塊状物
となって落下して即操業停止を余儀なくされる事態に陥
った。特に、冷却ガスに旋回流を与えて炉内に供給する
場合では、旋回流が上昇し高温火炎と干渉して火炎のネ
ジレを伴った。このような状態下では、逆に溶融粉の溶
融率及び球形度が低下するばかりか、フュームド粒子も
肥大せず、流動性助長効果に優れる良質な微小球状シリ
カ粉末を得ることができなかった。
Conventionally, as shown in FIG. 3, since the cooling gas is supplied from a position lower than the end of the high-temperature flame without providing a partition wall, the molten powder adheres and grows on the inner wall of the furnace. By repeatedly dropping and growing, the yield was reduced, and in some cases, the grown powder layer became a lump and fell and was forced to stop operation immediately. In particular, when a swirling flow is given to the cooling gas and supplied into the furnace, the swirling flow rises and interferes with the high-temperature flame, causing the flame to twist. In such a state, conversely, not only the melting rate and the sphericity of the molten powder are reduced, but also the fumed particles are not enlarged, and a high-quality fine spherical silica powder excellent in the effect of promoting fluidity cannot be obtained.

【0024】これに対し、本発明のように隔壁を設け、
炉内壁と隔壁との間から冷却ガスを好ましくは旋回流を
与えて供給することによって、冷却ガスと高温火炎とが
干渉するのを緩和することができ、上記従来の問題を解
消することができる。冷却ガスとしては、空気、酸素、
アルゴン、窒素等が使用される。
On the other hand, a partition is provided as in the present invention,
By supplying the cooling gas preferably between the furnace inner wall and the partition wall while giving a swirling flow, interference between the cooling gas and the high-temperature flame can be reduced, and the above-described conventional problem can be solved. . As cooling gas, air, oxygen,
Argon, nitrogen and the like are used.

【0025】冷却ガス量は、可燃ガス量の10〜150
体積倍量が好ましく、その量は炉体下部に設けられた2
次冷却ガス取込バルブ(8)の開度を調整することによ
って調節することができる。冷却ガス量が可燃ガス量の
150体積倍量よりも多いと、冷却ガスの一部が隔壁近
傍を上昇し炉頂部で反転下降することにより、高温火炎
と干渉するようになり、溶融粉の溶融率と球形度の低下
が起こりやすくなり、更にはフュームド粒子の気相成長
が十分に進行せず、0.1μmよりも細かい粒子が多く
なる。一方、10体積倍量よりも少ないと、上記問題は
緩和され、また0.1μmより大きなフュームド粒子を
多く捕集することができるようになるが、隔壁を含む炉
内壁全域において、溶融粉の付着成長が増大する傾向を
示すようになる。
The cooling gas amount is 10 to 150 times the combustible gas amount.
A volume doubled volume is preferable, and the volume is 2 volumes provided at the lower part of the furnace body.
It can be adjusted by adjusting the opening of the secondary cooling gas intake valve (8). If the amount of the cooling gas is greater than 150 times the volume of the combustible gas, a part of the cooling gas rises near the partition wall and reverses and descends at the furnace top, so that it interferes with the high-temperature flame and melts the molten powder. The rate and sphericity tend to decrease, and furthermore, the vapor phase growth of fumed particles does not proceed sufficiently, and the number of particles finer than 0.1 μm increases. On the other hand, if the volume is less than 10 times the volume, the above-mentioned problem is alleviated, and more fumed particles larger than 0.1 μm can be collected. The growth tends to increase.

【0026】本発明で使用されるバーナーは、可燃ガス
と助燃ガスが予混合されて供給される方式のものや、こ
れらを別々に供給してバーナー先端で燃焼させる二流体
ノズル方式等が好ましく、その本数は1又は2以上であ
る。
The burner used in the present invention is preferably of a type in which the combustible gas and the auxiliary gas are premixed and supplied, or a two-fluid nozzle type in which these are separately supplied and burned at the tip of the burner. The number is one or two or more.

【0027】高温火炎形成用可燃ガスとしては、アセチ
レン、プロパン、ブタン等の炭化水素、又はこれらの混
合ガスを用いることができる。また、助燃ガスとして
は、90%以上、特に99%以上の酸素を含むガスが使
用される。
As the combustible gas for forming a high-temperature flame, hydrocarbons such as acetylene, propane and butane, or a mixed gas thereof can be used. A gas containing 90% or more, particularly 99% or more oxygen, is used as the auxiliary combustion gas.

【0028】本発明に用いるシリカ質原料は、シリカ質
であれば特に制限はない。また、その形状は、球状、不
定形状、エッジを摩砕した角取り状等いずれであっても
よく、更にはこれらの混合粉であってもよい。また、そ
の結晶構造についても制限はなく、結晶質、非晶質又は
それらの混合物が使用される。
The siliceous raw material used in the present invention is not particularly limited as long as it is siliceous. The shape may be any of a spherical shape, an irregular shape, a chamfered shape obtained by grinding an edge, and the like, or a mixed powder thereof. There is no limitation on the crystal structure, and crystalline, amorphous, or a mixture thereof is used.

【0029】シリカ質原料粉末の平均粒子径としては、
0.5〜60μmであればよい。フュームド粒子主体で
構成されるバッグフィルター捕集粉末を高収率で取得す
る場合は、細かい方がよく、好ましくは0.5〜25μ
m、より好ましくは0.5〜10μmである。
The average particle size of the siliceous raw material powder is as follows:
It may be 0.5 to 60 μm. When obtaining a bag filter collection powder mainly composed of fumed particles in high yield, finer is better, preferably 0.5 to 25 μm.
m, more preferably 0.5 to 10 μm.

【0030】シリカ質原料粉末を搬送させるキャリアガ
スとしては、上記助燃ガスと同様なガスが用いられ、原
料粉末1に対する混合比率を0.1〜3.0kg/Nm
3とすることが望ましい。
As the carrier gas for transporting the siliceous raw material powder, the same gas as the above-mentioned auxiliary gas is used, and the mixing ratio to the raw material powder 1 is 0.1 to 3.0 kg / Nm.
It is desirable to set it to 3 .

【0031】本発明で使用される捕集装置について説明
すると、捕集機としては、重沈室、サイクロン、回転翼
を有する分級機、バッグフィルター等の適宜数が用いら
れる。捕集機の操作条件を変えることによって、各捕集
機における目的粒子の取得率を変えることができる。各
分級機から取得された粉末は、そのまま製品とすること
もできるし、また適宜混合して粉体特性の異なる粉末と
することもできる。この分級操作は、バッグフィルター
等により一括捕集した後、別ラインで行ってもよいが、
フュームド微小粉末を効率よく分離回収するには、分散
性に優れる輸送工程中に織り込んで行うことが望まし
い。
The collecting device used in the present invention will be described. As the collecting device, an appropriate number of heavy sedimentation chambers, cyclones, classifiers having rotating blades, bag filters and the like are used. By changing the operating conditions of the collector, the acquisition rate of the target particles in each collector can be changed. The powder obtained from each classifier can be used as a product as it is, or can be appropriately mixed to obtain powders having different powder characteristics. This classification operation may be performed on another line after collective collection by a bag filter or the like,
In order to efficiently separate and recover the fumed fine powder, it is desirable to incorporate the fumed fine powder into a transportation step having excellent dispersibility.

【0032】本発明によって製造される球状シリカ粉末
の平均粒子径は、0.1〜60μmであることが好まし
い。0.1μm未満であると、流動性助長効果が乏しく
なり、また60μm超であると、その用途が封止材用フ
ィラーである場合、成型時のチップ損傷(マイクロクラ
ック)が発生するようになる。
The average particle size of the spherical silica powder produced according to the present invention is preferably 0.1 to 60 μm. If it is less than 0.1 μm, the effect of promoting fluidity is poor, and if it is more than 60 μm, chip damage (microcracks) at the time of molding occurs when the application is a filler for a sealing material. .

【0033】通常、球状シリカ粉末は、可燃ガスと助燃
ガスとの燃焼反応によって形成される高温火炎中に、原
料粉末を供給し、その融点以上で溶融球状化して製造さ
れる。このような方法で得られた粉末には極めて細かい
粒子サイズの気相析出成分(フュームド粒子)が含まれ
る。これは、高温火炎内において原料粉末の一部が蒸発
することにより、気相のSiOから粒子が成長し、その
後の急冷によって析出固化したものであり、溶融球状粉
と共に炉体を通過する。本発明においては、炉内に取り
込む冷却ガスの位置やその量を適正化することによっ
て、安定操業に不可欠な炉内壁に溶融粉が付着するのを
防止できたものであり、しかも溶融球状粉の溶融率を高
いレベルに維持したままフュームド粒子の粒子径制御を
可能にしたものである。更には、分級処理によって、安
定してこれらの球状シリカ粉末を分離回収することがで
きたものである。
Usually, the spherical silica powder is produced by supplying a raw material powder into a high-temperature flame formed by a combustion reaction between a combustible gas and a supporting gas, and melting and spheroidizing the powder at a temperature higher than its melting point. The powder obtained by such a method contains a gas phase deposition component (fumed particles) having an extremely fine particle size. This is due to the fact that a part of the raw material powder evaporates in the high-temperature flame, the particles grow from the gas phase SiO, and are precipitated and solidified by rapid cooling, and pass through the furnace together with the molten spherical powder. In the present invention, by optimizing the position and amount of the cooling gas taken into the furnace, it is possible to prevent the molten powder from adhering to the furnace inner wall, which is indispensable for stable operation, and furthermore, the molten spherical powder It is possible to control the particle size of fumed particles while maintaining the melting rate at a high level. Furthermore, these spherical silica powders could be stably separated and recovered by the classification treatment.

【0034】なお、本発明によって製造された球状シリ
カ粉末の分散性・流動性・充填性等の特性は、封止材に
代表されるエポキシ樹脂組成物中に充填した場合のスパ
イラルフロー値を測定することによって評価することが
できる。
The properties of the spherical silica powder produced according to the present invention, such as dispersibility, fluidity, and filling property, are measured by measuring a spiral flow value when filled in an epoxy resin composition represented by a sealing material. Can be evaluated.

【0035】[0035]

【実施例】以下、本発明を実施例、比較例をあげて更に
具体的に説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

【0036】実施例1〜3 図1に示される製造装置を用いた。縦型炉の炉体本体
は、直径1.5m、長さ6m、コーン勾配90°(直胴
型)、材質SUS316で水冷ジャケット方式である。
なお、隔壁は耐火物貼りである。粒度調整された天然珪
石粉末原料(平均粒子径12μm)をキャリアガス(酸
素25Nm3/Hr)にてバーナーに搬送させ、可燃ガ
ス(プロパン18Nm3/Hr)と酸素(65Nm3/H
r)で形成した高温火炎中に噴射させ、その際、2次冷
却ガス(空気)開度を調整し、炉上部より旋回吸入させ
る冷却ガス(空気)の流量を変更することによって、種
々の球状シリカ粉末をサイクロン及びバッグフィルター
から捕集した。
Examples 1 to 3 The manufacturing apparatus shown in FIG. 1 was used. The furnace body of the vertical furnace has a diameter of 1.5 m, a length of 6 m, a cone gradient of 90 ° (straight barrel type), a material of SUS316 and a water-cooled jacket system.
In addition, a partition is refractory-pasted. Natural silica rock powder material is particle size control (average particle size 12 [mu] m) is conveyed by a carrier gas (oxygen 25 Nm 3 / Hr) to the burner, the combustible gas (propane 18 Nm 3 / Hr) and oxygen (65 nm 3 / H
Injecting into the high-temperature flame formed in r), at this time, adjusting the opening degree of the secondary cooling gas (air) and changing the flow rate of the cooling gas (air) swirled and sucked from the upper part of the furnace, various spherical shapes are obtained. Silica powder was collected from the cyclone and bag filter.

【0037】比較例1 図3に示される製造装置を用い、表1に示される条件で
球状シリカ粉末を製造した。
Comparative Example 1 Using the production apparatus shown in FIG. 3, spherical silica powder was produced under the conditions shown in Table 1.

【0038】比較例2 図1に示される製造装置において、隔壁(4)の設置さ
れていない縦型炉を用いた。
Comparative Example 2 In the manufacturing apparatus shown in FIG. 1, a vertical furnace having no partition wall (4) was used.

【0039】上記で得られた球状シリカ粉末について、
平均粒子径、比表面積、溶融率を測定し、樹脂組成物
(封止材)を調合した場合の流動性の改善効果を、以下
に従い測定した。また、製造時における炉体内壁の粉付
着状況について、原料フィードを中断し、図に示す炉頂
の覗き窓から観察することにより行った。それらの結果
を表1に示す。
With respect to the spherical silica powder obtained above,
The average particle diameter, the specific surface area, and the melting rate were measured, and the effect of improving the fluidity when the resin composition (sealing material) was prepared was measured as follows. In addition, the state of powder adhesion on the inner wall of the furnace during the production was measured by stopping the feed of the raw material and observing the state through a viewing window at the furnace top shown in the figure. Table 1 shows the results.

【0040】(1)平均粒子径(D50) レーザー回折式粒度測定器から得られる質量又は体積粒
度分布曲線より求めた平均粒子径である。測定器はコー
ルター社「モデルLS−230」型を使用した。但し、
捕集粉の中で比表面積が30m2/gをこえる試作サン
プルについては、SEM観察による一次粒子のサイズで
代用した。
(1) Average particle diameter (D50) This is the average particle diameter determined from a mass or volume particle size distribution curve obtained from a laser diffraction type particle size analyzer. As a measuring instrument, a model “LS-230” manufactured by Coulter Inc. was used. However,
For the prototype sample having a specific surface area of more than 30 m 2 / g in the collected powder, the size of the primary particles obtained by SEM observation was substituted.

【0041】(2)比表面積 BET法にて求められる比表面積であり、湯浅アイオニ
クス社「モデル4−SORB」型を使用した。
(2) Specific surface area The specific surface area is determined by the BET method. A model 4-SORB manufactured by Yuasa Ionics Inc. was used.

【0042】(3)溶融率 測定は、CuKα線によるX線回折を行い、得られたピ
ーク面積によって製品中の結晶質分を定量し、標準試料
に対する残分を非晶質成分とみなし、これを溶融率と定
義した。溶融率値は、結晶質原料を使用した場合に溶融
程度を知る特性であるが、溶融率が高いものはよく粒子
が溶けて球形度も良好であることを示す球状化程度の代
用特性でもある。
(3) Melting rate In the measurement, X-ray diffraction using CuKα ray is performed, the crystalline content in the product is quantified based on the obtained peak area, and the residue relative to the standard sample is regarded as an amorphous component. Was defined as the melting rate. The melting rate value is a property of knowing the degree of melting when using a crystalline raw material, but a high melting rate is also a substitute property of the degree of spheroidization indicating that the particles are well melted and the sphericity is also good. .

【0043】(4)流動性の改善効果 得られた球状シリカ粉末を、表2に示す割合で各材料と
共にミキサーにてドライブレンドした後、これをロール
表面温度100℃のミキシングロールを用いて5分間混
練し冷却・粉砕してスパイラルフローの測定を行った。
測定は、スパイラルフロー金型を用い、EMMI−66
(Epoxy Molding Material I
nstitute ; Society of Pla
sticIndustry)に準拠して行った。成形温
度は、175℃、成形圧力は7.5MPa、成形時間は
90secである。流動性改善効果は、比較例4で示さ
れる流動性を100として改善指数を表中に示した。
(4) Effect of Improving Fluidity The obtained spherical silica powder was dry-blended with a mixer in a ratio shown in Table 2 with each material, and then mixed with a mixing roll having a roll surface temperature of 100 ° C. for 5 minutes. The mixture was kneaded for 5 minutes, cooled and pulverized, and the spiral flow was measured.
The measurement was performed using a spiral flow mold, and EMMI-66 was used.
(Epoxy Molding Material I
nsite; Society of Pla
(stickIndustry). The molding temperature is 175 ° C., the molding pressure is 7.5 MPa, and the molding time is 90 seconds. The fluidity improving effect is shown in the table with the improvement index assuming that the fluidity shown in Comparative Example 4 is 100.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】表1から明らかなように、本発明の球状シ
リカ粉末が充填された封止材の流動性は、高充填域であ
るにも拘わらず高レベルに改善されることがわかる。
As is clear from Table 1, the fluidity of the sealing material filled with the spherical silica powder of the present invention is improved to a high level despite the high filling area.

【0047】[0047]

【発明の効果】本発明の球状シリカ粉末の製造方法及び
製造装置によれば、分散性・流動性・充填性等に優れ、
各種樹脂組成物に使用される充填材として良質な球状シ
リカ粉末を工業的規模で安定して製造することができ
る。
According to the method and apparatus for producing a spherical silica powder of the present invention, the dispersibility, fluidity, filling property, etc. are excellent.
High quality spherical silica powder as a filler used in various resin compositions can be stably produced on an industrial scale.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の球状シリカ粉末の製造方法又は製造装
置の一例を示す概略図。
FIG. 1 is a schematic view showing an example of a method or apparatus for producing a spherical silica powder of the present invention.

【図2】縦型炉の概略平面図。FIG. 2 is a schematic plan view of a vertical furnace.

【図3】従来の球状シリカ粉末の製造方法又は製造装置
の一例を示す概略図
FIG. 3 is a schematic view showing an example of a conventional method or apparatus for producing spherical silica powder.

【符号の説明】[Explanation of symbols]

1 原料フィーダー 2 球状化バーナー 3 高温火炎 4 隔壁 5 冷却ガス供給管 6 縦型炉 7 2次冷却ガス供給管 8 冷却ガス供給量調整バルブ 9 サイクロン 10 バッグフィルター 11 ブロワ 12 吸引ガス量制御ダンパ 13 ガス排気口 14 粉体抜き取り装置 DESCRIPTION OF SYMBOLS 1 Raw material feeder 2 Spheroidizing burner 3 High temperature flame 4 Partition wall 5 Cooling gas supply pipe 6 Vertical furnace 7 Secondary cooling gas supply pipe 8 Cooling gas supply amount adjustment valve 9 Cyclone 10 Bag filter 11 Blower 12 Suction gas amount control damper 13 Gas Exhaust port 14 Powder extraction device

フロントページの続き Fターム(参考) 4G014 AF00 4G072 AA25 BB07 DD03 GG03 GG04 HH20 MM38 QQ20 RR30 TT01 UU07 4J002 AA001 CC052 CD041 CD051 DJ016 EX070 FA086 FD016 FD090 FD142 FD150 FD160Continued on front page F term (reference) 4G014 AF00 4G072 AA25 BB07 DD03 GG03 GG04 HH20 MM38 QQ20 RR30 TT01 UU07 4J002 AA001 CC052 CD041 CD051 DJ016 EX070 FA086 FD016 FD090 FD142 FD150 FD160

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可燃ガスと助燃ガスとによって形成され
た高温火炎中にシリカ質原料粉末を噴射し加熱処理した
後、分級を行い、所望粒子径の球状シリカ粉末を捕集す
る製造方法において、上記高温火炎の末端部よりも上部
位置から、高温火炎と隔離させて冷却ガスを供給するこ
とを特徴とする球状シリカ粉末の製造方法。
1. A method for producing a high-temperature flame formed by a combustible gas and an auxiliary combustion gas, injecting and heating a siliceous raw material powder, performing classification, and collecting spherical silica powder having a desired particle diameter. A method for producing a spherical silica powder, comprising supplying a cooling gas from a position above an end of the high-temperature flame while isolating the high-temperature flame from the high-temperature flame.
【請求項2】 冷却ガス量が可燃ガス量の10〜150
体積倍量であって、しかも旋回流を与えて供給し、平均
粒子径0.1〜60μmの球状シリカ粉末を捕集するこ
とを特徴とする請求項1記載の球状シリカ粉末の製造方
法。
2. The cooling gas amount is 10 to 150 times the combustible gas amount.
2. The method for producing spherical silica powder according to claim 1, wherein the spherical silica powder is supplied in a swirling flow in a volume doubled amount, and the spherical silica powder having an average particle diameter of 0.1 to 60 [mu] m is collected.
【請求項3】 縦型炉(6)の炉体上部にバーナー
(2)が設置され、炉体下部に捕集装置が接続されてな
る球状シリカ粉末の製造装置において、上記バーナーに
よって形成された高温火炎(3)を囲周する隔壁(4)
を設け、しかもその隔壁と上記炉体との間に冷却ガスを
供給できるように、冷却ガス供給口(5)を炉体側壁に
設けてなることを特徴とする球状シリカ粉末の製造装
置。
3. A spherical silica powder producing apparatus in which a burner (2) is installed at an upper part of a furnace body of a vertical furnace (6), and a collecting device is connected at a lower part of the furnace body. Partition wall (4) surrounding the high temperature flame (3)
And a cooling gas supply port (5) is provided in the side wall of the furnace body so that a cooling gas can be supplied between the partition wall and the furnace body.
【請求項4】 旋回流を与えて冷却ガスを供給できるよ
うに、冷却ガス供給口(5)が設けられてなることを特
徴とする請求項3記載の球状シリカ粉末の製造装置。
4. The apparatus for producing spherical silica powder according to claim 3, wherein a cooling gas supply port (5) is provided so as to supply a cooling gas by giving a swirling flow.
【請求項5】 請求項3又は請求項4記載の球状シリカ
粉末の製造装置を用いて、シリカ質原料を加熱処理した
後、分級を行い、所望粒子径の球状シリカ粉末を捕集す
ることを特徴とする球状シリカ粉末の製造方法。
5. A method for heating a siliceous raw material using the apparatus for producing a spherical silica powder according to claim 3 or 4, followed by classification to collect a spherical silica powder having a desired particle diameter. A method for producing a spherical silica powder, which is characterized in that:
JP2000044196A 2000-02-22 2000-02-22 Method and apparatus for producing spherical silica powder Expired - Fee Related JP4294191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044196A JP4294191B2 (en) 2000-02-22 2000-02-22 Method and apparatus for producing spherical silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044196A JP4294191B2 (en) 2000-02-22 2000-02-22 Method and apparatus for producing spherical silica powder

Publications (2)

Publication Number Publication Date
JP2001233627A true JP2001233627A (en) 2001-08-28
JP4294191B2 JP4294191B2 (en) 2009-07-08

Family

ID=18566998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044196A Expired - Fee Related JP4294191B2 (en) 2000-02-22 2000-02-22 Method and apparatus for producing spherical silica powder

Country Status (1)

Country Link
JP (1) JP4294191B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132770A1 (en) 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
KR20110106891A (en) 2008-12-22 2011-09-29 덴키 가가쿠 고교 가부시기가이샤 Powder, method for producing same, and resin composition containing same
JP2012240899A (en) * 2011-05-24 2012-12-10 Koa Glass Kk Apparatus and method for melting glass
CN104150754A (en) * 2014-08-14 2014-11-19 成都中节能反光材料有限公司 Glass powder ultra-fine powder combining device and method
JP2016079061A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
CN106145622A (en) * 2015-04-15 2016-11-23 江油市明瑞反光材料科技有限公司 A kind of beading stove being applicable to prepare high-refraction glass bead
CN109467096A (en) * 2018-12-29 2019-03-15 黄冈师范学院 A kind of production method and device preparing high pure spherical quartz sand and high pure spherical silica flour using quartz tail sand
CN114307839A (en) * 2021-12-17 2022-04-12 中节能(达州)新材料有限公司 Spherical silicon micro powder balling equipment and balling process thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132770A1 (en) 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
KR20110106891A (en) 2008-12-22 2011-09-29 덴키 가가쿠 고교 가부시기가이샤 Powder, method for producing same, and resin composition containing same
JP2012240899A (en) * 2011-05-24 2012-12-10 Koa Glass Kk Apparatus and method for melting glass
CN104150754A (en) * 2014-08-14 2014-11-19 成都中节能反光材料有限公司 Glass powder ultra-fine powder combining device and method
JP2016079061A (en) * 2014-10-15 2016-05-16 株式会社アドマテックス Inorganic filler and method for producing the same, resin composition and molded article
CN106145622A (en) * 2015-04-15 2016-11-23 江油市明瑞反光材料科技有限公司 A kind of beading stove being applicable to prepare high-refraction glass bead
CN109467096A (en) * 2018-12-29 2019-03-15 黄冈师范学院 A kind of production method and device preparing high pure spherical quartz sand and high pure spherical silica flour using quartz tail sand
CN114307839A (en) * 2021-12-17 2022-04-12 中节能(达州)新材料有限公司 Spherical silicon micro powder balling equipment and balling process thereof

Also Published As

Publication number Publication date
JP4294191B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
CN109455728B (en) Device and method for producing high-purity superfine spherical silicon micro powder by heating gas
JP5825145B2 (en) Synthetic amorphous silica powder and method for producing the same
CN1267221C (en) Method for producing magnetic metallic powder and magnetic metallic powder
CN101570331A (en) High-purity ultrafine spherical quartz powder, preparation method and special equipment thereof
KR20100024663A (en) Method and plasma torch for direct and continous synthesis of nano-scaled composite powders using thermal plasmas
JP4294191B2 (en) Method and apparatus for producing spherical silica powder
CN109592691A (en) A kind of device and method of gas heating countercurrent spray method production high-purity ultra-fine sphere silicon micro-powder
CN108274011A (en) A kind of preparation method with bimodal distribution metal powder suitable for 3D printing
JP3891740B2 (en) Method for producing fine spherical siliceous powder
JP4392097B2 (en) Method for producing ultrafine spherical silica
JP4330298B2 (en) Method for producing spherical inorganic powder
JP3244493U (en) Manufacturing equipment for conductive material ultrafine powder
JP3816052B2 (en) Method for producing spherical siliceous powder
JP2023098213A (en) calcium titanate powder
JP3853137B2 (en) Method for producing fine spherical silica
KR102178435B1 (en) METHOD FOR MANUFACTURING Ti64 POWDER HAVING HIGH PURITY BY USING RF PLASMA APPARATUS
JP4230554B2 (en) Method for producing spherical particles
JP3868141B2 (en) Method for producing spherical silica powder
CN113336232A (en) Method for preparing spherical nano silicon micropowder by using elemental silicon
JP3608968B2 (en) Method for producing spherical inorganic particles
CN109534350A (en) A kind of device and method of adverse current electric heating production high-purity ultra-fine sphere silicon micro-powder
JP2536849B2 (en) Β-crystal silicon carbide powder for sintering
JP4545357B2 (en) Method for producing aluminum nitride powder
CN107973300A (en) Liquid silicon manufacturing apparatus and method
CN216828647U (en) Magnetic rotating arc plasma spheroidizing process system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees