JP2001230455A - Seebeck element and cooling device using the same - Google Patents

Seebeck element and cooling device using the same

Info

Publication number
JP2001230455A
JP2001230455A JP2000037960A JP2000037960A JP2001230455A JP 2001230455 A JP2001230455 A JP 2001230455A JP 2000037960 A JP2000037960 A JP 2000037960A JP 2000037960 A JP2000037960 A JP 2000037960A JP 2001230455 A JP2001230455 A JP 2001230455A
Authority
JP
Japan
Prior art keywords
seebeck
type element
type
temperature
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000037960A
Other languages
Japanese (ja)
Inventor
Akira Ito
晃 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000037960A priority Critical patent/JP2001230455A/en
Publication of JP2001230455A publication Critical patent/JP2001230455A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost Seebeck element in which an efficient open- circuit voltage can be obtained even at a slight temperature difference, and to provide a cooling device which applies the Seebeck element of high efficiency. SOLUTION: In the Seebeck element, tannin is contained in an N-type element 5 on the side of a low-temperature. The N-type element 5 and a P-type element 3 are connected to each other in two points so as to constituted a circuit. When their two connected parts are held at mutually different temperatures, an open- circuit voltage which corresponds to the temperature difference between the different temperature is generated across terminals of the open circuit. The Seebeck element thus obtained can be used in various cooling devices such as a cooling device for a notebook-type personal computer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度差による大電
力の効率的発電や発熱体の効率的冷却に適したゼーベッ
ク素子とこれを応用した冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Seebeck element suitable for efficient power generation of large electric power due to a temperature difference and efficient cooling of a heating element, and a cooling device using the same.

【0002】[0002]

【従来の技術とその課題】2つの異なった導電性物質
A,Bからなる導体を図4のように接合して回路を作
り、2つの接合部をそれぞれ異なった温度TL とT
H (TL <TH )に保つと、開放回路の端子間に温度差
ΔT=TH −TL に応じた開放電圧が発生する現象をゼ
ーベック効果という。また一方の接合部の温度の1℃の
変化に対するVabの変化を物質Aに対する物質Bのゼー
ベック係数という。
2. Description of the Related Art A circuit is formed by joining two conductors made of different conductive substances A and B as shown in FIG. 4 to form two junctions at different temperatures TL and T, respectively.
Keeping the H (T L <T H) , the phenomenon that the open-circuit voltage according to the temperature difference ΔT = T H -T L between the terminals of an open circuit occurs as the Seebeck effect. Further, a change in V ab with respect to a change in the temperature at one junction of 1 ° C. is referred to as a Seebeck coefficient of substance B with respect to substance A.

【0003】ところで、このようなゼーベック効果によ
り大きな開放電圧が得られる物質A,Bの組み合わせと
しては、従来、アルメル・クロメル(ゼーベック係数4
0)、銅・コンスタンタン(ゼーベック係数41)、ク
ロメル・コンスタンタン(ゼーベック係数62)などが
知られており、その合金成分は、アルメルは90%Ni
−8%Al−2%Mn、クロメルは90%Ni−10%
Cr、コンスタンタンは40%Ni−60%Cuなどで
あるが、いずれも高価なニッケルを高濃度に含有してい
た(%は重量%。以下同じ)。
[0003] By the way, as a combination of substances A and B capable of obtaining a large open-circuit voltage by such a Seebeck effect, conventionally, alumel-chromel (seebeck coefficient of 4) is used.
0), copper / constantan (Seebeck coefficient 41), chromel / constantan (Seebeck coefficient 62) and the like are known.
-8% Al-2% Mn, chromel 90% Ni-10%
Cr and constantan are, for example, 40% Ni-60% Cu, and both contain expensive nickel at a high concentration (% is% by weight; the same applies hereinafter).

【0004】[0004]

【発明が解決しようとする課題】図1の開放電圧Vabの
値は温度差ΔTの関数であり、100℃以下の常温付近
の低い温度においても2つの接合部に温度差があれば電
気エネルギの発生が可能である。しかしこの原理により
電力を効率的に発生させたり、あるいは高温接合部の効
率的冷却(又は低温接合部の効率的加熱)を行なうに
は、前述のような合金が多量に必要となるので、きわめ
て高価なニッケルを高濃度で含有するこれら合金の使用
は、経済性と実用性に欠けるものであった。
The value of the open circuit voltage Vab shown in FIG. 1 is a function of the temperature difference ΔT. Even at a low temperature near room temperature of 100 ° C. or less, if there is a temperature difference between the two junctions, the electric energy of Occurrence is possible. However, in order to efficiently generate electric power or efficiently cool a high-temperature joint (or efficiently heat a low-temperature joint) according to this principle, a large amount of the above-described alloy is required. The use of these alloys, which contain high concentrations of expensive nickel, was not economical and practical.

【0005】本発明の目的は、僅かな温度差でも効率的
な開放電圧を得ることができる安価なゼーベック素子を
提供すると共に、この高効率ゼーベック素子を応用した
冷却装置を提供することにある。
It is an object of the present invention to provide an inexpensive Seebeck element capable of obtaining an efficient open circuit voltage even with a slight temperature difference, and to provide a cooling device to which the high efficiency Seebeck element is applied.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
本発明のゼーベック素子は、N形素子とP形素子とを互
いに2点で接合させて回路を構成し、これら2つの接合
部を互いに異なった温度に保持し、その開放回路の端子
間に前記異なった温度の温度差に応じた開放電圧を発生
させるゼーベック素子において、前記N形素子にタンニ
ンを含有させたことを特徴とする。ここでP形素子とは
ゼーベック係数が正の導体をいい、N形素子とはゼーベ
ック係数が負の導体をいう。タンニンは本発明で初めて
ゼーベック素子に使用されたものであって、その作用に
ついての科学的解明は未だ十分になされたとは言い難い
が、本発明者による試験で本発明のゼーベック素子は従
来型ゼーベック素子の数倍のゼーベック係数を有するこ
とが確認された。
In order to solve the above-mentioned problems, a Seebeck element according to the present invention forms a circuit by joining an N-type element and a P-type element to each other at two points, and connects these two joints to each other. In a Seebeck element for maintaining an open circuit at a different temperature and generating an open voltage corresponding to the temperature difference between the different temperatures between the terminals of the open circuit, tannin is contained in the N-type element. Here, the P-type element refers to a conductor having a positive Seebeck coefficient, and the N-type element refers to a conductor having a negative Seebeck coefficient. Tannin was used for the first time in a Seebeck element in the present invention, and it is difficult to say that its action has been scientifically elucidated yet, but tests by the present inventor have revealed that the Seebeck element of the present invention is a conventional Seebeck element. It was confirmed that the element had a Seebeck coefficient several times that of the device.

【0007】タンニンはN形素子に含有させることで起
電力を高めるのであるが、このタンニンはP形素子にも
含有させることにより起電力をいっそう高めることがで
きる。ただし、P形素子にいくらタンニンを含有させて
もN形素子にタンニンを含有させない限り起電力を増大
させることはできない。
Although tannin is included in an N-type element to increase the electromotive force, the tannin can be further included in a P-type element to further increase the electromotive force. However, no matter how much tannin is contained in the P-type element, the electromotive force cannot be increased unless tannin is contained in the N-type element.

【0008】本発明のゼーベック素子のN形素子は、成
分的にはSi、Al又はP、Fe、タンニン、ポリビニ
ルアルコールなどを有することができる。またP形素子
は、Si、Fe、タンニン、ポリビニルアルコールを有
することができる。
[0008] The N-type element of the Seebeck element of the present invention can contain Si, Al or P, Fe, tannin, polyvinyl alcohol or the like as components. Further, the P-type element can include Si, Fe, tannin, and polyvinyl alcohol.

【0009】本発明のゼーベック素子は従来比で数倍の
ゼーベック係数を有することから、このゼーベック素子
を使用した冷却装置が現実的に可能なものとなる。例え
ば、ノートパソコン内部のCPUやハードディスク等の
発熱体は周囲空間が狭隘であるが故に効率的に冷却する
必要があるのであるが、本発明のように電源不要で非常
にコンパクトであって熱電変換にて熱を電気エネルギに
簡単に変換可能な素子を利用すれば、ノートパソコン内
部にこもりがちな熱エネルギを電気エネルギに変換した
上で放熱的に有利な金属製筐体等に容易に逃がすことが
できる。
Since the Seebeck element of the present invention has a Seebeck coefficient several times that of the prior art, a cooling device using this Seebeck element is practically possible. For example, heat generating elements such as a CPU and a hard disk in a notebook personal computer need to be efficiently cooled because the surrounding space is narrow. If an element that can easily convert heat into electric energy is used, heat energy that tends to be trapped inside the notebook PC can be converted to electric energy and then easily released to a metal housing or the like that is advantageous for heat dissipation. Can be.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施形態について
説明する。図1は本発明に係るゼーベック素子を使用し
たノートパソコン用CPU冷却装置を示す。同図におい
て1はマザーボード基板、2はCPU、3はP形素子、
4は断熱機能を有する板状テフロンスペーサ、5はN形
素子、6は熱移動媒体としての水を封入し内面が微細な
粗面に加工されたプレート式ヒートパイプである。ただ
し、このプレート式ヒートパイプ6は本発明のゼーベッ
ク素子の冷却効果をさらに高めるためのものであって、
必ずしも本発明に必要不可欠なものではない。従って、
プレート式ヒートパイプ6に代えて例えば単なるアルミ
製の放熱板を使用してもよい。
Embodiments of the present invention will be described below. FIG. 1 shows a CPU cooling device for a notebook computer using a Seebeck element according to the present invention. In the figure, 1 is a motherboard substrate, 2 is a CPU, 3 is a P-type element,
Reference numeral 4 denotes a plate-like Teflon spacer having a heat insulating function, reference numeral 5 denotes an N-type element, and reference numeral 6 denotes a plate-type heat pipe in which water as a heat transfer medium is sealed and whose inner surface is processed into a fine rough surface. However, this plate type heat pipe 6 is for further enhancing the cooling effect of the Seebeck element of the present invention,
It is not necessarily essential to the present invention. Therefore,
Instead of the plate-type heat pipe 6, for example, a radiator plate simply made of aluminum may be used.

【0011】P形素子3はCPU2と略同大同形の板状
正方形に成形され、伝熱性をよくするためにシリコング
リス等の適当なボンディング材を介してCPU2の上に
隙間なく接合されている。このP形素子3の上にテフロ
ンスペーサ4の一端下面が接合されている。またテフロ
ンスペーサ4の他端小口面に板状矩形のN形素子5が接
合されている。テフロンスペーサ4及びN形素子5の上
面には共通のヒートパイプ6が接合され、P形素子3と
N形素子5とが片側側面において銅線による電極7で電
気的に結合され、かつ、これら素子3,5が反対側側面
において別の銅線による電極8,9を介して、共通の導
体としての例えばノートパソコンの放熱性に余裕がある
図示しない金属製筐体等に電気的に結合されている。な
お、P形素子3、N形素子5及びヒートパイプ6は、互
いにシリコングリス等の適当なボンディング材を介して
隙間なく接合されている。
The P-type element 3 is formed into a plate-like square having substantially the same shape as that of the CPU 2 and is bonded to the CPU 2 without gaps through a suitable bonding material such as silicon grease in order to improve heat conductivity. . The lower surface of one end of the Teflon spacer 4 is joined onto the P-type element 3. A plate-shaped rectangular N-type element 5 is joined to the other end face of the Teflon spacer 4. A common heat pipe 6 is joined to the upper surfaces of the Teflon spacer 4 and the N-type element 5, and the P-type element 3 and the N-type element 5 are electrically coupled on one side surface by an electrode 7 made of copper wire. The elements 3 and 5 are electrically coupled on the opposite side surfaces to the common conductor, for example, a not-shown metal housing or the like, which has sufficient heat dissipation of a notebook computer, through electrodes 8 and 9 made of another copper wire. ing. The P-type element 3, the N-type element 5, and the heat pipe 6 are joined to each other without any gap via a suitable bonding material such as silicon grease.

【0012】P形素子3とN形素子5は、図2に示すよ
うにSiやFeなどを成分とする導電性物質であって、
所定の金属製型内に圧入後、高周波誘導加熱など適当な
加熱手段にて焼結したものである。これらP形素子3と
N形素子5は、ノートパソコンへの搭載に有利なように
超薄型とするのが望ましく、本発明では1.5mm厚と
した。図2の成分中、タンニンだけは従来のゼーベック
素子においてまったく配合例がなく、本発明で初めて配
合したものである。なお、図2は単なる配合の一例であ
って、絶対的なものではない。要は、従来の一般的なゼ
ーベック素子の成分にタンニンを追加すればよいのであ
って、その配合量は必要に応じて増減してよく、図2記
載の配合量に限定されるものでないことは勿論である。
As shown in FIG. 2, the P-type element 3 and the N-type element 5 are conductive substances containing Si, Fe, and the like as components.
After being pressed into a predetermined metal mold, it is sintered by a suitable heating means such as high-frequency induction heating. The P-type element 3 and the N-type element 5 are desirably made ultra-thin so as to be advantageous for mounting on a notebook personal computer, and have a thickness of 1.5 mm in the present invention. In the components shown in FIG. 2, only tannin has no compounding example in the conventional Seebeck device, and is the first compounded compound in the present invention. Note that FIG. 2 is merely an example of the combination, and is not an absolute one. In short, it is sufficient to add tannin to the components of the conventional general Seebeck element, and the compounding amount may be increased or decreased as necessary, and it is not limited to the compounding amount shown in FIG. Of course.

【0013】本発明者は、図1のCPU2に代えて同形
同大の電気ヒータ(ニクロム線内蔵)を取付けた擬似冷
却装置を使用して本発明のゼーベック素子の機能試験を
行なった。但し、ゼーベック素子だけによる冷却効果を
測定するため、ヒートパイプ6は省略した。機能試験
は、周囲空気の対流による影響を排除するため、擬似冷
却装置をデシケータ内に密閉して行なった。図3はこの
機能試験の概略結果を示すもので、最初は電気ヒータの
上に何も取付けない状態で電気ヒータに通電し、約96
分経過して電気ヒータの温度が安定したところで温度測
定を行なった。電源装置はKIKUSUI製「PAN1
6−10A」で、9.95V、0.36Aの条件(3.
58W)で電気ヒータに通電した。また温度、電圧、電
流の測定には横河電機製「DR130」を用いた。約9
6分経過した時の温度は112.3℃であった。
The present inventor conducted a function test of the Seebeck element of the present invention using a pseudo-cooling device having an electric heater of the same shape and size (with a built-in nichrome wire) instead of the CPU 2 of FIG. However, the heat pipe 6 was omitted to measure the cooling effect only by the Seebeck element. The function test was performed by sealing the pseudo cooling device in a desiccator in order to eliminate the influence of the convection of the surrounding air. FIG. 3 shows a schematic result of the function test. First, the electric heater was energized in a state where nothing was mounted on the electric heater, and about 96
Temperature measurement was performed when the temperature of the electric heater became stable after a lapse of minutes. The power supply unit is “PAN1” manufactured by KIKUSUI.
6-10A "at 9.95 V and 0.36 A (3.
At 58 W). For measurement of temperature, voltage and current, “DR130” manufactured by Yokogawa Electric was used. About 9
After 6 minutes, the temperature was 112.3 ° C.

【0014】次に、この温度測定の直後にP形素子3と
N形素子5を有するゼーベック素子を図1と同じ状態
(但しヒートパイプ6は省略)で電気ヒータに取付け、
温度と起電圧(電極8,9間の開放)を測定しつつ電気
ヒータの温度が安定するまで測定を続けた。電気ヒータ
の温度測定部位は、図1の電極7の左端(高温接合部)
であって、この部分の温度はP形素子3が1.5mm厚
と超薄型であるため実質的に電気ヒータの温度と同一と
見なせる。なお、電極9の左端のN形素子5との接合部
(低温接合部)は電気ヒータから十分に離れていて室温
と同じ20℃と見なすことができるから、この低温接合
部の温度測定は省略した。ゼーベック素子を取付けた直
後の電気ヒータの温度は87.6℃、起電圧は0.44
8Vであったが、それから約75分経過したところで温
度が安定し、この時の温度は90℃、起電圧は0.03
7Vであった。この結果から、本発明のゼーベック素子
のP形素子3に対するN形素子5のゼーベック係数は、
次式から、 (0.448−0.037)/(90−87.6)=0.171 =171μV/K と計算される。
Next, immediately after the temperature measurement, the Seebeck element having the P-type element 3 and the N-type element 5 was attached to the electric heater in the same state as in FIG. 1 (however, the heat pipe 6 was omitted).
The measurement was continued until the temperature of the electric heater was stabilized while measuring the temperature and the electromotive voltage (opening between the electrodes 8 and 9). The temperature measurement site of the electric heater is the left end of the electrode 7 in FIG.
The temperature of this portion can be regarded as substantially the same as the temperature of the electric heater because the P-type element 3 is 1.5 mm thick and extremely thin. The junction (low-temperature junction) of the left end of the electrode 9 with the N-type element 5 is sufficiently away from the electric heater and can be regarded as 20 ° C., which is the same as room temperature, so that the temperature measurement of this low-temperature junction is omitted. did. Immediately after attaching the Seebeck element, the temperature of the electric heater was 87.6 ° C., and the electromotive voltage was 0.44.
Although the voltage was 8 V, the temperature was stabilized after about 75 minutes had elapsed, the temperature at this time was 90 ° C., and the electromotive voltage was 0.03.
7V. From these results, the Seebeck coefficient of the N-type element 5 with respect to the P-type element 3 of the Seebeck element of the present invention is:
From the following equation, it is calculated as (0.448−0.037) / (90−87.6) = 0.171 = 171 μV / K.

【0015】この171μV/Kの値は、従来の高価な
ニッケルを含有するアルメル・クロメルの場合のゼーベ
ック係数(約40μV/K)の4倍強という画期的なも
のである。因みに、タンニンはニッケルに比較してきわ
めて安価で容易かつ安定的に入手可能であるから、本発
明のゼーベック素子は従来のアルメル・クロメルなど高
価な素子に比べて性能的に4倍強という驚異的な性能を
有しながら、コスト的には却って安価であることから、
ノートパソコン内部など狭隘スペースにおける発熱体の
効率的な冷却に適した冷却装置や、大電力の効率的発電
素子としての応用が現実的なものとなる。
The value of 171 μV / K is an epoch-making value, which is slightly more than four times the Seebeck coefficient (about 40 μV / K) of the conventional expensive nickel-containing alumel-chromel. Incidentally, since tannin is extremely cheap and easily and stably available as compared with nickel, the Seebeck element of the present invention is astonishingly four times more powerful in performance than expensive elements such as conventional alumel and chromel. Because it is inexpensive while having excellent performance,
It becomes practical to apply it as a cooling device suitable for efficient cooling of a heating element in a narrow space such as the inside of a notebook personal computer, or as an efficient power generating element of high power.

【0016】すなわち、本発明のゼーベック素子の具体
的応用としては直流発電機が可能であり、その発電特性
から、地熱発電機、海洋温度差発電機、廃熱利用発電
機、太陽熱利用発電機、原子力発電の廃熱利用発電機、
核分裂熱の直接利用発電機、ゴミ発電機などの、商用電
源、自家用電源、遠隔地用電源、非常用電源に利用する
のが好適である。
That is, as a specific application of the Seebeck element of the present invention, a DC generator is possible, and from the power generation characteristics, a geothermal generator, an ocean temperature difference generator, a waste heat generator, a solar heat generator, Generators utilizing waste heat from nuclear power,
It is suitable for use as a commercial power source, a private power source, a remote location power source, and an emergency power source, such as a generator using fission heat directly and a garbage generator.

【0017】[0017]

【発明の効果】本発明は以上のように、N形素子にタン
ニンを含有させることによりゼーベック係数を従来比で
飛躍的に高めた高効率のゼーベック素子であるから、わ
ずかな温度差を有する空気、水、海水、地熱などの自然
エネルギを効率的に電気エネルギに変換することが可能
となる。しかも本発明のゼーベック素子は機械的駆動部
分の全く無い極めて単純な構造であって、材料的にもニ
ッケルを必要としないから低コストで製造可能であり、
熱電変換効率としては必ずしも十分に高いものではない
が、恒久的自然エネルギを産業、家庭用電力の生産手段
として本格的に利用する可能性に先鞭を付けるものであ
り、地球環境保存の観点からもきわめて有益である。
As described above, the present invention is a high-efficiency Seebeck element in which the N-type element contains tannin to greatly increase the Seebeck coefficient as compared with the conventional one, so that air having a slight temperature difference can be obtained. , Natural energy such as water, seawater, and geothermal energy can be efficiently converted to electric energy. Moreover, the Seebeck element of the present invention has a very simple structure without any mechanical driving part, and can be manufactured at low cost because it does not require nickel in material.
Although the thermoelectric conversion efficiency is not always high enough, it pioneered the possibility of using permanent natural energy as a means of producing industrial and household power in earnest, and from the perspective of preserving the global environment. Very useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るゼーベック素子を利用したノー
トパソコン用CPU冷却装置の概略斜視図。
FIG. 1 is a schematic perspective view of a notebook computer CPU cooling device using a Seebeck element according to the present invention.

【図2】 N形素子とP形素子の成分表。FIG. 2 is a component table of an N-type element and a P-type element.

【図3】 本発明に係るゼーベック素子を利用した冷却
装置の試験結果を示す図。
FIG. 3 is a view showing test results of a cooling device using a Seebeck element according to the present invention.

【図4】 ゼーベック素子の基本構造を示す概念図。FIG. 4 is a conceptual diagram showing a basic structure of a Seebeck element.

【符号の説明】[Explanation of symbols]

1…マザーボード基板 2…CPU 3…P形素子 4…テフロンスペーサ 5…N形素子 6…プレート式ヒートパイプ 7,8,9…電極 DESCRIPTION OF SYMBOLS 1 ... Mother board 2 ... CPU 3 ... P-type element 4 ... Teflon spacer 5 ... N-type element 6 ... Plate type heat pipe 7, 8, 9 ... Electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 N形素子とP形素子とを互いに2点で接
合させて回路を構成し、これら2つの接合部を互いに異
なった温度に保持し、その開放回路の端子間に前記異な
った温度の温度差に応じた開放電圧を発生させるゼーベ
ック素子において、前記N形素子にタンニンを含有させ
たことを特徴とするゼーベック素子。
An N-type element and a P-type element are joined to each other at two points to form a circuit, these two junctions are maintained at different temperatures, and the different circuit is connected between terminals of the open circuit. A Seebeck element for generating an open-circuit voltage according to a temperature difference, wherein the N-type element contains tannin.
【請求項2】 N形素子とP形素子の両方にタンニンを
含有させたことを特徴とする請求項1記載のゼーベック
素子。
2. The Seebeck element according to claim 1, wherein both the N-type element and the P-type element contain tannin.
【請求項3】 N形素子がSi、Al又はP、Fe、タ
ンニン、ポリビニルアルコールを有することを特徴とす
る請求項1記載のゼーベック素子。
3. The Seebeck element according to claim 1, wherein the N-type element contains Si, Al or P, Fe, tannin, or polyvinyl alcohol.
【請求項4】 P形素子がSi、Fe、タンニン、ポリ
ビニルアルコールを有することを特徴とする請求項2又
は3記載のゼーベック素子。
4. The Seebeck element according to claim 2, wherein the P-type element contains Si, Fe, tannin, and polyvinyl alcohol.
【請求項5】 請求項1から3のいずれか記載のゼーベ
ック素子を使用した冷却装置。
5. A cooling device using the Seebeck element according to claim 1.
【請求項6】 ノートパソコン内部のCPUやハードデ
ィスク等の発熱体に請求項1から3のいずれか記載のゼ
ーベック素子を取付けたことを特徴とするノートパソコ
ン用冷却装置。
6. A cooling device for a notebook personal computer, wherein the Seebeck element according to claim 1 is attached to a heating element such as a CPU or a hard disk inside the notebook personal computer.
JP2000037960A 2000-02-16 2000-02-16 Seebeck element and cooling device using the same Withdrawn JP2001230455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000037960A JP2001230455A (en) 2000-02-16 2000-02-16 Seebeck element and cooling device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000037960A JP2001230455A (en) 2000-02-16 2000-02-16 Seebeck element and cooling device using the same

Publications (1)

Publication Number Publication Date
JP2001230455A true JP2001230455A (en) 2001-08-24

Family

ID=18561773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000037960A Withdrawn JP2001230455A (en) 2000-02-16 2000-02-16 Seebeck element and cooling device using the same

Country Status (1)

Country Link
JP (1) JP2001230455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463519B1 (en) * 2002-03-14 2004-12-29 엘지전자 주식회사 CPU cooling system
WO2010021313A1 (en) 2008-08-18 2010-02-25 株式会社ダ・ビンチ Thermoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463519B1 (en) * 2002-03-14 2004-12-29 엘지전자 주식회사 CPU cooling system
WO2010021313A1 (en) 2008-08-18 2010-02-25 株式会社ダ・ビンチ Thermoelectric conversion element
US8586854B2 (en) 2008-08-18 2013-11-19 Da Vinci Co., Ltd. Thermoelectric conversion element

Similar Documents

Publication Publication Date Title
Liang et al. Analytical model of parallel thermoelectric generator
US7471516B2 (en) Meter with reduced internal temperature rise and associated method
KR102395545B1 (en) Thermoelectric devices based on diodes
Fraisse et al. Study of a thermoelement’s behaviour through a modelling based on electrical analogy
JP2004214279A (en) Cooling device of electronic component using thermoelectric conversion material
Gou et al. A novel thermoelectric generation system with thermal switch
Yang et al. Improved thermoelectric generator performance using high temperature thermoelectric materials
US20050236028A1 (en) Heat to cooling converter
Abdallah et al. Analysis of the effect of a pulsed heat flux on the performance improvements of a thermoelectric generator
Yazawa et al. Thermoelectric energy conversion devices and systems
Li et al. Thermo-mechanical analysis of thermoelectric modules
Renge et al. A review on generation of electricity using Peltier module
JP2001230455A (en) Seebeck element and cooling device using the same
Maharaj et al. Waste energy harvesting with a thermoelectric generator
Patil et al. Numerical study on geometric parameter effects of power generation performances for segmented thermoelectric generator
Dunham et al. Thermoelectric generators: a case study in multi-scale thermal engineering design
US3316474A (en) Thermoelectric transformer
JP7313660B2 (en) Thermoelectric conversion module
Ionescu et al. Performance Analysis of Thermoelectric Cooler—Thermoelectric Generator System for Heat Recovery Applications
Larsson et al. Thermoelectric module for high temperature application
KR100791829B1 (en) Temperature measuring adapter for thermoelectric module
JP2021048280A (en) Graphite integrated film, manufacturing method of graphite integrated film, thermoelectric conversion layer using graphite integrated film, and heat dissipation material with thermocouple function or thermoelectric power generation function
JP2003060244A (en) Cooling element and thermoelectric conversion element
Yavuz et al. The Experimental Design of Thermoelectric Generator for Industrial Waste Heat Recovery
Tamilarasi et al. Automated temperature monitoring and cooling system using Thermoelectric generators and W1209 temperature actuators

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501