JP2001227377A - Control device for direct cylinder injection type internal combustion engine - Google Patents

Control device for direct cylinder injection type internal combustion engine

Info

Publication number
JP2001227377A
JP2001227377A JP2000046740A JP2000046740A JP2001227377A JP 2001227377 A JP2001227377 A JP 2001227377A JP 2000046740 A JP2000046740 A JP 2000046740A JP 2000046740 A JP2000046740 A JP 2000046740A JP 2001227377 A JP2001227377 A JP 2001227377A
Authority
JP
Japan
Prior art keywords
combustion
combustion mode
fuel ratio
air
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000046740A
Other languages
Japanese (ja)
Inventor
Mamoru Mabuchi
衛 馬渕
Hiraki Matsumoto
平樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000046740A priority Critical patent/JP2001227377A/en
Priority to DE2001107160 priority patent/DE10107160A1/en
Publication of JP2001227377A publication Critical patent/JP2001227377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To change over combustion modes of a direct cylinder injection type internal combustion engine while holding the NOx reduction effect by the combustion stability and EGR(exhaust gas recalculation). SOLUTION: When issuing a combustion mode changeover requirement from a atratified combustion mode to a homogeneous combustion mode, a target EGR rate is changed over to a target EGR rate of the homogeneous combustion mode, or the combustion mode of the changeover target, and at the same time a target air-fuel ratio is changed over to an intermediate target air-fuel ratio stably combusting either of the stratified combustion and the homogenous combustion. After that, when the estimated cylinder injection air-fuel ratio reaches the air-fuel ratio stably combusting either of the stratified combustion and the homogenous combustion and the estimated EGR rate reaches such a EGR rate as reducing the NOx while holding the stable combustion under of the stratified combustion and the homogenous combustion, the combustion mode is changed over to the homogenous combustion mode. After changing over the combustion mode, the target air-fuel ration is changed over to the target air-fuel ratio of the homogenous combustion mode, or the combustion mode of the changeover target and the fuel injection timing is changed over to intake stroke injection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、運転状態に応じて
燃焼モードを成層燃焼モード(圧縮行程噴射モード)と
均質燃焼モード(吸気行程噴射モード)との間で切り換
えるようにした筒内噴射式内燃機関の制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder injection type in which the combustion mode is switched between a stratified combustion mode (compression stroke injection mode) and a homogeneous combustion mode (intake stroke injection mode) in accordance with the operation state. The present invention relates to a control device for an internal combustion engine.

【0002】[0002]

【従来の技術】近年、低燃費、低排気エミッション、高
出力の特長を兼ね備えた筒内噴射式エンジン(直噴式エ
ンジン)の需要が急増している。この筒内噴射式エンジ
ンは、低負荷時には、少量の燃料を圧縮行程で筒内に直
接噴射して成層混合気を形成して成層燃焼させることで
燃費を向上させ、一方、高負荷時には、燃料噴射量を増
量して吸気行程で筒内に直接噴射して均質混合気を形成
して均質燃焼させることで、エンジン出力を高めるよう
にしている。このような筒内噴射式エンジンでは、特開
平9−195839号公報に示すように、成層燃焼モー
ドから均質燃焼モードに切り換える際に、スロットルバ
ルブとEGRバルブ(排気環流制御弁)を同時に切り換
えるようにしたものがある。
2. Description of the Related Art In recent years, the demand for an in-cylinder injection type engine (direct injection type engine) having features of low fuel consumption, low exhaust emission, and high output has been rapidly increasing. At the time of low load, this in-cylinder injection engine improves fuel efficiency by directly injecting a small amount of fuel into the cylinder in a compression stroke to form a stratified mixture and perform stratified combustion. The engine output is increased by increasing the injection amount and injecting directly into the cylinder during the intake stroke to form a homogeneous mixture and perform homogeneous combustion. In such a direct injection engine, as described in Japanese Patent Application Laid-Open No. 9-195839, when switching from the stratified combustion mode to the homogeneous combustion mode, the throttle valve and the EGR valve (exhaust recirculation control valve) are simultaneously switched. There is something.

【0003】[0003]

【発明が解決しようとする課題】一般に、ステップモー
タで駆動されるEGRバルブの駆動応答性は、DCモー
タで駆動されるスロットルバルブの駆動応答性よりも遅
いため、上記公報のように、成層燃焼モードから均質燃
焼モードに切り換える際に、スロットルバルブとEGR
バルブを同時に切り換えると、EGRバルブの応答遅れ
によりEGR率が上昇して燃焼が不安定になり、最悪の
場合、失火を引き起こす可能性がある。
Generally, the drive response of an EGR valve driven by a step motor is slower than the drive response of a throttle valve driven by a DC motor. Valve and EGR when switching from homogeneous mode to homogeneous combustion mode
If the valves are switched at the same time, the EGR rate rises due to the response delay of the EGR valve, and combustion becomes unstable. In the worst case, misfire may occur.

【0004】そこで、特開平11−72032号公報に
示すように、成層燃焼モードから均質燃焼モードに切り
換える際に、安定な燃焼状態を維持するために、先にE
GRバルブを全閉することが提案されている。しかし、
筒内噴射式エンジンにおいては、EGRは、窒素酸化物
(NOx)の排出量を低減するために必要不可欠な制御
であるため、燃焼モード切換時に、先にEGRバルブを
全閉すると、NOx排出量が増加して排気エミッション
が悪化してしまう。
Therefore, as shown in Japanese Patent Application Laid-Open No. 11-72032, when switching from the stratified combustion mode to the homogeneous combustion mode, E is first set to maintain a stable combustion state.
It has been proposed to fully close the GR valve. But,
In the direct injection engine, the EGR is an indispensable control for reducing the emission of nitrogen oxides (NOx). Therefore, when the EGR valve is fully closed first when switching the combustion mode, the NOx emission is reduced. Increases and exhaust emissions deteriorate.

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、燃焼モードを切り換
える際に、燃焼安定性とEGRによるNOx低減効果を
維持しながら燃焼モードを切り換えることができる筒内
噴射式内燃機関の制御装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and accordingly, an object of the present invention is to switch the combustion mode while maintaining the combustion stability and the NOx reduction effect by EGR when switching the combustion mode. It is an object of the present invention to provide a control device for a direct injection type internal combustion engine that can perform the following.

【0006】[0006]

【課題を解決するための手段】燃焼モード切換時には、
筒内空燃比が燃焼安定性に大きく影響し、更に、排気環
流装置による排気環流率(EGR率)がNOx排出量に
大きく影響する。
Means for Solving the Problems When switching the combustion mode,
The in-cylinder air-fuel ratio greatly affects the combustion stability, and the exhaust gas recirculation rate (EGR rate) of the exhaust gas recirculation device greatly affects the NOx emission.

【0007】この点に着目して、本発明の請求項1の筒
内噴射式内燃機関の制御装置は、筒内空燃比推定手段に
よって筒内空燃比を推定すると共に、EGR率推定手段
によってEGR率又はこれと相関関係のある情報(以下
「EGR率情報」という)を推定する。そして、燃焼モ
ード切換手段は、燃焼モード切換要求があった時に、筒
内空燃比推定手段で推定した筒内空燃比が所定の空燃比
に達した時、及び/又は、EGR率推定手段で推定した
EGR率情報が所定値に達した時に、燃焼モードを切り
換える。このようにすれば、燃焼モード切換要求があっ
た時に、筒内空燃比が安定燃焼可能な範囲内に達するの
を待って燃焼モードを切り換えることができ、更には、
EGR率がNOx排出量を低減できる範囲内に達するの
を待って燃焼モードを切り換えることができ、燃焼モー
ド切換時の燃焼安定性とNOx排出量低減とを両立させ
ることができる。
Focusing on this point, the control apparatus for a direct injection internal combustion engine according to the first aspect of the present invention estimates the in-cylinder air-fuel ratio by the in-cylinder air-fuel ratio estimating means and the EGR rate by the EGR rate estimating means. The rate or information having a correlation with the rate (hereinafter, referred to as “EGR rate information”) is estimated. The combustion mode switching means may be configured to perform a combustion mode switching request when the in-cylinder air-fuel ratio estimated by the in-cylinder air-fuel ratio estimating means reaches a predetermined air-fuel ratio, and / or by an EGR rate estimating means. When the obtained EGR rate information reaches a predetermined value, the combustion mode is switched. With this configuration, when a combustion mode switching request is issued, the combustion mode can be switched after waiting for the in-cylinder air-fuel ratio to reach a range in which stable combustion can be performed.
The combustion mode can be switched after waiting for the EGR rate to fall within the range where the NOx emission can be reduced, and both the combustion stability at the time of switching the combustion mode and the reduction of the NOx emission can be achieved.

【0008】更に、請求項2のように、燃焼モード切換
要求があった時に、目標空燃比を成層燃焼、均質燃焼の
いずれでも安定燃焼可能な目標空燃比に切り換え、推定
筒内空燃比が成層燃焼、均質燃焼のいずれでも安定燃焼
可能な所定の空燃比に達した時、及び/又は、推定EG
R率情報が成層燃焼、均質燃焼のいずれでも安定燃焼を
確保しつつNOx排出量を低減できる所定値に達した時
に、該目標空燃比を切換先の燃焼モードに応じた目標空
燃比に切り換えて燃焼モードを切り換えるようにしても
良い。このようにすれば、燃焼モード切換時に目標空燃
比によって筒内空燃比を適正範囲に制御でき、燃焼安定
性を向上させつつNOx排出量を低減できる。
Further, when a request for switching the combustion mode is made, the target air-fuel ratio is switched to a target air-fuel ratio capable of performing stable combustion in either stratified combustion or homogeneous combustion, and the estimated in-cylinder air-fuel ratio is stratified. When a predetermined air-fuel ratio that enables stable combustion in either combustion or homogeneous combustion is reached, and / or an estimated EG
When the R rate information reaches a predetermined value that can reduce NOx emission while ensuring stable combustion in either stratified combustion or homogeneous combustion, the target air-fuel ratio is switched to a target air-fuel ratio according to the switching destination combustion mode. The combustion mode may be switched. In this way, the in-cylinder air-fuel ratio can be controlled to an appropriate range by the target air-fuel ratio when switching the combustion mode, and the NOx emission can be reduced while improving the combustion stability.

【0009】また、請求項3のように、前記EGR率情
報として排気環流制御弁(EGRバルブ)の開度を推定
又は検出するようにしても良い。予め、EGR率とEG
Rバルブの開度とを対応づけておけば、EGRバルブの
開度を用いても、EGR率を用いる場合と同様の燃焼モ
ード切換制御を行うことができる。
Further, the opening degree of an exhaust gas recirculation control valve (EGR valve) may be estimated or detected as the EGR rate information. The EGR rate and EG
By associating the opening of the R valve with the opening of the EGR valve, the same combustion mode switching control as in the case of using the EGR rate can be performed.

【0010】更に、請求項4のように、燃焼モード切換
要求があった時に、燃焼モードを切り換えるまで、スロ
ットルバルブと排気環流制御弁のうちの応答性の速い方
の駆動速度を応答性の遅い方の駆動速度に合わせて遅く
するように制御するようにしても良い。このようにすれ
ば、筒内空燃比が安定燃焼可能な空燃比に達する時期
と、EGR率がNOx排出量を低減できる所定値に達す
る時期とをほぼ一致させることができ、筒内空燃比とE
GR率が最も良好な時期に燃焼モードを切り換えること
ができ、燃焼安定性向上、NOx低減の効果を大きくす
ることができる。
Further, when there is a request for switching the combustion mode, the drive speed of the faster one of the throttle valve and the exhaust recirculation control valve is reduced until the combustion mode is switched. The control may be performed so as to be slower in accordance with the driving speed of the other. With this configuration, the timing at which the in-cylinder air-fuel ratio reaches the air-fuel ratio at which stable combustion can be performed and the timing at which the EGR rate reaches the predetermined value at which the NOx emission can be reduced can be made to substantially coincide with each other. E
The combustion mode can be switched at a time when the GR rate is the best, and the effects of improving combustion stability and reducing NOx can be enhanced.

【0011】[0011]

【発明の実施の形態】[実施形態(1)]以下、本発明
の実施形態(1)を図1乃至図7に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略
構成を説明する。筒内噴射式内燃機関である筒内噴射式
エンジン11の吸気管12の最上流部には、エアクリー
ナ(図示せず)が設けられ、このエアクリーナの下流側
には、吸入空気量を検出するエアーフローメータ13が
設けられている。このエアーフローメータ13の下流側
には、DCモータ等のモータ14によって開度調節され
るスロットルバルブ15が設けられている。このモータ
14がエンジン電子制御回路(以下「ECU」と表記す
る)16からの出力信号に基づいて駆動されることで、
スロットルバルブ15の開度(スロットル開度)が制御
され、そのスロットル開度に応じて各気筒ヘの吸入空気
量(筒内空気量)が調節される。
[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner (not shown) is provided at the most upstream portion of the intake pipe 12 of the direct injection engine 11 which is a direct injection internal combustion engine, and an air for detecting an intake air amount is provided downstream of the air cleaner. A flow meter 13 is provided. A throttle valve 15 whose opening is adjusted by a motor 14 such as a DC motor is provided downstream of the air flow meter 13. The motor 14 is driven based on an output signal from an engine electronic control circuit (hereinafter referred to as “ECU”) 16 so that
The opening of the throttle valve 15 (throttle opening) is controlled, and the amount of intake air to each cylinder (in-cylinder air amount) is adjusted according to the throttle opening.

【0012】このスロットルバルブ15の下流側にはサ
ージタンク17が設けられ、このサージタンク17に、
吸気圧を検出する吸気圧センサ18が取り付けられてい
る。サージタンク17には、エンジン11の各気筒に空
気を導入する吸気マニホールド19が接続され、各気筒
の吸気マニホールド19内には、エンジン11の筒内の
スワール流を制御するためのスワールコントロールバル
ブ20が設けられている。
A surge tank 17 is provided downstream of the throttle valve 15.
An intake pressure sensor 18 for detecting an intake pressure is attached. An intake manifold 19 for introducing air into each cylinder of the engine 11 is connected to the surge tank 17. A swirl control valve 20 for controlling a swirl flow in the cylinder of the engine 11 is provided in the intake manifold 19 of each cylinder. Is provided.

【0013】エンジン11の各気筒の上部には、燃料を
筒内に直接噴射する燃料噴射弁21が取り付けられ、燃
料タンク22内の燃料が燃料ポンプ23によって高圧に
加圧されて各気筒の燃料噴射弁21に供給され、その燃
料の圧力(燃圧)が燃圧センサ24によって検出され
る。エンジン11のシリンダヘッドには、各気筒毎に点
火プラグ25が取り付けられ、各点火プラグ25の火花
放電によって筒内の混合気に点火される。
A fuel injection valve 21 for injecting fuel directly into the cylinder is mounted on an upper part of each cylinder of the engine 11, and the fuel in a fuel tank 22 is pressurized to a high pressure by a fuel pump 23, and the fuel in each cylinder is The fuel is supplied to the injection valve 21 and the fuel pressure (fuel pressure) is detected by the fuel pressure sensor 24. An ignition plug 25 is attached to a cylinder head of the engine 11 for each cylinder, and the mixture in the cylinder is ignited by spark discharge of each ignition plug 25.

【0014】エンジン11の吸気バルブ26と排気バル
ブ27は、それぞれカム軸28,29によって駆動さ
れ、吸気側のカム軸28には、運転状態に応じて吸気バ
ルブ26の開閉タイミングを可変する油圧式の可変バル
ブタイミング機構30が設けられている。この可変バル
ブタイミング機構30を駆動する油圧は、油圧制御弁3
1によって制御される。エンジン11の各気筒のピスト
ン32の往復運動によってクランク軸33が回転駆動さ
れ、このクランク軸33の回転トルクによって外部負荷
34(エアコンのコンプレッサ、オルタネータ、パワー
ステアリングのポンプ等)と車両駆動系が駆動される。
エンジン11のシリンダブロックには、冷却水温を検出
する水温センサ35が取り付けられている。
An intake valve 26 and an exhaust valve 27 of the engine 11 are driven by camshafts 28 and 29, respectively. A camshaft 28 on the intake side is provided with a hydraulic type that varies opening and closing timings of the intake valve 26 in accordance with an operation state. The variable valve timing mechanism 30 is provided. The hydraulic pressure for driving the variable valve timing mechanism 30 is controlled by the hydraulic control valve 3
1 is controlled. The reciprocating motion of the piston 32 of each cylinder of the engine 11 drives the crankshaft 33 to rotate, and the torque of the crankshaft 33 drives the external load 34 (compressor, alternator, pump for power steering, etc.) and the vehicle drive system. Is done.
A water temperature sensor 35 for detecting a cooling water temperature is attached to a cylinder block of the engine 11.

【0015】一方、エンジン11の排気管36には、排
ガスを浄化する三元触媒等の触媒37が設けられ、この
触媒37の上流側に排ガスの空燃比を検出する空燃比セ
ンサ38が設けられている。排気管36のうちの空燃比
センサ38の上流側とサージタンク17との間には、排
ガスの一部を吸気側に環流させるためのEGR配管39
が接続され、このEGR配管39の途中に排気環流量
(EGR量)を制御するEGRバルブ40(排気環流制
御弁)が設けられている。
On the other hand, a catalyst 37 such as a three-way catalyst for purifying exhaust gas is provided in an exhaust pipe 36 of the engine 11, and an air-fuel ratio sensor 38 for detecting an air-fuel ratio of exhaust gas is provided upstream of the catalyst 37. ing. An EGR pipe 39 for recirculating a part of the exhaust gas to the intake side is provided between the upstream side of the air-fuel ratio sensor 38 of the exhaust pipe 36 and the surge tank 17.
An EGR valve 40 (exhaust recirculation control valve) for controlling the exhaust recirculation flow rate (EGR amount) is provided in the EGR pipe 39.

【0016】エンジン運転状態を制御するECU16
は、マイクロコンピュータを主体として構成され、その
ROM(記憶媒体)に記憶されたトルクディマンド制御
プログラムを実行することで、図2に示す要求図示トル
ク演算手段51、燃焼モード切換手段52、均質燃焼モ
ード制御手段53、成層燃焼モード制御手段54、目標
空燃比設定手段55、目標EGR率設定手段56、筒内
空燃比推定手段57、EGR率推定手段58の各機能を
実現する。以下、これら各機能について具体的に説明す
る。
ECU 16 for controlling the operating state of the engine
Is mainly composed of a microcomputer, and executes a torque demand control program stored in a ROM (storage medium) of the microcomputer, whereby a required illustrated torque calculating means 51, a combustion mode switching means 52, a homogeneous combustion mode The functions of the control unit 53, the stratified combustion mode control unit 54, the target air-fuel ratio setting unit 55, the target EGR rate setting unit 56, the in-cylinder air-fuel ratio estimation unit 57, and the EGR rate estimation unit 58 are realized. Hereinafter, each of these functions will be specifically described.

【0017】要求図示トルク演算手段51は、アクセル
ペダルの開度(アクセル開度)を検出するアクセルセン
サ41の出力等に基づいて要求図示トルクを算出する。
ここで、要求図示トルクは、図示トルクの要求値(目標
値)であり、図示トルクは、エンジン11の燃焼によっ
て発生するトルク、つまりエンジン11の内部損失トル
クや外部負荷トルク(補機類の負荷)を含めたトルクで
ある。従って、図示トルクから内部損失トルクや外部負
荷トルクを差し引いたトルクは、クランク軸33から取
り出される軸トルク(正味トルク)となり、この軸トル
クによって車両駆動系が駆動される。
The required indicated torque calculating means 51 calculates the required indicated torque based on the output of an accelerator sensor 41 for detecting the opening of the accelerator pedal (accelerator opening).
Here, the required indicated torque is a required value (a target value) of the indicated torque, and the indicated torque is a torque generated by combustion of the engine 11, that is, an internal loss torque or an external load torque (load of an auxiliary device). ). Therefore, the torque obtained by subtracting the internal loss torque and the external load torque from the indicated torque becomes the shaft torque (net torque) extracted from the crankshaft 33, and the vehicle drive system is driven by the shaft torque.

【0018】図3に示すように、要求図示トルク演算手
段51は、アクセルセンサ41の出力(アクセル開
度)、エンジン回転速度Ne、車速等に基づいて要求軸
トルクを算出し、この要求軸トルクに後述する各種の損
失トルクを加算し、更に、このトルクからアイドルスピ
ードコントロール(ISC制御)によるトルク増減分を
補正して要求図示トルクを求める。ここで、要求軸トル
クに加算する内部損失トルクは、機械摩擦損失とポンピ
ング損失であり、機械摩擦損失は、エンジン回転速度N
eと冷却水温THWとに基づいてマップ又は数式によっ
て算出され、ポンピング損失は、エンジン回転速度Ne
と吸気圧Pmとに基づいてマップ又は数式によって算出
される。また、要求軸トルクに加算する外部負荷トルク
は、エンジン11の動力で駆動される補機類(エアコン
のコンプレッサ、オルタネータ、パワーステアリングの
ポンプ等)の負荷トルクであり、エアコン信号、オルタ
ネータのフィールド電流等に応じて設定される。
As shown in FIG. 3, the required indicated torque calculating means 51 calculates a required shaft torque based on the output of the accelerator sensor 41 (accelerator opening), the engine speed Ne, the vehicle speed, and the like. Is added to various loss torques described later, and a torque increase / decrease by idle speed control (ISC control) is corrected from the torque to obtain a required indicated torque. Here, the internal loss torque to be added to the required shaft torque is a mechanical friction loss and a pumping loss.
e and the cooling water temperature THW are calculated by a map or a mathematical formula, and the pumping loss is calculated based on the engine speed Ne.
It is calculated by a map or a mathematical expression based on and the intake pressure Pm. The external load torque to be added to the required shaft torque is a load torque of accessories (an air conditioner compressor, an alternator, a power steering pump, etc.) driven by the power of the engine 11, and includes an air conditioner signal and an alternator field current. It is set according to the like.

【0019】更に、要求図示トルク演算手段51は、内
部損失トルクと外部負荷トルクを加算した要求軸トルク
を、アイドルスピードコントロール(ISC制御)によ
るトルク増減分を補正することで、要求図示トルクを求
める。ISC制御による補正トルク(トルク増減分)
は、目標アイドル回転速度Netargetと現在のエンジン
回転速度Neとに基づいてマップ又は数式によって算出
される。
Further, the required indicated torque calculating means 51 obtains the required indicated torque by correcting the required shaft torque obtained by adding the internal loss torque and the external load torque by a torque increase / decrease by idle speed control (ISC control). . Correction torque by ISC control (torque increase / decrease)
Is calculated by a map or a mathematical expression based on the target idle rotation speed Netarget and the current engine rotation speed Ne.

【0020】一方、目標空燃比設定手段55は、要求図
示トルク演算手段51で演算した要求図示トルクとエン
ジン回転速度Neとに基づいてマップ等により目標空燃
比(目標A/F)を設定する。この目標空燃比は、均質
燃焼モード制御手段53と成層燃焼モード制御手段54
の両方で共通して使用される。また、目標EGR率設定
手段56は、EGRによるNOx低減効果を大きくする
ように目標EGR率を運転状態(例えば目標空燃比、エ
ンジン回転速度Ne等)に応じてマップ等により設定す
る。
On the other hand, the target air-fuel ratio setting means 55 sets a target air-fuel ratio (target A / F) using a map or the like based on the required indicated torque calculated by the required indicated torque calculating means 51 and the engine rotation speed Ne. The target air-fuel ratio is determined by the homogeneous combustion mode control means 53 and the stratified combustion mode control means 54.
Used in both. Further, the target EGR rate setting means 56 sets the target EGR rate by a map or the like according to the operating state (for example, the target air-fuel ratio, the engine speed Ne, etc.) so as to increase the NOx reduction effect by the EGR.

【0021】また、燃焼モード切換手段52は、要求図
示トルクとエンジン回転速度Neに応じてマップ等から
要求燃焼モードを判定し、要求燃焼モードが現在の燃焼
モードと異なる場合は、燃焼モード切換要求有りと判断
する。この場合は、後述するように、筒内空燃比推定手
段57で算出した推定筒内空燃比が成層燃焼、均質燃焼
のいずれでも安定燃焼可能な所定範囲内に達し、且つ、
後述するEGR率推定手段58で算出した推定EGR率
が成層燃焼、均質燃焼のいずれでもNOx低減可能な所
定範囲内に達した時に、燃焼モード制御手段53,54
を切り換えて、燃焼モードを切り換える。
The combustion mode switching means 52 determines the required combustion mode from a map or the like according to the required indicated torque and the engine speed Ne. If the required combustion mode is different from the current combustion mode, the combustion mode switching request is made. Judge that there is. In this case, as described later, the estimated in-cylinder air-fuel ratio calculated by the in-cylinder air-fuel ratio estimating means 57 reaches a predetermined range in which stable combustion can be performed in either stratified combustion or homogeneous combustion, and
When the estimated EGR rate calculated by the EGR rate estimating means 58 described later reaches a predetermined range in which NOx can be reduced in both stratified combustion and homogeneous combustion, the combustion mode control means 53, 54.
To switch the combustion mode.

【0022】例えば、低回転領域、低トルク領域では、
成層燃焼モード制御手段54が選択され、成層燃焼モー
ドで運転される。この成層燃焼モード運転時には、少量
の燃料を圧縮行程で筒内に直接噴射して成層混合気を形
成して成層燃焼させることで、燃費を向上させる。ま
た、中・高回転領域、中・高トルク領域では、均質燃焼
モード制御手段53が選択され、均質燃焼モードで運転
される。この均質燃焼モード運転時には、燃料噴射量を
増量して吸気行程で筒内に直接噴射して均質混合気を形
成して均質燃焼させることで、エンジン出力や軸トルク
を高める。
For example, in a low rotation region and a low torque region,
The stratified combustion mode control means 54 is selected and operated in the stratified combustion mode. During the stratified combustion mode operation, a small amount of fuel is directly injected into the cylinder in the compression stroke to form a stratified mixture and perform stratified combustion, thereby improving fuel efficiency. In the middle / high rotation range and the middle / high torque range, the homogeneous combustion mode control means 53 is selected, and the engine is operated in the homogeneous combustion mode. During the homogeneous combustion mode operation, the engine output and the shaft torque are increased by increasing the fuel injection amount and injecting directly into the cylinder during the intake stroke to form a homogeneous mixture and perform homogeneous combustion.

【0023】一方、筒内空燃比推定手段57は、燃焼モ
ード切換要求があった時に、推定筒内空燃比を次式によ
り算出する。 推定筒内空燃比=推定筒内空気量/目標燃料量
On the other hand, the in-cylinder air-fuel ratio estimating means 57 calculates the estimated in-cylinder air-fuel ratio by the following equation when there is a combustion mode switching request. Estimated in-cylinder air-fuel ratio = estimated in-cylinder air amount / target fuel amount

【0024】実際には、筒内空燃比=筒内空気量/燃料
量であるが、筒内空気量と燃料量は測定できないため、
推定する必要がある。筒内空気量の推定方法は、スロッ
トル通過空気量(エアフローメータ13の検出値)、エ
ンジン回転速度Ne、吸気圧Pm、EGR量等を入力情
報とする筒内空気量推定モデル(吸入空気系のモデル)
を用いて、筒内空気量を推定する。また、燃料を直接筒
内に噴射する筒内噴射式エンジン11では、吸気ポート
内壁に付着する燃料(ウェット)が存在しないため、燃
料量は、目標燃料量と等しいと仮定しても良い。従っ
て、筒内空燃比推定手段56は、推定筒内空燃比=推定
筒内空気量/目標燃料量の計算によって推定筒内空燃比
を算出する。この際、目標燃料量は、要求図示トルクと
エンジン回転速度Neとに基づいてマップ等により算出
する。
Actually, the in-cylinder air-fuel ratio = in-cylinder air amount / fuel amount, but since the in-cylinder air amount and the fuel amount cannot be measured,
It needs to be estimated. A method of estimating the in-cylinder air amount includes a cylinder air amount estimation model (an intake air system) that uses a throttle passing air amount (detected value of the air flow meter 13), an engine rotation speed Ne, an intake pressure Pm, an EGR amount, and the like as input information. model)
Is used to estimate the in-cylinder air amount. In addition, in the in-cylinder injection engine 11 that injects fuel directly into the cylinder, the fuel amount may be assumed to be equal to the target fuel amount because there is no fuel (wet) attached to the intake port inner wall. Accordingly, the in-cylinder air-fuel ratio estimating means 56 calculates the estimated in-cylinder air-fuel ratio by calculating the estimated in-cylinder air-fuel ratio = estimated in-cylinder air amount / target fuel amount. At this time, the target fuel amount is calculated by a map or the like based on the required indicated torque and the engine rotation speed Ne.

【0025】尚、空気優先方式で制御する均質燃焼モー
ドでは、燃料優先方式で制御する成層燃焼モードと比較
して、目標空燃比と筒内空燃比とのずれが小さいため、
均質燃焼モードでの推定筒内空燃比は、目標空燃比と等
しい(推定筒内空燃比=目標空燃比)と仮定しても良
い。
In the homogeneous combustion mode controlled by the air priority method, the difference between the target air-fuel ratio and the in-cylinder air-fuel ratio is smaller than in the stratified combustion mode controlled by the fuel priority method.
The estimated in-cylinder air-fuel ratio in the homogeneous combustion mode may be assumed to be equal to the target air-fuel ratio (estimated in-cylinder air-fuel ratio = target air-fuel ratio).

【0026】また、EGR率推定手段58は、燃焼モー
ド切換要求があった時に、EGRバルブ40の開度と吸
気圧Pmとからマップ又は数式によりEGR流量を算出
し、このEGR流量と推定筒内空気量とから次式により
推定EGR率を算出する。 推定EGR率=EGR流量/(EGR流量+推定筒内空
気量)×100[%] 尚、EGRバルブ40の開度は、EGRバルブ40に内
蔵された開度センサ(図示せず)によって検出される。
The EGR rate estimating means 58 calculates the EGR flow rate by a map or an equation from the opening degree of the EGR valve 40 and the intake pressure Pm when there is a request for switching the combustion mode. The estimated EGR rate is calculated from the air amount and the following equation. Estimated EGR rate = EGR flow rate / (EGR flow rate + estimated in-cylinder air amount) × 100 [%] The opening of the EGR valve 40 is detected by an opening sensor (not shown) built in the EGR valve 40. You.

【0027】次に、図4(a)に基づいて、均質燃焼モ
ード制御手段53の各機能を説明する。均質燃焼モード
制御手段53は、要求図示トルクを目標空気量に変換し
てスロットル開度を設定する空気量優先方式のトルクデ
ィマンド制御を行う。その際、点火時期や筒内の空燃比
によって図示トルクが変動することを考慮して、要求図
示トルクを点火時期効率(SA効率)と空燃比効率(A
/F効率)とによって次式により補正する。
Next, each function of the homogeneous combustion mode control means 53 will be described with reference to FIG. The homogeneous combustion mode control means 53 performs an air amount priority type torque demand control for converting the required indicated torque into a target air amount and setting the throttle opening. At this time, in consideration of the fact that the indicated torque fluctuates depending on the ignition timing and the air-fuel ratio in the cylinder, the required indicated torque is set to the ignition timing efficiency (SA efficiency) and the air-fuel ratio efficiency (A
/ F efficiency) according to the following equation.

【0028】補正後の要求図示トルク=要求図示トルク
/(点火時期効率×空燃比効率) ここで、点火時期効率は、点火遅角量に応じてマップ等
により設定され、点火遅角量が0の時に図示トルクが最
大になることから、点火遅角量が0の時に点火時期効率
=1に設定される。また、空燃比効率は、前述の目標空
燃比に応じてマップ等により設定される。
Required indicated torque after correction = Requested indicated torque / (ignition timing efficiency × air-fuel ratio efficiency) Here, the ignition timing efficiency is set by a map or the like according to the ignition retard amount, and the ignition retard amount is set to 0. Since the indicated torque becomes maximum at the time of, the ignition timing efficiency is set to 1 when the ignition retard amount is zero. The air-fuel ratio efficiency is set by a map or the like according to the target air-fuel ratio described above.

【0029】そして、補正後の要求図示トルクとエンジ
ン回転速度Neに基づいてマップ等により目標空気量を
算出し、この目標空気量とエンジン回転速度Ne、目標
EGR率、内部EGR率(可変バルブタイミング機構3
0の進角量)等に基づいて空気系逆モデルを用いてスロ
ットル開度の指令値を算出する。ここで、空気系逆モデ
ルは、スロットルバルブ15から吸気ポートまでの空気
の流れを模擬した空気系モデルの入出力関係を逆に解い
たモデルである。この空気系逆モデルで算出したスロッ
トル開度の指令値に応じた制御信号を電子スロットルシ
ステムのモータ14に出力し、スロットルバルブ15を
駆動してスロットル開度を制御する。
Then, a target air amount is calculated by a map or the like based on the corrected required torque indicated and the engine speed Ne, and the target air amount, the engine speed Ne, the target EGR rate, and the internal EGR rate (variable valve timing) are calculated. Mechanism 3
A command value of the throttle opening is calculated using an air system inverse model based on (advancing amount of 0) and the like. Here, the air system inverse model is a model obtained by reversing the input / output relationship of the air system model simulating the flow of air from the throttle valve 15 to the intake port. A control signal corresponding to the throttle opening command value calculated by the air system inverse model is output to the motor 14 of the electronic throttle system, and the throttle valve 15 is driven to control the throttle opening.

【0030】また、均質燃焼モード制御手段53は、推
定筒内空気量(又は実空気量)を目標空燃比で割り算し
て目標燃料量を算出し、この目標燃料量に各種の補正係
数(水温補正係数、フィードバック補正係数、学習補正
係数等)を乗算して最終的な燃料噴射量を求め、この燃
料噴射量に応じたパルス幅の噴射パルスを、各気筒の吸
気行程で燃料噴射弁21に出力して燃料噴射を実行す
る。これにより、均質燃焼モード運転時には、吸気行程
で燃料を筒内に直接噴射して均質混合気を形成して均質
燃焼させる。
The homogeneous combustion mode control means 53 calculates a target fuel amount by dividing the estimated in-cylinder air amount (or actual air amount) by the target air-fuel ratio, and various correction coefficients (water temperature) are added to the target fuel amount. Correction coefficient, feedback correction coefficient, learning correction coefficient, etc.) to obtain a final fuel injection amount, and an injection pulse having a pulse width corresponding to the fuel injection amount is supplied to the fuel injection valve 21 in the intake stroke of each cylinder. Output and execute fuel injection. As a result, during the homogeneous combustion mode operation, the fuel is directly injected into the cylinder during the intake stroke to form a homogeneous mixture and perform homogeneous combustion.

【0031】更に、均質燃焼モード制御手段53は、前
記目標EGR率設定手段56で設定した目標EGR率か
らEGRバルブ40の開度指令値を算出し、それに応じ
てEGRバルブ40を駆動してEGR率を目標EGR率
に制御する。また、均質燃焼モード制御手段53は、運
転状態に応じて各気筒の点火時期をマップ等により算出
し、その点火時期に点火プラグ25に高電圧を印加して
火花放電を発生させる。この点火時期から前述した点火
時期効率が算出される。
Further, the homogeneous combustion mode control means 53 calculates the opening command value of the EGR valve 40 from the target EGR rate set by the target EGR rate setting means 56, and drives the EGR valve 40 accordingly to drive the EGR valve. The rate is controlled to the target EGR rate. The homogeneous combustion mode control means 53 calculates the ignition timing of each cylinder using a map or the like according to the operating state, and applies a high voltage to the ignition plug 25 at the ignition timing to generate spark discharge. From the ignition timing, the above-described ignition timing efficiency is calculated.

【0032】また、均質燃焼モード制御手段53は、筒
内空気量推定モデルを用いてエアーフローメータ13の
出力(スロットル通過空気量)、エンジン回転速度N
e、吸気圧センサ18の出力(吸気圧Pm)から推定筒
内空気量を算出し、この推定筒内空気量と目標燃料量と
から推定筒内空燃比を算出する。
The homogeneous combustion mode control means 53 uses the in-cylinder air amount estimation model to output the air flow meter 13 (the amount of air passing through the throttle) and the engine speed N.
e, The estimated in-cylinder air amount is calculated from the output of the intake pressure sensor 18 (intake pressure Pm), and the estimated in-cylinder air-fuel ratio is calculated from the estimated in-cylinder air amount and the target fuel amount.

【0033】次に、図4(b)に基づいて、成層燃焼モ
ード制御手段54の各機能を説明する。成層燃焼モード
制御手段54は、要求図示トルクを目標燃料量に変換
し、この目標燃料量と目標空燃比とを乗算して目標空気
量を求めてスロットル開度を設定する燃料量優先方式の
トルクディマンド制御を行う。その際、筒内の空燃比に
よって図示トルクが変動することを考慮して、要求図示
トルクを空燃比効率で割り算して要求図示トルクを補正
する。 補正後の要求図示トルク=要求図示トルク/空燃比効率 ここで、空燃比効率の算出方法は、均質燃焼モード制御
手段53の場合と同じく、目標空燃比に応じて空燃比効
率をマップ等により算出すれば良い。
Next, each function of the stratified combustion mode control means 54 will be described with reference to FIG. The stratified combustion mode control means 54 converts the required indicated torque into a target fuel amount, multiplies the target fuel amount by the target air-fuel ratio to obtain a target air amount, and sets a throttle opening degree of a fuel amount priority type torque. Performs demand control. At this time, the required indicated torque is corrected by dividing the required indicated torque by the air-fuel ratio efficiency in consideration of the fact that the indicated torque varies depending on the air-fuel ratio in the cylinder. Required required torque after correction = Required required torque / Air-fuel ratio efficiency Here, the method of calculating the air-fuel ratio efficiency is the same as in the case of the homogeneous combustion mode control means 53, in which the air-fuel ratio efficiency is calculated using a map or the like according to the target air-fuel ratio. Just do it.

【0034】そして、補正後の要求図示トルクとエンジ
ン回転速度Neとに基づいてマップ等により目標燃料量
を算出し、この目標燃料量に各種の補正係数(水温補正
係数、フィードバック補正係数、学習補正係数等)を乗
算して最終的な燃料噴射量を求め、この燃料噴射量に応
じたパルス幅の噴射パルスを、各気筒の圧縮行程で燃料
噴射弁21に出力して燃料噴射を実行する。これによ
り、成層燃焼モード運転時には、圧縮行程で燃料を筒内
に直接噴射して成層混合気を形成して成層燃焼させる。
Then, a target fuel amount is calculated by a map or the like based on the corrected required torque indicated and the engine speed Ne, and various correction coefficients (water temperature correction coefficient, feedback correction coefficient, learning correction A final fuel injection amount is obtained by multiplying by a coefficient or the like, and an injection pulse having a pulse width corresponding to the fuel injection amount is output to the fuel injection valve 21 in the compression stroke of each cylinder to execute fuel injection. Thus, during the stratified charge combustion mode operation, the fuel is directly injected into the cylinder during the compression stroke to form a stratified mixture and perform stratified charge combustion.

【0035】更に、成層燃焼モード制御手段54は、目
標燃料量とエンジン回転速度Neに応じて点火時期をマ
ップ等により算出し、その点火時期に点火プラグ25に
高電圧を印加して火花放電を発生させる。
Further, the stratified combustion mode control means 54 calculates the ignition timing according to the target fuel amount and the engine speed Ne by using a map or the like, and applies a high voltage to the ignition plug 25 at the ignition timing to generate the spark discharge. generate.

【0036】また、成層燃焼モード制御手段54は、目
標燃料量に目標空燃比を乗算して目標空気量を算出し、
この目標空気量、エンジン回転速度Ne、目標EGR
率、内部EGR率(可変バルブタイミング機構30の進
角量)等に基づいて空気系逆モデルを用いてスロットル
開度の指令値を算出し、このスロットル開度の指令値に
応じた制御信号を電子スロットルシステムのモータ14
に出力し、スロットルバルブ15を駆動してスロットル
開度を制御する。更に、目標EGR率からEGRバルブ
40の開度指令値を算出し、それに応じてEGRバルブ
40を駆動してEGR率を目標EGR率に制御する。
The stratified combustion mode control means 54 calculates a target air amount by multiplying the target fuel amount by the target air-fuel ratio.
The target air amount, the engine speed Ne, and the target EGR
A throttle opening command value is calculated using an air system inverse model based on the rate, the internal EGR rate (the advance amount of the variable valve timing mechanism 30), and the like, and a control signal corresponding to the throttle opening command value is calculated. Motor 14 for electronic throttle system
And the throttle valve 15 is driven to control the throttle opening. Further, an opening command value of the EGR valve 40 is calculated from the target EGR rate, and the EGR valve 40 is driven accordingly to control the EGR rate to the target EGR rate.

【0037】次に、図5に基づいて、燃焼モードを成層
燃焼モードから均質燃焼モードに切り換える際の制御方
法を説明する。成層燃焼モードから均質燃焼モードへの
燃焼モード切換要求が発生すると、その時点で、目標E
GR率を切換先の燃焼モードである均質燃焼モードの目
標EGR率に切り換えると同時に、目標空燃比を成層燃
焼、均質燃焼のいずれでも安定燃焼可能な燃焼モード切
換用の目標空燃比に切り換える。
Next, a control method for switching the combustion mode from the stratified combustion mode to the homogeneous combustion mode will be described with reference to FIG. When a request for switching the combustion mode from the stratified combustion mode to the homogeneous combustion mode is issued, the target E
At the same time as switching the GR rate to the target EGR rate in the homogeneous combustion mode, which is the switching destination combustion mode, the target air-fuel ratio is switched to the target air-fuel ratio for switching the combustion mode that enables stable combustion in either stratified charge combustion or homogeneous charge combustion.

【0038】燃焼モード切換要求発生時に、目標EGR
率の切換により、EGRバルブ40の開度指令値がステ
ップ状に切り換えられるが、ステップモータ等で駆動さ
れるEGRバルブ40は駆動速度が遅いため、EGRバ
ルブ40の実開度が開度指令値の変化から応答遅れをも
って変化し、その影響で、推定EGR率(実EGR率)
が目標EGR率の変化から応答遅れをもって変化する。
また、燃焼モード切換用の目標空燃比の切換により、目
標空気量がステップ状に切り換えられるが、実際の筒内
空燃比の変化を応答性の遅い実EGR率の変化に合わせ
るために、スロットル開度指令値の変化を応答性の遅い
EGRバルブ40の実開度の変化に合わせて遅らせ、推
定筒内空燃比(実際の筒内空燃比)を燃焼モード切換用
の目標空燃比の変化から応答遅れをもって変化させる。
When a combustion mode switching request occurs, the target EGR
The switching of the rate switches the opening command value of the EGR valve 40 in a step-like manner. However, since the driving speed of the EGR valve 40 driven by a stepping motor or the like is slow, the actual opening of the EGR valve 40 is changed to the opening command value. Of the EGR rate (actual EGR rate)
Changes with a response delay from a change in the target EGR rate.
Further, the target air amount is switched stepwise by switching the target air-fuel ratio for switching the combustion mode. However, in order to match the actual change in the in-cylinder air-fuel ratio with the change in the actual EGR rate having a slow response, the throttle is opened. The change in the degree command value is delayed according to the change in the actual opening of the EGR valve 40 having a slow response, and the estimated in-cylinder air-fuel ratio (actual in-cylinder air-fuel ratio) is responded from the change in the target air-fuel ratio for switching the combustion mode. Change with a delay.

【0039】その後、推定筒内空燃比が成層燃焼、均質
燃焼のいずれでも安定燃焼可能な空燃比(切換実行空燃
比)に達し、且つ、推定EGR率が成層燃焼、均質燃焼
のいずれでも安定燃焼を保ったままNOx低減可能な切
換実行EGR率に達した時点で、燃焼モードを均質燃焼
モードに切り換える。この燃焼モードの切換後は、目標
空燃比を切換先の燃焼モードである均質燃焼モードの目
標空燃比に切り換えると共に、燃料噴射時期を吸気行程
噴射に切り換える。
Thereafter, the estimated in-cylinder air-fuel ratio reaches an air-fuel ratio (switching execution air-fuel ratio) at which stable combustion can be performed in both stratified combustion and homogeneous combustion, and the estimated EGR rate is stable combustion in both stratified combustion and homogeneous combustion. When the switching execution EGR rate at which NOx can be reduced is reached while maintaining the combustion mode, the combustion mode is switched to the homogeneous combustion mode. After the switching of the combustion mode, the target air-fuel ratio is switched to the target air-fuel ratio of the homogeneous combustion mode which is the switching destination combustion mode, and the fuel injection timing is switched to the intake stroke injection.

【0040】次に、図6に基づいて、燃焼モードを均質
燃焼モードから成層燃焼モードに切り換える際の制御方
法を説明する。均質燃焼モードから成層燃焼モードへの
燃焼モード切換要求が発生すると、その時点で、目標E
GR率を切換先の燃焼モードである成層燃焼モードの目
標EGR率に切り換えると同時に、目標空燃比を均質燃
焼、成層燃焼のいずれでも安定燃焼可能な燃焼モード切
換用の目標空燃比に切り換える。
Next, a control method for switching the combustion mode from the homogeneous combustion mode to the stratified combustion mode will be described with reference to FIG. When a request for switching the combustion mode from the homogeneous combustion mode to the stratified combustion mode is issued, the target E
At the same time as switching the GR rate to the target EGR rate in the stratified combustion mode, which is the switching destination combustion mode, the target air-fuel ratio is switched to a target air-fuel ratio for switching the combustion mode in which stable combustion can be performed in either homogeneous combustion or stratified combustion.

【0041】燃焼モード切換要求発生時に、目標EGR
率の切換により、EGRバルブ40の開度指令値がステ
ップ状に切り換えられるが、応答性の遅いEGRバルブ
40の実開度が開度指令値の変化から応答遅れをもって
変化し、その影響で、推定EGR率(実EGR率)が目
標EGR率の変化から応答遅れをもって変化する。ま
た、燃焼モード切換用の目標空燃比の切換により、目標
空気量がステップ状に切り換えられるが、実際の筒内空
燃比の変化を応答性の遅い実EGR率の変化に合わせる
ために、スロットル開度指令値の変化を応答性の遅いE
GRバルブ40の実開度の変化に合わせて遅らせ、推定
筒内空燃比(実際の筒内空燃比)を燃焼モード切換用の
目標空燃比の変化から応答遅れをもって変化させる。
When a combustion mode switching request occurs, the target EGR
By switching the rate, the opening command value of the EGR valve 40 is switched in a step-like manner. However, the actual opening of the EGR valve 40 having a slow response changes with a response delay from the change in the opening command value, and due to the effect, The estimated EGR rate (actual EGR rate) changes with a response delay from a change in the target EGR rate. Further, the target air amount is switched stepwise by switching the target air-fuel ratio for switching the combustion mode. However, in order to match the actual change in the in-cylinder air-fuel ratio with the change in the actual EGR rate having a slow response, the throttle is opened. Change of the command value
The estimated in-cylinder air-fuel ratio (actual in-cylinder air-fuel ratio) is changed with a response delay from the change in the target air-fuel ratio for switching the combustion mode, by delaying in accordance with the change in the actual opening of the GR valve 40.

【0042】その後、推定筒内空燃比が成層燃焼、均質
燃焼のいずれでも安定燃焼可能な空燃比(切換実行空燃
比)に達し、且つ、推定EGR率が成層燃焼、均質燃焼
のいずれでも安定燃焼を保ったままNOx低減可能な切
換実行EGR率に達した時点で、燃焼モードを成層燃焼
モードに切り換える。この燃焼モードの切換後は、目標
空燃比を切換先の燃焼モードである成層燃焼モードの目
標空燃比に切り換えると共に、燃料噴射時期を圧縮行程
噴射に切り換える。
Thereafter, the estimated in-cylinder air-fuel ratio reaches an air-fuel ratio (switching execution air-fuel ratio) at which stable combustion can be performed in both stratified combustion and homogeneous combustion, and the estimated EGR rate is stable combustion in both stratified combustion and homogeneous combustion. The combustion mode is switched to the stratified combustion mode when the switching execution EGR rate at which NOx can be reduced is reached while maintaining the EGR rate. After the switching of the combustion mode, the target air-fuel ratio is switched to the target air-fuel ratio of the stratified combustion mode, which is the switching destination combustion mode, and the fuel injection timing is switched to the compression stroke injection.

【0043】以上説明した筒内噴射式エンジン11のト
ルクディマンド制御は、ECU16によって図7に示す
ような手順で実行される。まず、ステップ101で、ア
クセルセンサ41の出力(アクセル開度)、エンジン回
転速度Ne、車速等に基づいて要求軸トルクを算出し、
この要求軸トルクに内部損失トルクと外部負荷トルクを
加算し、更に、このトルクからISC制御で消費される
トルク分を補正して要求図示トルクを求める。この後、
ステップ102に進み、要求図示トルクとエンジン回転
速度Neに応じてマップ等から均質燃焼モードと成層燃
焼モードのいずれか一方を要求燃焼モードとして選択
し、次のステップ103で、この要求燃焼モードが現在
の燃焼モードと異なるか否かで燃焼モード切換要求有り
か否かを判定する。燃焼モード切換要求が無ければ、現
在の燃焼モードをそのまま継続する(ステップ108〜
110)。
The above-described torque demand control of the in-cylinder injection engine 11 is executed by the ECU 16 in a procedure as shown in FIG. First, in step 101, the required shaft torque is calculated based on the output of the accelerator sensor 41 (accelerator opening), the engine speed Ne, the vehicle speed, and the like.
The required torque is obtained by adding the internal loss torque and the external load torque to the required shaft torque, and further correcting the torque consumed in the ISC control from the torque. After this,
Proceeding to step 102, one of the homogeneous combustion mode and the stratified combustion mode is selected as the required combustion mode from a map or the like according to the required indicated torque and the engine rotation speed Ne. It is determined whether or not there is a combustion mode switching request based on whether or not the combustion mode is different. If there is no combustion mode switching request, the current combustion mode is continued as it is (steps 108 to 108).
110).

【0044】もし、ステップ103で、燃焼モード切換
要求有りと判定されれば、ステップ104に進み、目標
空燃比を成層燃焼、均質燃焼のいずれでも安定燃焼可能
な燃焼モード切換用の目標空燃比に設定すると共に、目
標EGR率を切換先の燃焼モードに応じた目標EGR率
に設定する。この後、ステップ105で、推定筒内空燃
比と推定EGR率を前述した方法で演算する。
If it is determined in step 103 that there is a request for switching the combustion mode, the process proceeds to step 104, in which the target air-fuel ratio is set to the target air-fuel ratio for switching the combustion mode that enables stable combustion in either stratified charge combustion or homogeneous charge combustion. At the same time, the target EGR rate is set to a target EGR rate corresponding to the combustion mode of the switching destination. Thereafter, in step 105, the estimated in-cylinder air-fuel ratio and the estimated EGR rate are calculated by the above-described method.

【0045】次のステップ106で、推定筒内空燃比が
成層燃焼、均質燃焼のいずれでも安定燃焼可能な所定範
囲内(A<推定筒内空燃比<B)に達したか否かを判定
すると共に、推定EGR率が成層燃焼、均質燃焼のいず
れでも安定燃焼を保ったままNOx低減可能な所定範囲
内(C<推定EGR率<D)に達したか否かを判定す
る。その結果、推定筒内空燃比と推定EGR率のいずれ
か一方でも所定範囲内に達していなければ、燃焼モード
切換タイミングに達していないと判断して、ステップ1
05に戻り、再度、推定筒内空燃比と推定EGR率を演
算して、それらが所定範囲内に達したか否かを判定する
処理を繰り返す。
In the next step 106, it is determined whether or not the estimated in-cylinder air-fuel ratio has reached a predetermined range (A <estimated in-cylinder air-fuel ratio <B) that allows stable combustion in either stratified charge combustion or homogeneous charge combustion. At the same time, it is determined whether or not the estimated EGR rate has reached a predetermined range in which NOx can be reduced (C <estimated EGR rate <D) while maintaining stable combustion in either stratified charge combustion or homogeneous charge combustion. As a result, if one of the estimated in-cylinder air-fuel ratio and the estimated EGR rate has not reached the predetermined range, it is determined that the combustion mode switching timing has not been reached, and step 1
Returning to step 05, the process of calculating the estimated in-cylinder air-fuel ratio and the estimated EGR rate again and determining whether or not they have reached a predetermined range is repeated.

【0046】その後、推定筒内空燃比と推定EGR率の
両方が所定範囲内に達した時に、燃焼モード切換タイミ
ングに達したと判断して、ステップ107に進み、要求
燃焼モードが均質燃焼モードであるか否かを判定し、要
求燃焼モードが均質燃焼モードであれば、ステップ10
9に進み、燃焼モードを均質燃焼モードに切り換え、要
求燃焼モードが成層燃焼モードであれば、ステップ11
0に進み、燃焼モードを成層燃焼モードに切り換える。
Thereafter, when both the estimated in-cylinder air-fuel ratio and the estimated EGR rate reach within a predetermined range, it is determined that the combustion mode switching timing has been reached, and the routine proceeds to step 107, where the required combustion mode is the homogeneous combustion mode. It is determined whether or not the required combustion mode is present.
The program proceeds to step 9 where the combustion mode is switched to the homogeneous combustion mode.
The process proceeds to 0, and the combustion mode is switched to the stratified combustion mode.

【0047】均質燃焼モードの運転中は、要求図示トル
クとエンジン回転速度Neとに基づいてマップ等により
目標空気量を算出し、この目標空気量とエンジン回転速
度Ne等に基づいて空気系逆モデルを用いてスロットル
開度の指令値を算出する。その後、このスロットル開度
の指令値に応じた制御信号を電子スロットルシステムの
モータ14に出力し、スロットルバルブ15を駆動して
スロットル開度を制御する。
During operation in the homogeneous combustion mode, a target air amount is calculated by a map or the like based on the required indicated torque and the engine speed Ne, and an air system inverse model is calculated based on the target air amount and the engine speed Ne. Is used to calculate a throttle opening command value. Thereafter, a control signal corresponding to the command value of the throttle opening is output to the motor 14 of the electronic throttle system, and the throttle valve 15 is driven to control the throttle opening.

【0048】また、均質燃焼モードの運転中は、次のよ
うにして燃料噴射量を算出する。まず、筒内空気量推定
モデルを用いてスロットル通過空気量、吸気圧Pm、エ
ンジン回転速度Neから推定筒内空気量を算出する。こ
の後、この推定筒内空気量を目標空燃比で割り算して目
標燃料量を算出し、この目標燃料量に各種の補正係数
(水温補正係数、フィードバック補正係数、学習補正係
数等)を乗算して最終的な燃料噴射量を求める。その
後、この燃料噴射量に応じたパルス幅の噴射パルスを、
各気筒の吸気行程で燃料噴射弁21に出力して燃料噴射
を実行する。これにより、均質燃焼モード運転時には、
吸気行程で燃料を筒内に直接噴射して均質混合気を形成
して均質燃焼させる。
During the operation in the homogeneous combustion mode, the fuel injection amount is calculated as follows. First, an estimated in-cylinder air amount is calculated from a throttle passing air amount, an intake pressure Pm, and an engine rotation speed Ne using an in-cylinder air amount estimation model. Thereafter, the estimated in-cylinder air amount is divided by the target air-fuel ratio to calculate a target fuel amount, and the target fuel amount is multiplied by various correction coefficients (water temperature correction coefficient, feedback correction coefficient, learning correction coefficient, etc.). To obtain the final fuel injection amount. After that, an injection pulse having a pulse width corresponding to this fuel injection amount is
During the intake stroke of each cylinder, the output is output to the fuel injection valve 21 to execute the fuel injection. As a result, during operation in the homogeneous combustion mode,
In the intake stroke, fuel is injected directly into the cylinder to form a homogeneous mixture and burn homogeneously.

【0049】一方、成層燃焼モードの運転中は、要求図
示トルクとエンジン回転速度Neとに基づいてマップ等
により目標燃料量を算出し、この目標燃料量に各種の補
正係数(水温補正係数、フィードバック補正係数、学習
補正係数等)を乗算して最終的な燃料噴射量を求め、こ
の燃料噴射量に応じたパルス幅の噴射パルスを、各気筒
の圧縮行程で燃料噴射弁21に出力して燃料噴射を実行
する。これにより、成層燃焼モード運転時には、圧縮行
程で燃料を筒内に直接噴射して成層混合気を形成して成
層燃焼させる。
On the other hand, during operation in the stratified charge combustion mode, a target fuel amount is calculated by a map or the like based on the required indicated torque and the engine speed Ne, and various correction coefficients (water temperature correction coefficient, feedback (A correction coefficient, a learning correction coefficient, etc.) to obtain a final fuel injection amount, and outputs an injection pulse having a pulse width corresponding to the fuel injection amount to the fuel injection valve 21 in the compression stroke of each cylinder. Perform injection. Thus, during the stratified charge combustion mode operation, the fuel is directly injected into the cylinder during the compression stroke to form a stratified mixture and perform stratified charge combustion.

【0050】更に、成層燃焼モードの運転中は、目標空
燃比と目標燃料量とを乗算して目標空気量を求め、この
目標空気量とエンジン回転速度Ne等に基づいて空気系
逆モデルを用いてスロットル開度の指令値を算出する。
そして、このスロットル開度の指令値に応じた制御信号
を電子スロットルシステムのモータ14に出力し、スロ
ットルバルブ15を駆動してスロットル開度を制御す
る。
Further, during operation in the stratified combustion mode, the target air amount is obtained by multiplying the target air-fuel ratio and the target fuel amount, and an air system inverse model is used based on the target air amount and the engine speed Ne. To calculate the throttle opening command value.
Then, a control signal corresponding to the command value of the throttle opening is output to the motor 14 of the electronic throttle system, and the throttle valve 15 is driven to control the throttle opening.

【0051】尚、ステップ106では、推定筒内空燃比
と推定EGR率がそれぞれ所定範囲内に達した時に、燃
焼モードを切り換えるようにしたが、推定筒内空燃比と
推定EGR率がそれぞれ所定値(例えば所定範囲の中央
値)に達した時に、燃焼モードを切り換えるようにして
も良い。また、燃焼モードの切換判定に用いる所定範囲
(A〜B,C〜D)又は所定値(中央値)を、切換先の
燃焼モードに応じて変更するようにしても良い。
In step 106, the combustion mode is switched when the estimated in-cylinder air-fuel ratio and the estimated EGR rate reach respective predetermined ranges. The combustion mode may be switched when reaching (for example, the median of a predetermined range). Further, the predetermined range (A to B, C to D) or the predetermined value (median value) used for the determination of the switching of the combustion mode may be changed according to the combustion mode of the switching destination.

【0052】以上説明した本実施形態(1)の筒内噴射
式エンジン11の燃焼モード切換方法によれば、燃焼モ
ード切換要求があった時に、筒内空燃比が安定燃焼可能
な所定範囲内に達し、且つ、EGR率がNOx低減可能
な所定範囲内に達するのを待って燃焼モードを切り換え
るようにしているため、燃焼モードを切り換える際に燃
焼安定性とEGRによるNOx低減効果を維持しながら
燃焼モードを切り換えることができ、燃焼モード切換時
の燃焼悪化によるトルク変動や失火を防止でき且つ燃焼
モード切換時のNOx排出量増加を防止することができ
る。
According to the combustion mode switching method for the direct injection type engine 11 of the embodiment (1) described above, when a request for switching the combustion mode is made, the in-cylinder air-fuel ratio falls within a predetermined range in which stable combustion is possible. When the combustion mode is switched, combustion is performed while maintaining combustion stability and the NOx reduction effect of EGR when switching the combustion mode. The mode can be switched, so that torque fluctuation and misfire due to combustion deterioration at the time of combustion mode switching can be prevented, and an increase in NOx emission at the time of combustion mode switching can be prevented.

【0053】しかも、本実施形態(1)では、ステップ
モータで駆動されるEGRバルブ40の駆動応答性が、
DCモータで駆動されるスロットルバルブ15の駆動応
答性よりも遅いことを考慮して、燃焼モード切換要求発
生時に、スロットル開度指令値の変化を応答性の遅いE
GRバルブ40の実開度の変化に合わせて遅らせるよう
にしたので、筒内空燃比が安定燃焼可能な空燃比に達す
る時期と、EGR率がNOx低減可能な所定範囲に達す
る時期とをほぼ一致させることができ、筒内空燃比とE
GR率が最も良好な時期に燃焼モードを切り換えること
ができ、燃焼安定性向上、NOx低減の効果を大きくす
ることができる。
Further, in the present embodiment (1), the drive response of the EGR valve 40 driven by the step motor is
Considering that the response is slower than the drive response of the throttle valve 15 driven by the DC motor, when the combustion mode switching request is issued, the change in the throttle opening command value is slower than the response E.
Since the delay is made in accordance with the change in the actual opening of the GR valve 40, the timing when the in-cylinder air-fuel ratio reaches the air-fuel ratio at which stable combustion can be performed and the timing when the EGR rate reaches the predetermined range where the NOx can be reduced are substantially the same. And the in-cylinder air-fuel ratio and E
The combustion mode can be switched at a time when the GR rate is the best, and the effects of improving combustion stability and reducing NOx can be enhanced.

【0054】[実施形態(2)]上記実施形態(1)で
は、燃焼モード切換時のNOx排出量を低減するため
に、燃焼モード切換タイミングを判定する際に、EGR
率を推定し、この推定EGR率が成層燃焼、均質燃焼の
いずれでもNOx低減可能な所定範囲内に達することを
燃焼モード切換実行条件の1つとしたが、図8及び図9
に示す本発明の実施形態(2)では、予め、EGR率と
EGRバルブ40の開度(以下「EGRV開度」と略記
する)とを対応づけておき、燃焼モードを切り換える際
の制御パラメータとして、EGR率に代えて、EGRV
開度を用いる。このEGRV開度は、EGRバルブ40
に内蔵された開度センサ(図示せず)によって検出され
る。
[Embodiment (2)] In the embodiment (1), in order to reduce the amount of NOx emission at the time of switching the combustion mode, when determining the combustion mode switching timing, EGR is performed.
The combustion mode switching execution condition is that the estimated EGR rate reaches a predetermined range in which NOx can be reduced in both stratified combustion and homogeneous combustion.
In the embodiment (2) of the present invention, the EGR rate and the opening of the EGR valve 40 (hereinafter abbreviated as “EGRV opening”) are associated in advance, and are used as control parameters when switching the combustion mode. , EGR rate instead of EGRV
Use the opening. This EGRV opening is determined by the EGR valve 40
Is detected by an opening degree sensor (not shown) built in the.

【0055】本実施形態(2)では、燃焼モードを成層
燃焼モードから均質燃焼モードに切り換える際には、図
8に示すように、均質燃焼モードへの燃焼モード切換要
求が発生した時点で、目標EGRV開度を切換先の燃焼
モードである均質燃焼モードの目標EGRV開度に切り
換えると同時に、目標空燃比を成層燃焼、均質燃焼のい
ずれでも安定燃焼可能な燃焼モード切換用の目標空燃比
に切り換える。この際、目標EGRV開度は目標EGR
率から算出される。
In the present embodiment (2), when the combustion mode is switched from the stratified combustion mode to the homogeneous combustion mode, as shown in FIG. At the same time as switching the EGRV opening to the target EGRV opening of the homogeneous combustion mode, which is the switching destination combustion mode, the target air-fuel ratio is switched to the target air-fuel ratio for switching the combustion mode that enables stable combustion in either stratified combustion or homogeneous combustion. . At this time, the target EGRV opening is the target EGR
Calculated from the rate.

【0056】その後、推定筒内空燃比が成層燃焼、均質
燃焼のいずれでも安定燃焼可能な空燃比(切換実行空燃
比)に達し、且つ、EGRV開度が成層燃焼、均質燃焼
のいずれでもNOx低減可能な切換実行EGRV開度に
達した時点で、燃焼モードを均質燃焼モードに切り換え
る。
Thereafter, the estimated in-cylinder air-fuel ratio reaches an air-fuel ratio (switching execution air-fuel ratio) at which stable combustion can be performed in either stratified combustion or homogeneous combustion, and the EGRV opening is reduced in NOx in either stratified combustion or homogeneous combustion. When the possible switch execution EGRV opening degree is reached, the combustion mode is switched to the homogeneous combustion mode.

【0057】一方、燃焼モードを均質燃焼モードから成
層燃焼モードに切り換える際には、図9に示すように、
成層燃焼モードへの燃焼モード切換要求が発生した時点
で、目標EGRV開度を切換先の燃焼モードである成層
燃焼モードの目標EGRV開度に切り換えると同時に、
目標空燃比を成層燃焼、均質燃焼のいずれでも安定燃焼
可能な燃焼モード切換用の目標空燃比に切り換える。
On the other hand, when switching the combustion mode from the homogeneous combustion mode to the stratified combustion mode, as shown in FIG.
At the time when the combustion mode switching request to the stratified combustion mode is issued, the target EGRV opening is switched to the target EGRV opening of the stratified combustion mode which is the switching destination combustion mode, and at the same time,
The target air-fuel ratio is switched to a target air-fuel ratio for switching the combustion mode in which stable combustion can be performed in either stratified charge combustion or homogeneous charge combustion.

【0058】その後、推定筒内空燃比が成層燃焼、均質
燃焼のいずれでも安定燃焼可能な空燃比(切換実行空燃
比)に達し、且つ、EGRV開度が成層燃焼、均質燃焼
のいずれでも安定燃焼を保ったままNOx低減可能な切
換実行EGRV開度に達した時点で、燃焼モードを成層
燃焼モードに切り換える。
Thereafter, the estimated in-cylinder air-fuel ratio reaches an air-fuel ratio (switching execution air-fuel ratio) at which stable combustion can be performed in both stratified combustion and homogeneous combustion, and the EGRV opening is stable in both stratified combustion and homogeneous combustion. The combustion mode is switched to the stratified combustion mode when the switching execution EGRV opening degree at which NOx can be reduced is reached while maintaining.

【0059】以上説明した実施形態(2)のように、燃
焼モードを切り換える際の制御パラメータとして、EG
R率に代えて、EGRV開度を用いても、前記実施形態
(1)と同様の効果を得ることができる。
As in the embodiment (2) described above, EG is used as a control parameter when switching the combustion mode.
Even when the EGRV opening is used instead of the R rate, the same effect as in the first embodiment can be obtained.

【0060】尚、上記各実施形態(1),(2)で用い
た燃焼モード切換実行条件は、推定筒内空燃比が成層
燃焼、均質燃焼のいずれでも安定燃焼可能な空燃比に達
すること、推定EGR率(又はEGRV開度)が成層
燃焼、均質燃焼のいずれでもNOx低減可能な切換実行
EGR率(又は切換実行EGRV開度)に達することで
あり、これら2つの条件,が共に成立した時に燃焼
モード(燃料噴射時期)を切り換えるようにしたが、2
つの条件,のいずれか一方でも成立した時に、燃焼
モード(燃料噴射時期)を切り換えるようにしても良
い。
Note that the combustion mode switching execution conditions used in each of the above embodiments (1) and (2) are such that the estimated in-cylinder air-fuel ratio reaches an air-fuel ratio that enables stable combustion in either stratified combustion or homogeneous combustion. The estimated EGR rate (or EGRV opening) reaches a switching execution EGR rate (or switching execution EGRV opening) that can reduce NOx in either stratified charge combustion or homogeneous combustion, and when these two conditions are both satisfied The combustion mode (fuel injection timing) was changed.
The combustion mode (fuel injection timing) may be switched when either one of the two conditions is satisfied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態(1)を示す筒内噴射式エンジン制御
システム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire in-cylinder injection type engine control system showing an embodiment (1).

【図2】実施形態(1)の筒内噴射式エンジンのトルク
ディマンド制御の概要を説明するブロック図
FIG. 2 is a block diagram illustrating an outline of torque demand control of a direct injection type engine according to the embodiment (1).

【図3】要求図示トルク演算手段の機能を説明するブロ
ック図
FIG. 3 is a block diagram for explaining the function of a required indicated torque calculating means;

【図4】(a)は均質燃焼モード制御手段の機能を説明
するブロック図、(b)は成層燃焼モード制御手段の機
能を説明するブロック図
FIG. 4A is a block diagram illustrating a function of a homogeneous combustion mode control unit, and FIG. 4B is a block diagram illustrating a function of a stratified combustion mode control unit;

【図5】実施形態(1)の成層燃焼モードから均質燃焼
モードに切り換える際の制御方法を説明するタイムチャ
ート
FIG. 5 is a time chart for explaining a control method when switching from the stratified combustion mode to the homogeneous combustion mode in the embodiment (1).

【図6】実施形態(1)の均質燃焼モードから成層燃焼
モードに切り換える際の制御方法を説明するタイムチャ
ート
FIG. 6 is a time chart for explaining a control method when switching from the homogeneous combustion mode to the stratified combustion mode in the embodiment (1).

【図7】実施形態(1)の筒内噴射式エンジンのトルク
ディマンド制御の概要を説明するフローチャート
FIG. 7 is a flowchart for explaining the outline of torque demand control of the direct injection engine of the embodiment (1).

【図8】実施形態(2)の成層燃焼モードから均質燃焼
モードに切り換える際の制御方法を説明するタイムチャ
ート
FIG. 8 is a time chart for explaining a control method when switching from the stratified combustion mode to the homogeneous combustion mode in the embodiment (2).

【図9】実施形態(2)の均質燃焼モードから成層燃焼
モードに切り換える際の制御方法を説明するタイムチャ
ート
FIG. 9 is a time chart for explaining a control method when switching from the homogeneous combustion mode to the stratified combustion mode in the embodiment (2).

【符号の説明】[Explanation of symbols]

11…筒内噴射式エンジン(筒内噴射式内燃機関)、1
2…吸気管、13…エアフローメータ、15…スロット
ルバルブ、16…ECU(筒内空燃比推定手段,EGR
率推定手段,燃焼モード切換手段)、18…吸気圧セン
サ、21…燃料噴射弁、25…点火プラグ、33…クラ
ンク軸、34…外部負荷、36…排気管、40…EGR
バルブ(排気環流制御弁)、41…アクセルセンサ、5
1…要求図示トルク演算手段、52…燃焼モード切換手
段、53…均質燃焼モード制御手段、54…成層燃焼モ
ード制御手段、55…目標空燃比設定手段、56…目標
EGR率設定手段、57…筒内空燃比推定手段、58…
EGR率推定手段。
11. In-cylinder injection engine (in-cylinder injection internal combustion engine), 1
2: intake pipe, 13: air flow meter, 15: throttle valve, 16: ECU (cylinder air-fuel ratio estimating means, EGR
Rate estimation means, combustion mode switching means), 18 intake pressure sensor, 21 fuel injection valve, 25 spark plug, 33 crankshaft, 34 external load, 36 exhaust pipe, 40 EGR
Valve (exhaust recirculation control valve), 41 ... accelerator sensor, 5
DESCRIPTION OF SYMBOLS 1 ... Required torque calculation means, 52 ... Combustion mode switching means, 53 ... Homogeneous combustion mode control means, 54 ... Stratified combustion mode control means, 55 ... Target air-fuel ratio setting means, 56 ... Target EGR rate setting means, 57 ... Tube Internal air-fuel ratio estimating means, 58 ...
EGR rate estimation means.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G062 AA07 BA05 BA06 BA08 BA09 CA07 CA08 EA10 FA04 FA06 GA01 GA02 GA04 GA06 GA25 GA26 3G084 AA04 BA05 BA09 BA13 BA15 BA20 BA23 CA03 CA04 CA09 DA10 DA25 EA11 EB08 EB12 EC02 EC04 FA05 FA07 FA10 FA11 FA21 FA32 FA35 FA37 3G301 HA04 HA13 HA16 HA19 JA14 JA25 KA07 KA08 KA09 KA24 KA25 LA01 LA07 LB04 LC03 MA01 MA11 MA19 NA08 NB02 NC02 ND02 ND21 ND45 PA01Z PA07Z PB08Z PB10Z PC02Z PD03A PD15Z PE01A PE01Z PE06Z PE09Z PF01Z PF03Z PF12Z PF13Z PF14Z  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G062 AA07 BA05 BA06 BA08 BA09 CA07 CA08 EA10 FA04 FA06 GA01 GA02 GA04 GA06 GA25 GA26 3G084 AA04 BA05 BA09 BA13 BA15 BA20 BA23 CA03 CA04 CA09 DA10 DA25 EA11 EB08 EB12 EC02 EC04 FA05 FA07 FA07 FA10 FA11 FA21 FA32.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮行程で筒内に燃料を噴射して成層燃
焼させる成層燃焼モードと、吸気行程で筒内に燃料を噴
射して均質燃焼させる均質燃焼モードとを運転状態に応
じて切り換えるようにした筒内噴射式内燃機関の制御装
置において、 筒内空燃比を推定する筒内空燃比推定手段と、 排気環流装置による排気環流率又はこれと相関関係のあ
る情報(以下「EGR率情報」という)を推定するEG
R率推定手段と、 燃焼モード切換要求があった時に前記筒内空燃比推定手
段で推定した筒内空燃比が所定の空燃比に達した時、及
び/又は、前記EGR率推定手段で推定したEGR率情
報が所定値に達した時に、燃焼モードを切り換える燃焼
モード切換手段とを備えていることを特徴とする筒内噴
射式内燃機関の制御装置。
1. A stratified combustion mode in which fuel is injected into a cylinder during a compression stroke to perform stratified combustion, and a homogeneous combustion mode in which fuel is injected into a cylinder during an intake stroke to perform homogeneous combustion is switched according to an operation state. In the cylinder injection type internal combustion engine control device, the in-cylinder air-fuel ratio estimating means for estimating the in-cylinder air-fuel ratio, and the exhaust gas recirculation rate by the exhaust gas recirculation device or information correlated therewith (hereinafter, “EGR rate information”) EG that estimates
R ratio estimating means, and when the in-cylinder air-fuel ratio estimated by the in-cylinder air-fuel ratio estimating means reaches a predetermined air-fuel ratio when a combustion mode switching request is issued, and / or by the EGR rate estimating means. A control device for a direct injection internal combustion engine, comprising: combustion mode switching means for switching a combustion mode when the EGR rate information reaches a predetermined value.
【請求項2】 前記燃焼モード切換手段は、燃焼モード
切換要求があった時に、目標空燃比を成層燃焼、均質燃
焼のいずれでも安定燃焼可能な目標空燃比に切り換え、
前記筒内空燃比推定手段で推定した筒内空燃比が成層燃
焼、均質燃焼のいずれでも安定燃焼可能な所定の空燃比
に達した時、及び/又は、前記EGR率推定手段で推定
したEGR率情報が成層燃焼、均質燃焼のいずれでも安
定燃焼を確保しつつ窒素酸化物排出量を低減できる所定
値に達した時に、該目標空燃比を切換先の燃焼モードに
応じた目標空燃比に切り換えて燃焼モードを切り換える
ことを特徴とする請求項1に記載の筒内噴射式内燃機関
の制御装置。
2. The combustion mode switching means switches a target air-fuel ratio to a target air-fuel ratio capable of performing stable combustion in either stratified combustion or homogeneous combustion when a combustion mode switching request is issued,
When the in-cylinder air-fuel ratio estimated by the in-cylinder air-fuel ratio estimating means has reached a predetermined air-fuel ratio that allows stable combustion in either stratified combustion or homogeneous combustion, and / or the EGR rate estimated by the EGR rate estimating means When the information reaches a predetermined value that can reduce the amount of nitrogen oxide emission while ensuring stable combustion in both stratified combustion and homogeneous combustion, the target air-fuel ratio is switched to a target air-fuel ratio according to the switching destination combustion mode. The control apparatus for a direct injection internal combustion engine according to claim 1, wherein the combustion mode is switched.
【請求項3】 前記EGR率推定手段は、前記EGR率
情報として排気環流制御弁の開度を推定又は検出するこ
とを特徴とする請求項1又は2に記載の筒内噴射式内燃
機関の制御装置。
3. The control of a direct injection internal combustion engine according to claim 1, wherein said EGR rate estimating means estimates or detects an opening of an exhaust recirculation control valve as said EGR rate information. apparatus.
【請求項4】 前記燃焼モード切換手段は、燃焼モード
切換要求があった時に、燃焼モードを切り換えるまで、
スロットルバルブと排気環流制御弁のうちの応答性が速
い方の駆動速度を応答性が遅い方の駆動速度に合わせて
遅くするように制御することを特徴とする請求項1乃至
3のいずれかに記載の筒内噴射式内燃機関の制御装置。
4. The combustion mode switching means, when there is a combustion mode switching request, until the combustion mode is switched.
4. The control method according to claim 1, wherein the drive speed of the throttle valve and the exhaust gas recirculation control valve having a higher response is controlled to be lower in accordance with the drive speed of the lower response. A control device for an in-cylinder injection internal combustion engine according to the above.
JP2000046740A 2000-02-18 2000-02-18 Control device for direct cylinder injection type internal combustion engine Pending JP2001227377A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000046740A JP2001227377A (en) 2000-02-18 2000-02-18 Control device for direct cylinder injection type internal combustion engine
DE2001107160 DE10107160A1 (en) 2000-02-18 2001-02-15 Fuel injection ECU has arrangement for estimating fuel-air mixture and exhaust gas recirculation rate so that the point at which engine operation switches between safe and homogenous modes is more accurately determined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046740A JP2001227377A (en) 2000-02-18 2000-02-18 Control device for direct cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001227377A true JP2001227377A (en) 2001-08-24

Family

ID=18569104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046740A Pending JP2001227377A (en) 2000-02-18 2000-02-18 Control device for direct cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001227377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070701A (en) * 2004-08-31 2006-03-16 Denso Corp Control device of internal combustion engine
WO2014188595A1 (en) * 2013-05-24 2014-11-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP2015137611A (en) * 2014-01-23 2015-07-30 トヨタ自動車株式会社 Control device for internal combustion engine
CN109469567A (en) * 2018-09-29 2019-03-15 汽解放汽车有限公司 A kind of EGR valve and throttle valve coupling control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070701A (en) * 2004-08-31 2006-03-16 Denso Corp Control device of internal combustion engine
WO2014188595A1 (en) * 2013-05-24 2014-11-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP6041051B2 (en) * 2013-05-24 2016-12-07 トヨタ自動車株式会社 Control device for internal combustion engine
JP2015137611A (en) * 2014-01-23 2015-07-30 トヨタ自動車株式会社 Control device for internal combustion engine
CN109469567A (en) * 2018-09-29 2019-03-15 汽解放汽车有限公司 A kind of EGR valve and throttle valve coupling control method
CN109469567B (en) * 2018-09-29 2020-11-13 一汽解放汽车有限公司 EGR valve and throttle valve coupling control method

Similar Documents

Publication Publication Date Title
JP3680491B2 (en) Control device for internal combustion engine
JP2009299600A (en) Control device and control method of engine
JPH11182297A (en) Combustion switching control device for internal combustion engine
JP2001090578A (en) Control device for cylinder fuel injection engine
JP2001304023A (en) Control device for internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP2001227399A (en) Control device for internal combustion engine
JP3774992B2 (en) Engine intake control device
JP2008002435A (en) Control method and control device of engine
JP5098985B2 (en) Control device for internal combustion engine
JP2001227377A (en) Control device for direct cylinder injection type internal combustion engine
JP2007291990A (en) Intake control valve opening estimating device
JP4092940B2 (en) Internal combustion engine control device
JP2007278073A (en) Engine control method and engine controller
JP2003269306A (en) Ignition timing control device of engine
JP4534968B2 (en) Control device for internal combustion engine
JP2001221091A (en) Controller for cylinder injection type internal combustion engine
JP4872654B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP2001153015A (en) Ignition control device for spark ignition type stratified combustion internal combustion engine
JP4247591B2 (en) In-cylinder injection internal combustion engine control device
JP2004124899A (en) Engine control equipment
JP4114201B2 (en) Control device for internal combustion engine
JP4529306B2 (en) Engine actual torque calculation device
JP3661769B2 (en) In-cylinder injection spark ignition type internal combustion engine control device
JP2005171765A (en) Control device and control method of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125