JP2001227361A - Power generation control device - Google Patents

Power generation control device

Info

Publication number
JP2001227361A
JP2001227361A JP2000045105A JP2000045105A JP2001227361A JP 2001227361 A JP2001227361 A JP 2001227361A JP 2000045105 A JP2000045105 A JP 2000045105A JP 2000045105 A JP2000045105 A JP 2000045105A JP 2001227361 A JP2001227361 A JP 2001227361A
Authority
JP
Japan
Prior art keywords
signal
control device
fault current
power generation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000045105A
Other languages
Japanese (ja)
Other versions
JP3747257B2 (en
Inventor
Naoyuki Nagabuchi
尚之 永渕
Kazuyasu Asakura
一安 朝倉
Takeshi Ishida
武司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000045105A priority Critical patent/JP3747257B2/en
Publication of JP2001227361A publication Critical patent/JP2001227361A/en
Application granted granted Critical
Publication of JP3747257B2 publication Critical patent/JP3747257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide safety operation in a system accident of a gas turbine power generating plant. SOLUTION: When a large accident current flows, a deviation signal from a subtracter 16 and a signal from a system frequency detector 15 become tolerances or more in comparators 19, 21, 23, and 25, and signals of a function setter 17 and a function setter 28 are selected in switches 18 and 29 and transmitted to an adder 31. The respective function setting outputs are adapted to counterbalance when being added together, so that the output becomes '0' and is inputted in change rate limiters 32 and 33. The output '1' of a logical multiplier 30 is transmitted to the switch 34, and the signal from the change rate limiter 32 is selected and outputted to an existing control system. When the system frequency rapidly decreases or increases, the signals of the system frequency detector 15 become the tolerance or more in the comparators 23 and 25, and the signals from the function setter 27 and the change rate limiter 32 are selected in the switch 29 and outputted to the existing control system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、系統連系運転を前
提とするガスタービン発電プラントの系統事故発生時の
発電制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation control device for a gas turbine power plant in the event of a system failure, assuming grid-connected operation.

【0002】[0002]

【従来の技術】系統事故時の燃料制御に関する先行技術
に、ガスタービン制御装置(特開平11−229903
号公報)がある。この技術内容は、発電機の出力変化率
が所定値以上となった場合、制御信号を出力する高出力
検出回路と一定時間前の運転状態を記録する手段とを有
し、系統事故時に各制御操作端を事故前の運転状態に保
持し、事故前の発電出力信号に保持することを特徴とし
ている。
2. Description of the Related Art Prior art relating to fuel control in the event of a system accident includes a gas turbine control device (Japanese Patent Laid-Open No. 11-229903).
Publication). This technical content includes a high output detection circuit that outputs a control signal when the output change rate of the generator is equal to or more than a predetermined value, and a unit that records an operation state a predetermined time ago. It is characterized in that the operating end is held in the operating state before the accident and is held in the power generation output signal before the accident.

【0003】[0003]

【発明が解決しようとする課題】しかし、前述の先行技
術には、常時一定時間前の各制御操作端制御信号を記憶
する必要があるため、制御装置内の計算機に大容量の記
憶容量が必要となり、通常運転時に必要な記憶容量が減
少する、という問題がある。また、系統事故時のガスタ
ービン燃料制御に発生する事象として、以下に記述する
問題がある。 (1)発電機から事故点に向かって大きな事故電流が流
れ、発電機出力が大きくなったように制御装置が判断
し、燃料量を減少するように信号を出力する。この状態
で事故点が切離されると、今度は需要負荷に対する供給
負荷が不足となり、燃料を急速に増加するため、燃焼器
内部で異常燃焼が発生し、排気温度異常高温によりトリ
ップに至る可能性がある。 (2)系統周波数が低下すると、回転数が低下したよう
に制御装置が判断し、燃料量を増加するように信号を出
力する。この状態で事故点が切離されると、今度は燃料
を急速に減少するため、燃焼器内部で異常燃焼が発生
し、火災喪失によりトリップに至る可能性がある。 (3)系統周波数が上昇すると、回転数が増加したよう
に制御装置が判断し、燃料量を減少するように信号を出
力する。この状態で事故点が切離されると、今度は燃料
を急速に増加するため、燃焼器内部で異常燃焼が発生
し、排気温度異常高温によりトリップに至る可能性があ
る。
However, in the above-mentioned prior art, since it is necessary to always store each control operation end control signal before a certain period of time, the computer in the control device needs a large storage capacity. Thus, there is a problem that the storage capacity required during normal operation decreases. Further, there is a problem described below as an event occurring in the gas turbine fuel control at the time of a system accident. (1) The control device determines that a large fault current flows from the generator toward the fault point and the output of the generator has increased, and outputs a signal to decrease the fuel amount. If the accident point is separated in this state, the supply load against the demand load will be insufficient, and the fuel will increase rapidly, causing abnormal combustion inside the combustor and possibly causing a trip due to abnormally high exhaust gas temperature. There is. (2) When the system frequency decreases, the control device determines that the rotation speed has decreased, and outputs a signal to increase the fuel amount. If the accident point is separated in this state, the fuel will be rapidly reduced this time, and abnormal combustion will occur inside the combustor, possibly leading to a trip due to loss of fire. (3) When the system frequency increases, the control device determines that the number of revolutions has increased, and outputs a signal to decrease the fuel amount. When the accident point is separated in this state, the fuel is rapidly increased, and abnormal combustion occurs inside the combustor, which may cause a trip due to abnormally high exhaust gas temperature.

【0004】本発明の課題は、系統連系運転を前提とす
るガスタービン発電プラントの系統事故発生時に、安定
運転を実現する系統じょう乱対応の発電制御装置を提供
することにある。
[0004] It is an object of the present invention to provide a power generation control device that copes with system disturbance that realizes stable operation when a system accident occurs in a gas turbine power plant on the premise of system interconnection operation.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、系統事故時に発生する事故電流の検知手段と、プラ
ントの負荷目標値と事故電流の影響を受けた発電機出力
との偏差により負荷変化幅を設定する手段と、周波数目
標値と事故電流の影響を受けた系統周波数との偏差によ
り燃料制御信号バイアスを設定する手段とを備える。こ
こで、負荷変化幅を設定する手段には、過度の負荷偏差
信号が発生した場合に、ガスタービンの燃焼器の安定燃
焼を保持できるように燃料量制御信号の変化幅を抑える
制約手段を設ける。また、燃料制御信号バイアスを設定
する手段には、過度の周波数偏差信号が発生した場合
に、ガスタービンの燃焼器の安定燃焼を保持できるよう
に燃料量制御信号の変化幅を抑える制約手段を設ける。
Means for Solving the Problems To solve the above problems, a means for detecting a fault current generated at the time of a system fault, and a load based on a deviation between a target load value of a plant and a generator output affected by the fault current. Means are provided for setting a variation width, and means for setting a fuel control signal bias based on a deviation between a frequency target value and a system frequency affected by the fault current. Here, the means for setting the load change width is provided with a restriction means for suppressing the change width of the fuel amount control signal so as to maintain stable combustion of the combustor of the gas turbine when an excessive load deviation signal is generated. . Further, the means for setting the fuel control signal bias is provided with a restriction means for suppressing a variation width of the fuel amount control signal so as to maintain stable combustion of the combustor of the gas turbine when an excessive frequency deviation signal is generated. .

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の一実施形態による発
電制御装置であり、ガスタービン発電プラントへの適用
例を示す。発電は、次の要領で実施する。空気は、圧縮
機入口案内翼1により流量を調整後、圧縮機2により高
圧・高温となり、燃焼器3へ供給される。燃料は、燃料
量調整弁7により流量を調整後、前記燃焼器3へ供給さ
れる。燃焼器3では、燃焼反応により高圧・高温の燃焼
ガスを発生させ、タービン4へ供給する。タービン4で
は燃焼ガスを膨張させ、回転軸10の駆動力に変換後、
俳ガスとして放出する。回転軸10には発電機5が連結
され、発電機5によって電気を発生する。発生電力は、
変圧/遮断装置8を介して電力系統連系に適した電力に
変換後、電力系統9に送電される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a power generation control device according to an embodiment of the present invention, and shows an example of application to a gas turbine power plant. Power generation will be implemented as follows. After adjusting the flow rate by the compressor inlet guide vanes 1, the air becomes high pressure and high temperature by the compressor 2 and is supplied to the combustor 3. After the flow rate of the fuel is adjusted by the fuel amount adjusting valve 7, the fuel is supplied to the combustor 3. In the combustor 3, high-pressure and high-temperature combustion gas is generated by a combustion reaction and supplied to the turbine 4. After the combustion gas is expanded in the turbine 4 and converted into the driving force of the rotating shaft 10,
Released as haiku gas. The generator 5 is connected to the rotating shaft 10, and the generator 5 generates electricity. The generated power is
The power is converted to power suitable for power system interconnection via the transformer / interrupter 8 and then transmitted to the power system 9.

【0007】次に、制御方式について説明する。発電プ
ラントの出力は、以下の要領で制御する。一般に、発電
プラントの出力制御は、電力会社の中央給電指令所から
の負荷指令値(MWD:Mega Watt Dema
nd)と、プラント発電機出力検出器14の出力信号と
の偏差が0となるように、ガスタービン4への燃料量を
調整する負荷制御によってなされる。その際、発生電力
を電力系統9の系統周波数検出器15の信号と同期する
ために、回転軸10の回転数検出器11の信号を任意の
速度一定とするようにガバナ制御が実施される。更に、
燃焼器3内での燃焼温度を材質の許容値以下とするため
に、排気温度検出器13の信号による燃料制御及び圧縮
機入口案内翼1の開度制御を実施する。ここで、燃焼温
度は直接検出した方が簡便であるが、長期間高温ガス温
度を検出する場合は信頼性が低い。そこで、排気温度検
出器13の信号と圧縮機吐出空気圧力検出器12の信号
との関係から、燃焼温度を一義的に求める方式が容易で
あり、信頼性も高いため、一般のガスタービンでの燃焼
温度制御に用いられている。燃料量調整弁7の制御信号
は、負荷制御/ガバナ制御/排気温度制御各々の信号の
低値選択によって作られる。
Next, the control method will be described. The output of the power plant is controlled as follows. Generally, output control of a power plant is performed by a load command value (MWD: Mega Watt Dema) from a central power supply command center of a power company.
nd) and load control for adjusting the fuel amount to the gas turbine 4 so that the deviation between the output signal of the plant generator output detector 14 becomes 0. At that time, in order to synchronize the generated power with the signal of the system frequency detector 15 of the power system 9, governor control is performed so that the signal of the rotation speed detector 11 of the rotating shaft 10 is kept at an arbitrary speed. Furthermore,
In order to make the combustion temperature in the combustor 3 equal to or less than the allowable value of the material, the fuel control and the opening degree control of the compressor inlet guide blade 1 based on the signal of the exhaust temperature detector 13 are performed. Here, it is simpler to directly detect the combustion temperature, but the reliability is low when detecting the high-temperature gas temperature for a long time. Therefore, it is easy to obtain the combustion temperature uniquely from the relationship between the signal of the exhaust gas temperature detector 13 and the signal of the compressor discharge air pressure detector 12, and the method is highly reliable. Used for combustion temperature control. The control signal for the fuel amount adjusting valve 7 is generated by selecting a low value of each signal of the load control / governor control / exhaust gas temperature control.

【0008】この制御方式のうち、本実施形態で特徴と
する制御装置6の詳細について図2を用いて説明する。
MWD信号は、減算器16によって発電機出力検出器1
4からの信号との偏差となり、関数設定器17、比較器
19及び微分器20へ伝送される。関数設定器17に
は、上下限付きの負荷バイアスが出力偏差を引数として
設定されている。このバイアス設定値は、出力偏差と比
例関係とし、例えば±10%負荷相当で上下限を設け
る。比較器19には、系統事故に相当する出力偏差の許
容置が設定され、出力偏差値が許容値を越えた場合に
は、系統事故発生の確度が高いと判断し、信号“1”を
論理和器22へ伝達する。微分器20では、出力偏差の
変化率を計算し、比較器21へ伝達する。比較器21に
は系統事故に相当する出力変化率の許容値が設定され、
変化率が許容値を越えた場合には系統事故発生の確度が
高いと判断し、信号“1”を論理和器22へ伝達する。
減算器16及び関数設定器17からの出力信号はスイッ
チ18へ伝達され、論理和器22からの切替え信号X1
が“1”の場合は、入力値X1を選択し、加算器31へ
伝達する。一方、系統周波数検出器15からの信号は、
比較器23、微分器24及び関数設定器へ伝達される。
比較器23には、系統事故に相当する周波数変化幅が許
容値として設定され、変化幅が許容値を越えた場合には
系統事故発生の確度が高いと判断し、信号“1”を論理
積器26へ伝達する。微分器24では、周波数の変化率
を計算し、比較器25へ伝達する。比較器25には系統
事故に相当する周波数変化率の許容値が設定され、変化
率が許容値を越えた場合には系統事故発生の確度が高い
と判断し、信号“1”を論理積器26へ伝達する。関数
設定器27には、上下限付きの負荷バイアスが周波数変
化幅を引数として設定されている。このバイアス設定値
は、周波数変化幅と反比例関数とし、例えば±10%負
荷相当で上下限を設ける。更に、例えばプラント負荷±
5%相当の周波数変化幅には不感帯を設ける。この不感
帯設置により微小な周波数変動に対しては燃料制御系が
追従しない効果が得られる。関数設定器27及び“0.
0”を設定した定数設定器26からの信号は、スイッチ
29へ伝達され、論理積器26からの切替え信号X1が
“1”の場合には、入力値X1を選択し、加算器31へ
伝達する。ここで、関数設定器17及び27の設定値
は、各出力信号を加算すると互いに打ち消し合う値を設
定することを特徴とする。加算器31からの信号は、変
化率制限器32及び33へ伝達される。変化率制限器3
3には、系統が正常な場合、即ち通常の負荷運転の際
に、図1中の燃焼器3が安定燃焼を保持できる燃料量変
化率を設定する。変化率制限器32には、系統異常発生
の場合、燃焼器3での燃焼異常が発生しない限界の燃料
量変化率を設定する。各変化率制限器32及び33から
の信号はスイッチ34へ伝達され、論理和器22と論理
積器26からの信号とを論理積器30を介した切替え信
号X1により、X1が“1”即ち出力偏差及び系統周波
数が共に異常の場合、入力X1を選択し、既存制御系へ
伝達する。既存制御系には、入力部に比較器35及び3
6が設けられ、プラント上昇の場合には、比較器35の
出力信号を“1”に、負荷降下の場合には、比較器36
の出力信号を“1”として、アナログメモリ37へ伝達
する。アナログメモリ37へは定数設定器38に設定し
たプラント負荷変化率値が入力され、この変化率に応じ
て図1中の燃料量調整弁7の開度信号として燃料制御系
へ伝達する。
[0010] Of the control methods, details of the control device 6 which is a feature of the present embodiment will be described with reference to FIG.
The MWD signal is output from the generator output detector 1 by the subtractor 16.
4 and transmitted to the function setting unit 17, the comparator 19 and the differentiator 20. In the function setting unit 17, a load bias with upper and lower limits is set with the output deviation as an argument. This bias set value is proportional to the output deviation, and upper and lower limits are set for, for example, ± 10% load. In the comparator 19, an allowable value of the output deviation corresponding to the system fault is set. If the output deviation value exceeds the allowable value, it is determined that the accuracy of the system fault occurrence is high, and the signal "1" is logically determined. The signal is transmitted to the summing device 22. The differentiator 20 calculates the rate of change of the output deviation and transmits it to the comparator 21. An allowable value of the output change rate corresponding to the system fault is set in the comparator 21,
If the rate of change exceeds the allowable value, it is determined that the probability of occurrence of a system fault is high, and a signal “1” is transmitted to the OR gate 22.
Output signals from the subtractor 16 and the function setting device 17 are transmitted to the switch 18, and the switching signal X 1
Is "1", the input value X1 is selected and transmitted to the adder 31. On the other hand, the signal from the system frequency detector 15 is
The signal is transmitted to the comparator 23, the differentiator 24, and the function setting device.
In the comparator 23, the frequency change width corresponding to the system fault is set as an allowable value. If the change width exceeds the allowable value, it is determined that the accuracy of the system fault occurrence is high, and the signal "1" is logically ANDed. To the vessel 26. The differentiator 24 calculates the rate of change of the frequency and transmits it to the comparator 25. An allowable value of the frequency change rate corresponding to the system fault is set in the comparator 25. If the change rate exceeds the allowable value, it is determined that the probability of the occurrence of the system fault is high, and the signal "1" is ANDed. 26. In the function setting unit 27, a load bias with upper and lower limits is set with the frequency change width as an argument. This bias set value is an inverse proportional function to the frequency change width, and upper and lower limits are provided for, for example, ± 10% load. Further, for example, the plant load ±
A dead zone is provided for the frequency change width equivalent to 5%. By setting the dead zone, an effect is obtained in which the fuel control system does not follow minute frequency fluctuations. The function setting device 27 and “0.
The signal from the constant setting device 26 to which "0" is set is transmitted to the switch 29. When the switching signal X1 from the AND device 26 is "1", the input value X1 is selected and transmitted to the adder 31. Here, the setting values of the function setting units 17 and 27 are characterized in that they are set to values that cancel each other out when the respective output signals are added. The change rate limiter 3
3 is set to a fuel amount change rate at which the combustor 3 in FIG. 1 can maintain stable combustion when the system is normal, that is, during normal load operation. In the change rate limiter 32, a limit fuel amount change rate at which no combustion abnormality occurs in the combustor 3 when a system abnormality occurs is set. The signals from the rate-of-change limiters 32 and 33 are transmitted to the switch 34, and the signal from the logical adder 22 and the signal from the logical product 26 are switched to "1" by the switching signal X1 via the logical product 30. When both the output deviation and the system frequency are abnormal, the input X1 is selected and transmitted to the existing control system. In the existing control system, the comparators 35 and 3
6, the output signal of the comparator 35 is set to "1" when the plant rises, and the output of the comparator 36 is set when the load drops.
Is transmitted to the analog memory 37 as "1". The plant load change rate value set in the constant setting device 38 is input to the analog memory 37, and is transmitted to the fuel control system as an opening signal of the fuel amount adjustment valve 7 in FIG. 1 according to the change rate.

【0009】以下、本実施形態の運転時動作について説
明する。通常運転時では、以下の動作となる。減算器1
6からの偏差信号及び系統周波数検出器15からの信号
とが比較器19,21,23及び25において許容値以
下となり、論理和器22及び論理積器26の出力信号が
“0”となり、スイッチ18及び29では減算器16及
び定数設定器28の信号を選択し、加算器31へ伝達す
る。加算された信号は変化率制限器32,33に入力さ
れる。一方、論理和器22、論理積器26からの信号は
論理積器30により出力“0”となり、スイッチ34へ
伝達され、変化率制限器33からの信号を選択し、既存
制御系へと出力する。
The operation of this embodiment during operation will be described below. During normal operation, the operation is as follows. Subtractor 1
6 and the signal from the system frequency detector 15 are equal to or less than the allowable values in the comparators 19, 21, 23 and 25, the output signals of the OR gate 22 and the AND gate 26 become "0", At 18 and 29, the signals of the subtractor 16 and the constant setting unit 28 are selected and transmitted to the adder 31. The added signal is input to the change rate limiters 32 and 33. On the other hand, the signals from the logical adder 22 and the logical product 26 are output to "0" by the logical product 30 and transmitted to the switch 34 to select the signal from the change rate limiter 33 and output to the existing control system. I do.

【0010】発電機から事故点に向かって大きな事故電
流が流れた場合には、以下の動作となる。減算器16か
らの偏差信号及び系統周波数検出器15からの信号とが
比較器19,21,23及び25において許容値以上と
なり、論理和器22及び論理積器26の出力信号が
“1”となり、スイッチ18及び29では関数設定器1
7及び関数設定器28の信号を選択し、加算器31へ伝
達する。各関数設定出力は予め加算すると相殺するよう
に設定されているため、出力は“0”となり、変化率制
限器32,33に入力する。論理和器22、論理積器2
6からの信号は、論理積器30により出力“1”とな
り、スイッチ34へ伝達され、変化率制限器32からの
信号を選択し、既存制御系へと出力する。
[0010] When a large fault current flows from the generator toward the fault point, the following operation is performed. The deviation signal from the subtractor 16 and the signal from the system frequency detector 15 exceed the allowable value in the comparators 19, 21, 23, and 25, and the output signals of the OR gate 22 and the AND gate 26 become "1". , Switches 18 and 29, function setter 1
7 and the signal of the function setting unit 28 are selected and transmitted to the adder 31. Since each function setting output is set in advance so as to cancel out when added, the output becomes “0” and is input to the change rate limiters 32 and 33. Logical adder 22, Logical product 2
The signal from 6 is output as "1" by the logical AND unit 30, is transmitted to the switch 34, selects the signal from the change rate limiter 32, and outputs it to the existing control system.

【0011】系統周波数が急速に低下または上昇した場
合には、以下の動作となる。系統周波数検出器15から
の信号が比較器23,25において許容値以上となり、
論理積器26出力信号が“1”となり、スイッチ29で
は関数設定器27の信号を選択し、加算器31へ伝達す
る。一方、減算器16からの信号は比較器19,21で
許容値以下となり、論理和器22の出力信号が“0”と
なり、スイッチ18では減算器16からの信号を選択
し、加算器31へ伝達する。加算された信号は変化率制
限器32,33に入力される。論理和器22、論理積器
26からの信号は、論理積器30により出力“1”とな
り、スイッチ34へ伝達され、変化率制限器32からの
信号を選択し、既存制御系へと出力する。
When the system frequency rapidly decreases or increases, the following operation is performed. The signal from the system frequency detector 15 exceeds the allowable value in the comparators 23 and 25,
The output signal of the AND device 26 becomes “1”, and the switch 29 selects the signal of the function setting device 27 and transmits it to the adder 31. On the other hand, the signal from the subtractor 16 becomes equal to or less than the allowable value in the comparators 19 and 21, the output signal of the OR gate 22 becomes “0”, and the switch 18 selects the signal from the subtractor 16 and sends it to the adder 31. introduce. The added signal is input to the change rate limiters 32 and 33. The signals from the logical adder 22 and the logical ANDer 26 are output “1” by the logical ANDer 30, transmitted to the switch 34, select the signal from the rate-of-change limiter 32, and output it to the existing control system. .

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
常時一定時間前の各制御操作端制御信号を記憶すること
なく、以下の効果を得ることができる。 (1)発電機から事故点に向かって大きな事故電流が流
れた場合でも、需要負荷に応じた運転を実施でき、か
つ、燃焼器内部での異常燃焼の発生を抑えることができ
る。 (2)系統周波数が低下の場合、燃料の急速な減少を抑
制し、燃焼器内部での異常燃焼の発生を抑えることがで
きる。 (3)系統周波数が上昇の場合、燃料の急速な増加を抑
制し、燃焼器内部での異常燃焼の発生を抑えることがで
きる。
As described above, according to the present invention,
The following effects can be obtained without constantly storing the control operation end control signals before a certain time. (1) Even when a large fault current flows from the generator toward the fault point, operation according to the demand load can be performed, and occurrence of abnormal combustion inside the combustor can be suppressed. (2) When the system frequency is lowered, it is possible to suppress a rapid decrease in fuel and suppress occurrence of abnormal combustion inside the combustor. (3) When the system frequency increases, it is possible to suppress a rapid increase in fuel and suppress occurrence of abnormal combustion inside the combustor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による発電制御装置FIG. 1 is a power generation control device according to an embodiment of the present invention.

【図2】本発明の制御装置の新規部分の内容を示す図FIG. 2 is a diagram showing the contents of a new part of the control device of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機入口案内翼、2…圧縮機、3…燃焼器、4…
タービン、5…発電機、6…制御装置、7…燃料量調整
弁、8…変圧/遮断設備、9…電力系統、10…回転
軸、11…回転数検出器、12…圧縮機吐出空気圧力検
出器、13…排気温度検出器、14…発電機出力検出
器、15…系統周波数検出器、16…減算器、17…関
数設定器、18…スイッチ、19…比較器、20…微分
器、21…比較器、22…論理和器、23…比較器、2
4…微分器、25…比較器、26…論理積器、27…関
数設定器、28…定数設定器、29…スイッチ、30…
論理積器、31…加算器、32…変化率制限器、33…
変化率制限器、34…スイッチ、35…比較器、36…
比較器、37…アナログメモリ、38…定数設定器
DESCRIPTION OF SYMBOLS 1 ... Guide vane at compressor inlet, 2 ... Compressor, 3 ... Combustor, 4 ...
Turbine, 5: Generator, 6: Control device, 7: Fuel amount adjusting valve, 8: Transformation / shutoff facility, 9: Power system, 10: Rotary shaft, 11: Rotation speed detector, 12: Compressor discharge air pressure Detector, 13: Exhaust gas temperature detector, 14: Generator output detector, 15: System frequency detector, 16: Subtractor, 17: Function setting device, 18: Switch, 19: Comparator, 20: Differentiator, 21: comparator, 22: OR, 23: comparator, 2
4 differentiator, 25 comparator, 26 logical product, 27 function setting device, 28 constant setting device, 29 switch, 30
AND, 31 ... Adder, 32 ... Change rate limiter, 33 ...
Rate-of-change limiter, 34 switch, 35 comparator, 36
Comparator, 37: Analog memory, 38: Constant setting device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン発電プラントの出力負荷及
び周波数を所定の目標値となるように供給燃料量を調整
する発電制御装置において、系統事故時に発生する事故
電流の検知手段と、プラントの負荷目標値と事故電流の
影響を受けた発電機出力との偏差をもとに負荷変化幅を
設定する手段と、周波数目標値と事故電流の影響を受け
た系統周波数との偏差をもとに燃料制御信号バイアスを
設定する手段とを備えることを特徴とする発電制御装
置。
1. A power generation control device for adjusting an amount of fuel supplied so that an output load and a frequency of a gas turbine power plant become predetermined target values. Means for setting the load change width based on the deviation between the generator output affected by the fault current and the fuel control based on the deviation between the target frequency and the system frequency affected by the fault current Means for setting a signal bias.
【請求項2】 請求項1において、前記事故電流の検出
手段には、前記負荷目標値と事故電流の影響を受けた発
電機出力との偏差信号の絶対値と変化率とから系統の異
常を判断する機能と、前記周波数目標値と事故電流の影
響を受けた系統周波数との偏差信号の絶対値と変化率と
から系統の異常を判断する機能とを内包することを特徴
とする発電制御装置。
2. The fault current detecting means according to claim 1, wherein the fault current detecting means detects a fault in the system from an absolute value and a change rate of a deviation signal between the load target value and a generator output affected by the fault current. A power generation control device including a function of determining and a function of determining a system abnormality from an absolute value and a change rate of a deviation signal between the frequency target value and a system frequency affected by the fault current. .
【請求項3】 請求項1において、前記負荷変化幅を設
定する手段には、過度の負荷偏差信号が発生した場合
に、ガスタービンの燃焼器の安定燃焼を保持できるよう
に燃料量制御信号の変化幅を抑える制約手段を設けるこ
とを特徴とする発電制御装置。
3. The method according to claim 1, wherein the means for setting the load change width includes a fuel amount control signal for maintaining a stable combustion of the combustor of the gas turbine when an excessive load deviation signal is generated. A power generation control device characterized by comprising a restriction means for suppressing a change width.
【請求項4】 請求項1において、前記燃料制御信号バ
イアスを設定する手段には、許容範囲を逸脱して過度な
周波数偏差信号が発生した場合に、ガスタービンの燃焼
器の安定燃焼を保持できるように燃料量制御信号の変化
幅を抑える制約手段を設けると共に、微小な系統周波数
変動による燃料量制御信号の変化を抑えるための不感帯
を設けることを特徴とする発電制御装置。
4. The gas turbine according to claim 1, wherein the means for setting the fuel control signal bias is capable of maintaining stable combustion of the combustor of the gas turbine when an excessive frequency deviation signal is generated out of an allowable range. The power generation control device according to claim 1, further comprising a restricting means for suppressing a change width of the fuel amount control signal, and a dead zone for suppressing a change in the fuel amount control signal due to a minute system frequency fluctuation.
【請求項5】 請求項1において、前記事故電流の検出
手段により系統事故と認識された場合には、前記負荷変
化幅を設定する手段と前記燃料制御信号バイアスを設定
する手段の発生信号の和が0となるように予め調整する
ことを特徴とする発電制御装置。
5. The system according to claim 1, wherein when the fault current is detected by the fault current detecting means as a system fault, the sum of the signals generated by the means for setting the load change width and the means for setting the fuel control signal bias is provided. A power generation control device, wherein the power generation control device is adjusted in advance so that is zero.
JP2000045105A 2000-02-17 2000-02-17 Power generation control device Expired - Lifetime JP3747257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045105A JP3747257B2 (en) 2000-02-17 2000-02-17 Power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045105A JP3747257B2 (en) 2000-02-17 2000-02-17 Power generation control device

Publications (2)

Publication Number Publication Date
JP2001227361A true JP2001227361A (en) 2001-08-24
JP3747257B2 JP3747257B2 (en) 2006-02-22

Family

ID=18567749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045105A Expired - Lifetime JP3747257B2 (en) 2000-02-17 2000-02-17 Power generation control device

Country Status (1)

Country Link
JP (1) JP3747257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401987A (en) * 2002-04-04 2004-11-24 Univ Illinois Fuel cells and fuel cells catalysts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401987A (en) * 2002-04-04 2004-11-24 Univ Illinois Fuel cells and fuel cells catalysts
GB2401987B (en) * 2002-04-04 2006-04-12 Univ Illinois Fuel cells and fuel cells catalysts

Also Published As

Publication number Publication date
JP3747257B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US7117662B2 (en) Gas turbine control system
JP3658415B2 (en) Gas turbine equipment
JP3677536B2 (en) Gas turbine power generation control device
US10174683B2 (en) Gas turbine power generation equipment
JP2001227361A (en) Power generation control device
WO2022180945A1 (en) Output control device for nuclear power plant, and output control method
US4053786A (en) Transducer out of range protection for a steam turbine generator system
JPS6246681B2 (en)
JP3784947B2 (en) Turbine speed control method
JP2004060615A (en) Control device for gas turbine plant and operation control method for gas turbine plant
JP2613225B2 (en) Turbine protection device
JPH01182531A (en) Gas turbine start-up controller
JPH0539901A (en) Method and device for automatically controlling boiler
JPS6293405A (en) Speed control device
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPH0345994B2 (en)
JPS6158903A (en) Turbine controller for nuclear reactor
CN114688520A (en) Liquid level auxiliary control method and system for steam generator of nuclear power station
JPH04303103A (en) Turbine control method and device
JPS59122711A (en) Load control device for complex cycle electric power plant
JPS6275031A (en) Control device for gas turbine
JPH045404A (en) Compound electric power generating plant and method and device for preventing overspeed thereof
JP2003056309A (en) Turbine control device
JPS62212597A (en) Load controller for nuclear reactor
JPH07293807A (en) Method for controlling water feeding in boiler of multi-shaft type combined facility and water feeding control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

R150 Certificate of patent or registration of utility model

Ref document number: 3747257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

EXPY Cancellation because of completion of term