JPS6293405A - Speed control device - Google Patents

Speed control device

Info

Publication number
JPS6293405A
JPS6293405A JP23326785A JP23326785A JPS6293405A JP S6293405 A JPS6293405 A JP S6293405A JP 23326785 A JP23326785 A JP 23326785A JP 23326785 A JP23326785 A JP 23326785A JP S6293405 A JPS6293405 A JP S6293405A
Authority
JP
Japan
Prior art keywords
speed
time
turbine
load
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23326785A
Other languages
Japanese (ja)
Inventor
Shigeki Adachi
足立 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23326785A priority Critical patent/JPS6293405A/en
Publication of JPS6293405A publication Critical patent/JPS6293405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To prevent the overspeed at the time of load shutdown by providing a speed control device which quickly closes a steam turbine regulating valve at the time of special conditions in gas turbine speed, in a single-shaft combined plant. CONSTITUTION:In a single-shaft combined plant, a gas turbine, a steam turbine, and a generator are connected on one shaft. The speed deviation DELTAN is compared with a prescribed value by a comparator 104 to detect that DELTAN has become less than the prescribed value. The output of an analog switch 108 controls a regulating valve 7 via a servo-motor driver 109. A flip-flop 106 is reset after a lapse of a given time by means of a timer 110. The setting time of the timer 110 is set to the time in which the turbine speed becomes steady. As a result of the above, the regulating valve fully closes, and after a lapse of a given time opens, if once the speed deviation DELTAN becomes negative. Thus, the overspeed at the time of load shutdown can be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はコンバインドプラントの制御方法に係り、特に
負荷しゃ断時の過速を防止する速度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling a combined plant, and more particularly to a speed control device that prevents overspeeding during load interruption.

〔発明の背景〕[Background of the invention]

第2図に1軸形コンバインド発電プラントの主機構成を
示す。1軸形コンバインドプラン1−の特徴はガスター
ビンと蒸気タービンが1つの軸に結合され、同じ軸に結
合された1台の発電機を駆動されることである。蒸気タ
ービンはガスタービンの排ガスを排熱回収ボイラにより
熱回収する省エネルギープラントとなっている。
Figure 2 shows the main engine configuration of a single-shaft combined power generation plant. A feature of the single-shaft combined plan 1- is that a gas turbine and a steam turbine are coupled to one shaft, and a single generator coupled to the same shaft is driven. A steam turbine is an energy-saving plant that recovers heat from the gas turbine's exhaust gas using an exhaust heat recovery boiler.

この様なプラントの制御装置については従来。Conventional control equipment for such plants.

文献等では紹介されていないが、ガスタービンの制御に
ついては、ヒタチ・レビュー(HjtachiRevi
ew) V o Q 、27 (1978)、 Na4
 201頁〜207頁に紹介されている。基本的にはこ
の制御方式がそのまま使用される。コンバインドプラン
トの速度制御はガスタービン側の速度制御機能により実
施されるため、蒸気タービンの加減弁は速度制御の機能
を持っておらず、負荷がある程度以上になったとき全開
させる、全開、全開制御となっている。
Although not introduced in the literature, gas turbine control is discussed in the Hitachi Review.
ew) V o Q, 27 (1978), Na4
It is introduced on pages 201 to 207. Basically, this control method is used as is. Speed control in a combined plant is carried out by the speed control function on the gas turbine side, so the regulator valve of the steam turbine does not have a speed control function, and is fully open when the load exceeds a certain level. It becomes.

負荷しゃ断が起こったときにはガスタービンの速度制御
機能により、ガスタービンの燃料調整弁を絞って速度を
規定値に抑えようとするが、ガスタービンと蒸気タービ
ンの出力比が約2対1であり、蒸気タービンの加減弁も
閉じる必要がある。
When a load cutoff occurs, the gas turbine's speed control function throttles the gas turbine's fuel adjustment valve to try to keep the speed to a specified value, but the output ratio between the gas turbine and the steam turbine is approximately 2:1. The steam turbine control valve must also be closed.

従来の制御装置では蒸気タービンの速度が規定値を越え
たことを検出して加減弁を閉じていた。この値は通常定
格速度の107%程度でありこの値は、火力技術基準に
よる過速度トリップの設定値である111%以下で、且
つ速度調定率(通常4〜5%)による速度設定]、04
〜105%以上とすることにより決定される。この様な
制御装置による加減弁の動作を第3図に示す。負荷しゃ
断が起こり、タービン速度が上昇し、矢印で示す値とな
ったとき、加減弁を全閉して速度上昇を防ぐ。
Conventional control systems detect that the speed of the steam turbine exceeds a specified value and close the control valve. This value is usually about 107% of the rated speed, and this value is less than 111%, which is the overspeed trip setting value according to the thermal power technical standards, and the speed is set by the speed adjustment rate (usually 4 to 5%)], 04
It is determined by setting it to 105% or more. The operation of the control valve by such a control device is shown in FIG. When load cutoff occurs and the turbine speed increases to the value indicated by the arrow, the control valve is fully closed to prevent the speed from increasing.

この従来例では過速度トリップの設定111%との差が
4%しかなく過速度トリップとなる危険性がある。
In this conventional example, the difference from the overspeed trip setting of 111% is only 4%, and there is a risk of an overspeed trip.

負荷しゃ断の検出を電力または、しゃ断器の開閉条件に
より知り、加減弁を閉じるという考え方もあるが、第4
図に示す如く発電所の周辺の系統構成は一様ではなく、
納入先ごとに条件を変えるのでは標準化は困難である。
There is a concept of detecting load cutoff based on the electric power or the opening/closing conditions of the circuit breaker, and then closing the control valve.
As shown in the figure, the system configuration around the power plant is not uniform;
Standardization is difficult if conditions change for each delivery destination.

また系統側での部分負荷しゃ断では加減弁を閉じる必要
ない場合もあり得る。次に電力を条件とすることは起動
、停止時の電力の増減および部品的な負荷しゃ断等も考
慮せねばならず煩雑である。
Furthermore, there may be cases where it is not necessary to close the control valve in partial load shutoff on the system side. Next, using electric power as a condition is complicated because it is necessary to consider increases and decreases in electric power during start-up and stop, as well as component load interruption.

以上により自発型所内の条件により負荷しゃ断を検出す
ることが必要となる。
As a result of the above, it is necessary to detect load interruption based on the conditions within the spontaneous molding facility.

〔発明の目的〕[Purpose of the invention]

本発明の目的は自発型所内の条件を使用して、簡単H4
つ安価な過速度を防止する制御装置を提供することにあ
る。
The purpose of the present invention is to use the conditions in a spontaneous molding laboratory to easily form H4
An object of the present invention is to provide an inexpensive control device that prevents overspeed.

〔発明の概要〕[Summary of the invention]

本発明はガスタービンの速度制御装置の速度偏差を判定
値として加減弁の全開指令を得ることにより負荷しゃ断
時の過速度を防止するものである。
The present invention prevents overspeed during load cutoff by obtaining a fully open command for a control valve using the speed deviation of a gas turbine speed control device as a determination value.

〔発明の実施例〕[Embodiments of the invention]

以下5本発明の一実施例を第1図により説明する。ガス
タービンの速度制御装置は速度/負荷の設定値と実速度
(N)との偏差(ΔN)を減算器101により演算し、
速度偏差に比例した燃料を得る様、ゲイン102を掛け
る。加算器103は無負荷時コンプレッサ動力を確保す
るための燃料バイアスFSNLを加算し、ガスタービン
燃料流量要求信号CFFを作る。ガスタービンの燃料制
御については本特許の範囲ではないので省略する。
An embodiment of the present invention will be described below with reference to FIG. The gas turbine speed control device calculates the deviation (ΔN) between the speed/load set value and the actual speed (N) using a subtractor 101,
A gain of 102 is applied to obtain fuel proportional to the speed deviation. Adder 103 adds fuel bias FSNL for ensuring compressor power during no-load conditions, and generates gas turbine fuel flow rate request signal CFF. The fuel control of the gas turbine is not within the scope of this patent and will therefore be omitted.

第5図に示す様にガスタービンの速度制御は速度偏差が
大きくなると負荷が大きくなる様構成されている。速度
/負荷設定値は負荷指令を速度に換算したものであり発
電機が併列運転中タービン速度は100%であるので、
速度/負荷設定値を104%とすると速度偏差(ΔN)
は4%となる。
As shown in FIG. 5, the speed control of the gas turbine is configured such that the load increases as the speed deviation increases. The speed/load setting value is the load command converted to speed, and since the turbine speed is 100% when the generator is operating in parallel,
When the speed/load setting value is 104%, the speed deviation (ΔN)
is 4%.

4%の速度偏差のとき100%負荷による様ゲイン10
3を調整するとき4%調定率という。換言すれば100
%負荷のとき速度偏差は4%ある。
When the speed deviation is 4%, the gain is 10 as if it were due to 100% load.
When adjusting 3, it is called a 4% adjustment rate. In other words, 100
% load, the speed deviation is 4%.

第6図に負荷しゃ断時の速度偏差の動きを示す。Figure 6 shows the movement of speed deviation when the load is cut off.

100%負荷運転中、タービン速度は100%、速度偏
差は4%である。負荷しゃ断が起こるとタービン速度は
上昇するが速度負荷設定値が104%のままなので、速
度偏差が減少し、タービン速度が104%となると0と
なり、続いて負となる。
During 100% load operation, the turbine speed is 100% and the speed deviation is 4%. When load shedding occurs, the turbine speed increases, but since the speed load set point remains at 104%, the speed deviation decreases and becomes 0 when the turbine speed reaches 104%, and then becomes negative.

通常運転中は負荷を取るため、速度偏差は必ず正となっ
ており、少しでも負となれば負荷しゃ断と判定できその
値は速度偏差ΔN=−1%以下である。この値を判定値
として加減弁を絞れば、非常に速い段階で検出できるの
で過速度トリップが未然に防止できる。具体的判定値を
速度偏差ΔN=−〇、5% とするとタービン速度の絶
対値で104.5%で検出したことになる。
Since the load is taken during normal operation, the speed deviation is always positive, and if it becomes even slightly negative, it can be determined that the load has been cut off, and the value is less than the speed deviation ΔN=-1%. If this value is used as a judgment value and the control valve is throttled down, it can be detected at a very early stage, so overspeed trips can be prevented. If the specific determination value is the speed deviation ΔN=-0, 5%, then the absolute value of the turbine speed is detected at 104.5%.

第7図に75%負荷時負荷しゃ断とし、た例を示す。本
例では速度偏差3%から負荷しゃ断が行われ、判定値が
速度偏差ΔN=−〇。5%であればタービン速度103
.5%で検出可能である。
Figure 7 shows an example in which the load is cut off at 75% load. In this example, load cutoff is performed from a speed deviation of 3%, and the judgment value is speed deviation ΔN=-〇. If 5%, the turbine speed is 103
.. Detectable at 5%.

タービン速度の絶対値で104.5%に加減弁閉の設定
をすれば良いとも考えられるが、速度調整範囲が従来9
5%〜107%であり無負荷時の速度調整時に加減弁閉
指令が出る(実際には閉じているが)ため不都合がある
It may be possible to set the regulating valve to close at 104.5% of the absolute value of the turbine speed, but the speed adjustment range was previously 9.
5% to 107%, which is inconvenient because a control valve closing command is issued (although it is actually closed) during speed adjustment under no load.

第1図に戻って具体的回路を説明する。速度偏差(ΔN
)を比較器104で設定値と比較し、ΔNが規定値共と
なったことを検出する、この信号とタービンが一度、定
格速度になったことを示すシーケンス完成信号3とA 
N I)をとり、フリップフロップに記憶する。アナロ
グスイッチ108は通常運転中の加減弁制御信号CFV
Fと全開バイアス107をフリッププロップの出力信号
により切換える。アナログスイッチの出力はサーボ弁ド
ライバー109を経て加減弁7を制御する。フリップフ
ロップ106はタイマ110により一定時間経過後リセ
ットされる。タイマ110の設定時間はタービン速度が
整定する時間にセットする。
Returning to FIG. 1, the specific circuit will be explained. Speed deviation (ΔN
) is compared with the set value by the comparator 104, and it is detected that ΔN has become the same as the specified value.This signal and the sequence completion signal 3 and A indicating that the turbine has once reached the rated speed
N I) and store it in a flip-flop. The analog switch 108 receives the control valve control signal CFV during normal operation.
F and full open bias 107 are switched by the flip-flop output signal. The output of the analog switch controls the control valve 7 via the servo valve driver 109. Flip-flop 106 is reset by timer 110 after a certain period of time has elapsed. The set time of the timer 110 is set to the time when the turbine speed is stabilized.

以上の結果、速度偏差(ΔN)が一度負となると加減弁
が全閉し、一定時間後間する動作を行う。
As a result of the above, once the speed deviation (ΔN) becomes negative, the control valve is fully closed and the operation is performed after a certain period of time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば非常に早い段階で負荷しゃ断を検出する
ため過速度を防止できる。またハードの増加が少なく簡
単、安価である。
According to the present invention, overspeed can be prevented because load cutoff is detected at a very early stage. In addition, it is simple and inexpensive with little increase in hardware.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
主機構成を示す構成図、第3図は従来の制御を示す説明
図、第4図は発電所の系統構成を示す構成図、第5図、
第6図、第7図は本発明の実施例の補足説明図である。 10]・・・減算器、102・・・ゲイン、103・・
・加算器、104・・・比較器、105・・・ANDゲ
ート、106・・・フリップフロップ、107・・・信
号発生器、108・・・アナログスイッチ、1.09・
・・サーボ弁ドライバー、■・・・圧縮機、2・・・燃
焼器、3・・・ガスタービン、4・・・発電機、5・・
・排熱回収ボイラ、6・・・蒸気タービン、7・・・ガ
スタービン燃料調整弁、8・・・加減弁。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a configuration diagram showing the main engine configuration, Fig. 3 is an explanatory diagram showing conventional control, and Fig. 4 is a configuration showing the power plant system configuration. Figure, Figure 5,
FIG. 6 and FIG. 7 are supplementary explanatory diagrams of the embodiment of the present invention. 10]...Subtractor, 102...Gain, 103...
- Adder, 104... Comparator, 105... AND gate, 106... Flip-flop, 107... Signal generator, 108... Analog switch, 1.09.
... Servo valve driver, ■... Compressor, 2... Combustor, 3... Gas turbine, 4... Generator, 5...
・Exhaust heat recovery boiler, 6...Steam turbine, 7...Gas turbine fuel adjustment valve, 8...Adjustment valve.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン、蒸気タービン、発電機を1軸に接続
した、1軸形コンバインドプラントにおいて、ガスター
ビン速度制御系内の速度/負荷設定値と実タービン速度
の偏差が規定値以下となつたことを検出し、蒸気タービ
ン加減弁を急閉することを特徴とする速度制御装置。
1. In a single-shaft combined plant in which a gas turbine, a steam turbine, and a generator are connected to one shaft, the deviation between the speed/load setting value in the gas turbine speed control system and the actual turbine speed is below the specified value. A speed control device that detects the speed of the steam turbine and quickly closes the steam turbine control valve.
JP23326785A 1985-10-21 1985-10-21 Speed control device Pending JPS6293405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23326785A JPS6293405A (en) 1985-10-21 1985-10-21 Speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23326785A JPS6293405A (en) 1985-10-21 1985-10-21 Speed control device

Publications (1)

Publication Number Publication Date
JPS6293405A true JPS6293405A (en) 1987-04-28

Family

ID=16952407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23326785A Pending JPS6293405A (en) 1985-10-21 1985-10-21 Speed control device

Country Status (1)

Country Link
JP (1) JPS6293405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701798A (en) * 1995-12-27 1997-12-30 Howa Machinery, Ltd. Linear actuating device
US6023111A (en) * 1997-05-20 2000-02-08 Howa Machinery, Ltd. Linear actuator
JP2007092721A (en) * 2005-09-30 2007-04-12 Hitachi Ltd Multiple-axle combined cycle power generation facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701798A (en) * 1995-12-27 1997-12-30 Howa Machinery, Ltd. Linear actuating device
US6023111A (en) * 1997-05-20 2000-02-08 Howa Machinery, Ltd. Linear actuator
JP2007092721A (en) * 2005-09-30 2007-04-12 Hitachi Ltd Multiple-axle combined cycle power generation facility

Similar Documents

Publication Publication Date Title
US4550565A (en) Gas turbine control systems
JPH09166029A (en) Adjusting method of flow rate of fuel to combustion apparatus of gas turbine
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
US5307619A (en) Automatic NOx control for a gas turbine
JPS6293405A (en) Speed control device
JPS6363733B2 (en)
RU98103507A (en) REGULATING SYSTEM FOR REGULATING A TURBINE ROTATION FREQUENCY, AND ALSO A METHOD FOR TURBIN ROTATION FREQUENCY REGULATION AT A LOAD RESET
JPH0932508A (en) Combined cycle plant
JPS6246681B2 (en)
JP4127911B2 (en) Steam turbine ground steam pressure controller
JPH0346161Y2 (en)
JP2642999B2 (en) Load control device for combined cycle plant
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPS642762B2 (en)
JPS63162907A (en) Control for combined power generation plant
JP2511009B2 (en) Turbin controller having non-linear characteristics
JPH068280Y2 (en) Steam injection amount control device for gas turbine
JPH0623683Y2 (en) Controller for power plant equipped with co-firing boiler
JPS6115244B2 (en)
JPH041175B2 (en)
JPH0635810B2 (en) Load control device for combined power generation facility
JPS63201303A (en) Protection device for mixed pressure extraction turbine
JPH10159505A (en) Combined cycle power plant controller
JPH01182531A (en) Gas turbine start-up controller
JPH0270906A (en) Control of bleeding turbine and device thereof