JP2001226297A - Method for recovering 1,2-dichloroethane - Google Patents

Method for recovering 1,2-dichloroethane

Info

Publication number
JP2001226297A
JP2001226297A JP2000045110A JP2000045110A JP2001226297A JP 2001226297 A JP2001226297 A JP 2001226297A JP 2000045110 A JP2000045110 A JP 2000045110A JP 2000045110 A JP2000045110 A JP 2000045110A JP 2001226297 A JP2001226297 A JP 2001226297A
Authority
JP
Japan
Prior art keywords
edc
distillation column
distillation
column
dichloroethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000045110A
Other languages
Japanese (ja)
Other versions
JP4432187B2 (en
Inventor
Mitsuhisa Sakamoto
光久 坂本
Hideaki Matsunaga
秀秋 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000045110A priority Critical patent/JP4432187B2/en
Publication of JP2001226297A publication Critical patent/JP2001226297A/en
Application granted granted Critical
Publication of JP4432187B2 publication Critical patent/JP4432187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To economically advantageously recover 1,2-dichloroethane (EDC) by efficiently separating and removing low-boiling component such as chloroprene and 1,1-dichloroethane, benzene and trichloroethylene out of the EDC from a distillate at the top of a separation column for low-boiling materials of an unpyrolyzed EDC in pyrolysis of EDC. SOLUTION: This method comprises distilling and separating components containing chloroprene and having <=70 deg.C boiling points under a normal pressure at the first distillation column, then feeding bottoms of the first distillation column to the second distillation column installed at the latter step of the first distillation column and distilling the bottoms, removing benzene and trichloroethylene by distilling from the top of the column and recovering EDC from the bottom of the column when pyrolyzing EDC and recovering the EDC from the distillate at the top of the separation column for the low-boiling materials of the unpyrolyzed EDC after separating generated hydrogen chloride and vinyl chloride monomer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、1,2−ジクロル
エタンの回収方法に関するものである。更に詳しくは、
1,2−ジクロルエタンの熱分解での未分解1,2−ジ
クロルエタンを低沸物分離塔で蒸留して得られる塔頂留
出液から1,2−ジクロルエタンを回収する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering 1,2-dichloroethane. More specifically,
The present invention relates to a method for recovering 1,2-dichloroethane from a top distillate obtained by distilling undecomposed 1,2-dichloroethane in a thermal decomposition of 1,2-dichloroethane in a low-boiling matter separation column.

【0002】[0002]

【従来の技術】1,2−ジクロルエタン(以下、EDC
という)を熱分解して塩化ビニルモノマーを製造する方
法は、工業的に大規模に実施されている。このEDCの
熱分解反応に於いて、EDCの分解率を高くすると、ク
ロロプレンやベンゼンの副生が増加して塩化ビニルモノ
マーの選択率が低下し、コーキング速度が増加する。こ
のためEDCの分解率は通常、50〜65%である。
2. Description of the Related Art 1,2-Dichloroethane (hereinafter referred to as EDC)
Is thermally decomposed to produce a vinyl chloride monomer, which is industrially implemented on a large scale. In the thermal decomposition reaction of EDC, when the decomposition rate of EDC is increased, the by-products of chloroprene and benzene increase, the selectivity of vinyl chloride monomer decreases, and the coking rate increases. For this reason, the decomposition rate of EDC is usually 50 to 65%.

【0003】EDCの熱分解反応では1,1−ジクロル
エタン、クロロプレン、1−クロルブタジエン、ベンゼ
ン等多くの副生物が生成する。また、未分解EDC中に
はこれらの副生物の外、エチレンのオキシクロリネーシ
ョン工程で副生し、熱分解炉へのフィードEDC中に含
有されて熱分解工程でそのまま残留したクロロホルム、
四塩化炭素、トリクロルエチレン等が含有される。
[0003] In the thermal decomposition reaction of EDC, many by-products such as 1,1-dichloroethane, chloroprene, 1-chlorobutadiene and benzene are produced. In addition, in undecomposed EDC, in addition to these by-products, chloroform produced as a by-product in the oxychlorination step of ethylene, contained in the EDC fed to the pyrolysis furnace and remained as it was in the pyrolysis step,
Contains carbon tetrachloride, trichloroethylene and the like.

【0004】熱分解反応での未分解のEDCは、生成し
た塩化水素と塩化ビニルモノマーを分離した後、EDC
より低沸点の成分を低沸物分離塔で蒸留分離し、EDC
より高沸点の成分を高沸物分離塔で蒸留分離した後、熱
分解炉に供給して再使用される。未分解EDC中に含有
されるベンゼン及びトリクロルエチレンは、該低沸物分
離塔の塔底にかなりの割合で残留するが、それ以外の低
沸点の成分は塔頂に留出して除去される。従って、該留
出液中には低沸点成分が多く含有されるが、主成分はE
DCであり、EDCが通常、40〜60重量%含有され
る。
[0004] The undecomposed EDC in the thermal decomposition reaction is separated from the produced hydrogen chloride and vinyl chloride monomer.
The components having a lower boiling point are separated by distillation in a low-boiling substance separation column, and EDC
After the components having a higher boiling point are separated by distillation in a high-boiling substance separation column, the components are supplied to a pyrolysis furnace and reused. Benzene and trichloroethylene contained in the undecomposed EDC remain in a considerable proportion at the bottom of the low-boiling matter separation column, but other low-boiling components are distilled off at the top and removed. Accordingly, the distillate contains a large amount of low-boiling components, but the main component is E.
DC, which usually contains 40 to 60% by weight of EDC.

【0005】該低沸物分離塔の塔頂留出液中には、この
ようにEDCが高濃度で含有されるため、該留出液から
EDCを回収する方法が検討され、これまで多くの提案
がなされている。該留出液中に含有されるクロロプレ
ン、クロロホルム、ベンゼン、トリクロルエチレン等
は、EDCの熱分解反応に於けるインヒビターであり、
該留出液からEDCを回収して熱分解原料として再使用
するためには、これらの不純物を高い除去率でEDCよ
り分離除去する必要がある。
[0005] Since the EDC is contained in such a high concentration in the distillate at the top of the low-boiling matter separation column, methods for recovering EDC from the distillate have been studied. A proposal has been made. Chloroprene, chloroform, benzene, trichloroethylene and the like contained in the distillate are inhibitors in the thermal decomposition reaction of EDC,
In order to recover EDC from the distillate and reuse it as a pyrolysis raw material, it is necessary to separate and remove these impurities from EDC at a high removal rate.

【0006】該留出液中に含有される不純物の内、クロ
ロプレンは極めて重合性が高く、蒸留の際に、蒸留塔の
閉塞の原因となる。また、ベンゼン及びトリクロルエチ
レンは沸点がEDCの沸点と近接しており、蒸留による
分離が困難である。
[0006] Among the impurities contained in the distillate, chloroprene has a very high polymerizability and causes a blockage of a distillation column during distillation. Further, benzene and trichloroethylene have boiling points close to those of EDC, and are difficult to separate by distillation.

【0007】従来、このような問題を解決する方法とし
て、EDC中のクロロプレンやベンゼン、トリクロルエ
チレンを塩素化して高沸化した後、蒸留分離する方法が
提案されている。(特公昭42−19444号、特公平
2−47968号、特開平4−225929号等)しか
しながらこの方法は大量の塩素を必要とする上に、工程
数が多く設備費が嵩むために経済性の面で問題がある。
Hitherto, as a method for solving such a problem, there has been proposed a method of chlorinating chloroprene, benzene, or trichloroethylene in EDC to increase the boiling point, followed by distillation and separation. (Japanese Patent Publication No. 42-19444, Japanese Patent Publication No. 47968/1992, Japanese Patent Application Laid-Open No. 4-225929, etc.) However, this method requires a large amount of chlorine, and requires a large number of steps and increases equipment costs. There is a problem.

【0008】特公昭46−22003号には、塩化アル
ミニウム触媒を使用して、共存するクロロプレン類とベ
ンゼンとを反応させて分離除去する方法が提案されてい
る。しかしながらこの方法は、反応に於けるベンゼンの
転化率が低い欠点があり、ベンゼンの除去方法としては
不満足なものである。
Japanese Patent Publication No. 46-22003 proposes a method of reacting coexisting chloroprenes with benzene using an aluminum chloride catalyst and separating and removing the same. However, this method has a drawback that the conversion of benzene in the reaction is low, and is unsatisfactory as a method for removing benzene.

【0009】米国特許No.4,145,367には、
EDC中のクロロプレンを水素化して除去する方法が提
案されている。この方法は、反応で塩化水素が発生する
ために反応器を耐食性のものにする必要があり、設備費
が嵩む問題がある。
[0009] US Patent No. At 4,145,367,
A method for hydrogenating and removing chloroprene in EDC has been proposed. In this method, it is necessary to make the reactor corrosion-resistant because hydrogen chloride is generated in the reaction, and there is a problem that equipment costs are increased.

【0010】米国特許No.4,333,799には、
テトラクロルエチレン等の高沸点の塩素化炭化水素溶媒
を使用して、抽出蒸留する方法が提案されている。この
方法は、EDC中のベンゼン及びトリクロルエチレンを
蒸留操作により分離除去することが可能な特徴を有して
いるが、溶媒を大量に使用する必要があり、溶媒回収の
ためのエネルギー消費が大きく、経済性の面で問題があ
る。
US Pat. At 4,333,799,
A method of extractive distillation using a high boiling chlorinated hydrocarbon solvent such as tetrachloroethylene has been proposed. This method has a feature that benzene and trichloroethylene in EDC can be separated and removed by a distillation operation, but requires a large amount of a solvent, and consumes a large amount of energy for solvent recovery. There is a problem in terms of economy.

【0011】従来技術では上述のように、クロロプレ
ン、ベンゼン、トリクロルエチレン等をEDCより効率
的にかつ経済的に有利に分離除去してEDCを回収する
ことは困難であった。
In the prior art, as described above, it was difficult to separate and remove chloroprene, benzene, trichloroethylene and the like more efficiently and economically than EDC, and to recover EDC.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、ED
Cの熱分解に於ける未分解EDCの低沸物分離塔の塔頂
留出液からクロロプレンや1,1−ジクロルエタン等の
低沸点成分とベンゼン及びトリクロルエチレンをEDC
より効率良く分離除去して、経済的に有利にEDCを回
収する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an ED
The low boiling components such as chloroprene and 1,1-dichloroethane, and benzene and trichloroethylene are removed from the top distillate of the low-boiling matter separation column of undecomposed EDC in the thermal decomposition of C by EDC.
An object of the present invention is to provide a method of recovering EDC economically and advantageously by separating and removing it more efficiently.

【0013】[0013]

【課題を解決するための手段】本発明者らは、未分解E
DCの低沸物分離塔の塔頂留出液からEDCを回収する
方法について鋭意検討を行った結果、本発明を完成する
に至った。即ち、本発明は、第1の蒸留塔とその後段に
設けた第2の蒸留塔の二つの蒸留塔による二段階での蒸
留により、該留出液中の不純物をEDCより分離除去す
るEDCの回収方法である。第1の蒸留塔で、クロロプ
レンを含む常圧での沸点が70℃以下の低沸点成分を低
温で蒸留分離し、次に設けた第2の蒸留塔で、第1の蒸
留塔の缶出液を蒸留して、塔頂よりベンゼン及びトリク
ロルエチレンを留出させて除去することを特徴とするE
DCの回収方法である。
Means for Solving the Problems The present inventors have developed an undegraded E
As a result of diligent studies on a method of recovering EDC from the top distillate of the low-boiling DC separation column, the present invention was completed. That is, the present invention provides an EDC for separating and removing impurities in the distillate from the EDC by two-stage distillation using two distillation columns, a first distillation column and a second distillation column provided at a subsequent stage. It is a collection method. In the first distillation column, low-boiling components containing chloroprene and having a boiling point of 70 ° C. or less at normal pressure are separated by distillation at a low temperature, and then the bottom liquid of the first distillation column is provided in the second distillation column provided. Characterized in that benzene and trichloroethylene are distilled off from the top of the column to remove them.
This is a method for recovering DC.

【0014】本発明者らは、経済的観点より、工程数を
少なくして設備費を低減する必要があることから、蒸留
操作のみによるEDCの回収方法について鋭意検討を実
施した。蒸留操作によるEDCの回収方法に於いて、ク
ロロプレンの重合抑制が大きな課題である。塩化ビニル
モノマープラントの未分解EDCの低沸物分離塔は、塔
頂温度が80℃付近であり、クロロプレンの重合による
蒸留塔の閉塞を避けるために、該低沸物分離塔の塔頂留
出液中のクロロプレン濃度を5重量%以下に抑えて運転
しているのが現状である。
[0014] The present inventors have intensively studied a method of recovering EDC by only a distillation operation because it is necessary to reduce the number of steps and reduce equipment costs from an economic viewpoint. In the method of recovering EDC by a distillation operation, suppression of polymerization of chloroprene is a major problem. The low-boiling matter separation column of the undecomposed EDC of the vinyl chloride monomer plant has a top temperature of about 80 ° C., and in order to avoid blockage of the distillation column due to polymerization of chloroprene, the overhead of the low-boiling matter separation column is removed. At present, the operation is performed with the chloroprene concentration in the liquid kept at 5% by weight or less.

【0015】本発明者らは、クロロプレンの重合速度に
対する濃度、温度、雰囲気等の影響について検討した結
果、クロロプレンの重合速度は、クロロプレンの濃度に
比例して増加し、温度に強く依存する事を見出した。重
合の活性化エネルギーは約15kcal/molであ
り、温度を20℃低くすると重合速度は約1/3になる
ことが分った。これらの結果より、本発明者らは蒸留を
一つの蒸留塔で実施するのではなく、二つの蒸留塔を使
用して二段階の蒸留を実施することにより、第1の蒸留
塔の塔頂温度を低くすることができ、クロロプレンの重
合を抑制することができることを見出した。
The present inventors have studied the effects of concentration, temperature, atmosphere, etc. on the polymerization rate of chloroprene. As a result, it was found that the polymerization rate of chloroprene increases in proportion to the concentration of chloroprene and strongly depends on temperature. I found it. The activation energy of the polymerization was about 15 kcal / mol, and it was found that the polymerization rate became about 1/3 when the temperature was lowered by 20 ° C. Based on these results, the present inventors did not carry out distillation in one distillation column, but carried out two-stage distillation using two distillation columns, whereby the top temperature of the first distillation column was reduced. Of chloroprene can be suppressed, and the polymerization of chloroprene can be suppressed.

【0016】第1の蒸留塔では、塔頂のクロロプレンの
濃度がフィード液の2〜3倍に上昇する。通常、第1蒸
留塔のフィード液中のクロロプレンの濃度は4〜5重量
%であり、第1蒸留塔の留出液中のクロロプレンの濃度
は8〜12重量%となる。クロロプレンの重合速度は濃
度に比例して速くなるが、重合速度は温度に強く依存
し、温度を20℃低くすると重合速度は約1/3にな
る。従って、第1蒸留塔の塔頂温度が60℃以下であれ
ば、現状の未分解EDCの低沸物分離塔の塔頂でのクロ
ロプレンの重合速度と同程度あるいはそれ以下までクロ
ロプレンの重合が抑制される。更に、窒素雰囲気下及び
/又は重合禁止剤を添加して蒸留することにより、クロ
ロプレンの重合を実質的に問題のない程度まで抑制する
ことが可能で、クロロプレンを含む、主として常圧での
沸点が70℃以下の低沸点成分を蒸留分離可能である。
また、第2の蒸留塔では、第1の蒸留塔の缶出液に水を
添加して蒸留することにより、含有されるベンゼン及び
トリクロルエチレンを水との共沸により、塔頂に留出さ
せて更に高い除去率で分離除去することが可能である。
In the first distillation column, the concentration of chloroprene at the top of the column rises to two to three times that of the feed liquid. Usually, the concentration of chloroprene in the feed liquid of the first distillation column is 4 to 5% by weight, and the concentration of chloroprene in the distillate of the first distillation column is 8 to 12% by weight. Although the polymerization rate of chloroprene increases in proportion to the concentration, the polymerization rate strongly depends on the temperature. When the temperature is lowered by 20 ° C., the polymerization rate becomes about 1/3. Therefore, if the temperature at the top of the first distillation column is 60 ° C. or less, the polymerization of chloroprene is suppressed to about the same or lower than the current polymerization rate of chloroprene at the top of the low-boiling matter separation column of undecomposed EDC. Is done. Furthermore, by performing distillation under a nitrogen atmosphere and / or by adding a polymerization inhibitor, it is possible to suppress the polymerization of chloroprene to a level that does not substantially cause a problem. Low-boiling components having a temperature of 70 ° C. or lower can be separated by distillation.
Further, in the second distillation column, water is added to the bottom liquid of the first distillation column, followed by distillation, whereby benzene and trichloroethylene contained therein are distilled off at the top of the column by azeotropic distillation with water. It is possible to separate and remove at a higher removal rate.

【0017】以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0018】本発明で用いる蒸留塔は図1に示してい
る。この図は、本発明におけるEDCの熱分解における
未分解EDCの低沸物分離塔塔頂留出液からのEDCの
回収工程を示したフローシートである。
The distillation column used in the present invention is shown in FIG. This figure is a flow sheet showing the process of recovering EDC from the low-boiling matter separation tower top distillate of undecomposed EDC in the thermal decomposition of EDC in the present invention.

【0019】本発明において、原料に供する混合物は、
EDCを熱分解し、生成した塩化水素と塩化ビニルモノ
マーを分離した後の、未分解のEDCを低沸物分離塔で
蒸留して得られる塔頂留出液である。該塔頂留出液中に
は、1,1−ジクロルエタン、クロロプレン、1−クロ
ルブタジエン、ジクロルエチレン、クロロホルム、四塩
化炭素等の外、ベンゼン及びトリクロルエチレンが含有
され、EDCの濃度は通常、40〜60重量%である。
該塔頂留出液中にはクロロプレンが通常、2〜5重量
%、ベンゼンが1〜5重量%、トリクロルエチレンが1
〜5重量%含有されている。更に、直接塩素化やオキシ
クロリネーションにより製造されたEDCを低沸物分離
塔で蒸留して得られる塔頂留出液を該フィード液に添加
して原料に供することができる。
In the present invention, the mixture used as the raw material is
This is a top distillate obtained by pyrolyzing EDC and separating the generated hydrogen chloride and vinyl chloride monomer, and then distilling undecomposed EDC in a low-boiling matter separation column. The top distillate contains 1,1-dichloroethane, chloroprene, 1-chlorobutadiene, dichloroethylene, chloroform, carbon tetrachloride, etc., as well as benzene and trichloroethylene, and the concentration of EDC is usually It is 40 to 60% by weight.
The overhead distillate usually contains 2 to 5% by weight of chloroprene, 1 to 5% by weight of benzene, and 1 to 5% by weight of trichloroethylene.
-5% by weight. Further, a top distillate obtained by distilling EDC produced by direct chlorination or oxychlorination in a low-boiling matter separation column can be added to the feed liquid and used as a raw material.

【0020】第1の蒸留塔はあまり多くの段数を必要と
せず、理論段数が通常、10〜30段、好ましくは15
〜20段の蒸留塔を使用する。還流比もあまり大きくす
る必要はなく、重量基準で通常、1〜5、好ましくは2
〜4である。この蒸留塔でフィード液に含有される1,
1−ジクロルエタン、クロロプレン、1−クロルブタジ
エン、ジクロルエチレン、クロロホルム等、沸点が70
℃以下の低沸点成分を塔頂から留出させて除去する。第
1蒸留塔のフィード液中のクロロプレン濃度は通常、3
〜5重量%であり、該蒸留塔の塔頂留出液中のクロロプ
レン濃度は液組成により異なるが、通常、5〜12重量
%となる。第1の蒸留塔でのクロロプレンの重合を抑制
するために、塔頂温度を70℃以下にする必要があり、
65℃以下とするのが好ましく、60℃以下とするのが
特に好ましい。
The first distillation column does not require a large number of plates, and the number of theoretical plates is usually 10 to 30, preferably 15
Use ~ 20 distillation columns. The reflux ratio does not need to be very high and is usually 1 to 5, preferably 2
~ 4. 1, contained in the feed liquid in this distillation column
1-dichloroethane, chloroprene, 1-chlorobutadiene, dichloroethylene, chloroform, etc., having a boiling point of 70
Low-boiling components having a temperature of not higher than 0 ° C are distilled off from the top of the tower to remove them. The chloroprene concentration in the feed liquid of the first distillation column is usually 3
To 5% by weight, and the chloroprene concentration in the distillate at the top of the distillation column varies depending on the liquid composition, but is usually 5 to 12% by weight. In order to suppress the polymerization of chloroprene in the first distillation column, the top temperature needs to be 70 ° C. or less,
It is preferably at most 65 ° C, particularly preferably at most 60 ° C.

【0021】また、クロロプレンの重合を抑制するた
め、窒素雰囲気下及び/又は重合禁止剤を添加して蒸留
することが好ましい。重合禁止剤の添加方法としては、
気相部に一酸化窒素ガスを窒素ガスに混合して添加する
か、該蒸留塔のフィード液及び/又は還流液に、2,6
−ジターシャリーブチルパラクレゾールやターシャリー
ブチルカテコール等を添加する方法が挙げられる。重合
禁止剤の添加量は通常、フィード液あるいは還流液に対
して約0.05〜5重量%であり、0.1〜1重量%と
するのが好ましい。第1蒸留塔の塔底へのEDCの缶出
率は通常、95%以上が得られ、塔頂へのEDCのロス
率は5%以下である。
In order to suppress the polymerization of chloroprene, it is preferable to carry out distillation under a nitrogen atmosphere and / or by adding a polymerization inhibitor. As a method of adding the polymerization inhibitor,
Nitrogen monoxide gas is mixed with nitrogen gas and added to the gas phase, or 2, 6 or 2 is added to the feed liquid and / or reflux liquid of the distillation column.
-A method of adding di-tert-butyl paracresol, tert-butyl catechol and the like. The amount of the polymerization inhibitor to be added is usually about 0.05 to 5% by weight, preferably 0.1 to 1% by weight, based on the feed liquid or the reflux liquid. The removal rate of EDC to the bottom of the first distillation column is usually 95% or more, and the loss rate of EDC to the top of the column is 5% or less.

【0022】第1蒸留塔の缶出液を次の第2蒸留塔にフ
ィードして、フィード液中のベンゼン及びトリクロルエ
チレンを塔頂より蒸留分離する。フィード液中のベンゼ
ンの濃度は通常、2〜8重量%、トリクロルエチレンの
濃度は通常、2〜6重量%である。また、フィード液中
のEDCの濃度は通常、75〜95重量%である。第1
蒸留塔の缶出液をそのまま第2蒸留塔にフィードして蒸
留しても良いが、好ましくは、第1蒸留塔の缶出液に水
を共沸剤として添加して蒸留することであり、これによ
り高いベンゼン及びトリクロルエチレン除去率が得られ
る。共沸剤として添加する水の量は基本的にはベンゼン
と水、トリクロルエチレンと水、EDCと水の共沸組成
に対応したものとする。ベンゼンと水の共沸組成はベン
ゼン91.2重量%、水8.8重量%、トリクロルエチ
レンと水の共沸組成はトリクロルエチレン93.0重量
%、水7.0重量%、EDCと水の共沸組成はEDC9
1.9重量%、水8.1重量%である。従って、水の添
加量はフィード液中のベンゼンとトリクロルエチレンの
合計量に対して重量比率で0〜0.6の範囲とするのが
好ましい。水の添加量が多すぎる場合は蒸留の蒸気原単
位が大となり、効率的でない。
The bottom product of the first distillation column is fed to the next second distillation column, and benzene and trichloroethylene in the feed solution are separated by distillation from the top. The concentration of benzene in the feed solution is usually 2 to 8% by weight, and the concentration of trichlorethylene is usually 2 to 6% by weight. The concentration of EDC in the feed solution is usually 75 to 95% by weight. First
The bottoms of the distillation column may be directly fed to the second distillation column for distillation, but preferably, distillation is performed by adding water as an azeotropic agent to the bottoms of the first distillation column. This results in high benzene and trichloroethylene removal rates. The amount of water added as an azeotropic agent basically corresponds to the azeotropic composition of benzene and water, trichloroethylene and water, and EDC and water. The azeotropic composition of benzene and water is 91.2% by weight of benzene and 8.8% by weight of water, and the azeotropic composition of trichlorethylene and water is 93.0% by weight of trichloroethylene, 7.0% by weight of water, EDC and water. The azeotropic composition is EDC9
It is 1.9% by weight and water is 8.1% by weight. Therefore, the amount of water to be added is preferably in the range of 0 to 0.6 in terms of weight ratio with respect to the total amount of benzene and trichloroethylene in the feed solution. If the added amount of water is too large, the steam basic unit of distillation becomes large and it is not efficient.

【0023】本発明により、第2蒸留塔の塔頂よりベン
ゼン及びトリクロルエチレンを留出させて除去し、塔底
よりEDCを回収することができる。第2蒸留塔は理論
段数で通常、10〜70段、好ましくは20〜60段の
蒸留塔を使用する。また、還流比は、重量基準で通常、
5〜60の範囲であり、好ましくは10〜50、特に好
ましくは20〜40の範囲である。蒸留塔の段数や還流
比を大きくすればベンゼン及びトリクロルエチレンの除
去率は向上するが、設備費並びに蒸留に於ける蒸気原単
位がアップするので、上記範囲とするのが好ましい。第
2蒸留塔への原料の供給位置(フィード段)は、中央付
近の段からフィードするのが好ましい。また、共沸剤と
して添加する水は、第1蒸留塔の缶出液と共に同一段か
らフィードするのが好ましい。第2蒸留塔の塔底缶出液
として得られる回収EDCは、そのままあるいは水分を
除去した後、熱分解用の原料として使用することができ
る。
According to the present invention, benzene and trichloroethylene can be distilled off and removed from the top of the second distillation column, and EDC can be recovered from the bottom of the column. As the second distillation column, a distillation column having a theoretical plate number of usually 10 to 70 plates, preferably 20 to 60 plates is used. Also, the reflux ratio is usually based on weight,
The range is 5 to 60, preferably 10 to 50, particularly preferably 20 to 40. Increasing the number of distillation columns and the reflux ratio improves the removal rate of benzene and trichloroethylene, but increases the equipment cost and the unit steam consumption in distillation, so that the above range is preferable. The feed position (feed stage) of the raw material to the second distillation column is preferably fed from a stage near the center. Further, it is preferable that water added as an azeotropic agent is fed from the same stage together with the bottoms of the first distillation column. The recovered EDC obtained as the bottom product of the second distillation column can be used as it is or after removing water, as a raw material for thermal decomposition.

【0024】[0024]

【実施例】以下、実施例を示して本発明を具体的に、か
つ更に詳細に説明するが本発明はこれらの実施例に限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 第1蒸留塔には、内径32mm、実段数20段のオール
ダーショウ蒸留塔を使用した。この蒸留塔に、EDCを
熱分解し生成した塩化水素と塩化ビニルモノマーを分離
した後の未分解EDCの低沸物分離塔の塔頂留出液をフ
ィードした。蒸留塔の中段の10段から560.4g/
Hrの速度でフィード液をフィードした。フィード液の
組成は表1に示す通りで、フィード液温60℃、還流比
4であった。塔底より窒素ガスを約30ml/分の速度
で吹き込みながら蒸留を行った。蒸留塔の塔頂温度は5
9.6℃、釜液温度は82.3℃であった。塔頂への留
出液量は225.8g/Hr、塔底缶出液量は334.
6g/Hrであり、留出液及び缶出液組成は、表1に示
す通りであった。第1蒸留塔の塔底へのEDCの缶出率
(%)((缶出液中のEDC量/フィード液中のEDC
量)×100)は、95.6%であった。次に、この第
1蒸留塔の缶出液を第2蒸留塔にフィードして蒸留を行
った。第2蒸留塔には、内径32mm、実段数80段の
オールダーショウ蒸留塔を使用した。この蒸留塔の中央
の40段から、第1蒸留塔の缶出液を101.4g/H
rの速度でフィードして連続蒸留を行った。フィード液
温80℃、還流比40で、塔頂温度は82.2℃、留出
液量26.8g/Hr、釜液温度88.2℃、缶出液量
74.6g/Hrであり、缶出液組成は表1に示す通り
であった。第2蒸留塔でのベンゼンの除去率(%)
((フィード液中のベンゼン量−缶出液中のベンゼン
量)/フィード液中のベンゼン量×100)は91.6
%、トリクロルエチレンの除去率(%)((フィード液
中のトリクロルエチレン量−缶出液中のトリクロルエチ
レン量)/フィード液中のトリクロルエチレン量×10
0)は98.8%であり、第2蒸留塔の塔底へのEDC
の缶出率は85.2%であった。これより第1蒸留塔と
第2蒸留塔を通してのEDCの回収率(%)(第1蒸留
塔でのEDCの缶出率(%)×第2蒸留塔でのEDCの
缶出率(%)/100)は、81.4%であった。
Example 1 As the first distillation column, an Oldershaw distillation column having an inner diameter of 32 mm and an actual number of plates of 20 was used. To this distillation column, the top distillate of the low-boiling matter separation column of undecomposed EDC after separating hydrogen chloride and vinyl chloride monomer produced by thermally decomposing EDC was fed. 560.4 g /
The feed solution was fed at the rate of Hr. The composition of the feed solution was as shown in Table 1, and the feed solution temperature was 60 ° C. and the reflux ratio was 4. Distillation was performed while blowing nitrogen gas at a rate of about 30 ml / min from the bottom of the column. The top temperature of the distillation column is 5
The temperature of the kettle was 9.6 ° C and the temperature of the kettle was 82.3 ° C. The amount of distillate at the top of the column is 225.8 g / Hr, and the amount of distillate at the bottom of the column is 334.
It was 6 g / Hr, and the distillate and bottoms compositions were as shown in Table 1. EDC removal rate to the bottom of the first distillation column (%) ((EDC amount in bottoms / EDC in feed solution)
Amount) x 100) was 95.6%. Next, the bottom product of the first distillation column was fed to the second distillation column to perform distillation. As the second distillation column, an Oldershaw distillation column having an inner diameter of 32 mm and an actual number of stages of 80 was used. From the central 40 stages of this distillation column, the bottom product of the first distillation column was 101.4 g / H
Feeding was performed at a rate of r to perform continuous distillation. The feed liquid temperature was 80 ° C., the reflux ratio was 40, the overhead temperature was 82.2 ° C., the distillate amount was 26.8 g / Hr, the kettle liquid temperature was 88.2 ° C., and the bottom liquid amount was 74.6 g / Hr. The bottom composition was as shown in Table 1. Benzene removal rate in the second distillation column (%)
((The amount of benzene in the feed liquid−the amount of benzene in the bottom liquid) / the amount of benzene in the feed liquid × 100) is 91.6.
%, Removal rate of trichlorethylene (%) ((amount of trichlorethylene in feed liquid−amount of trichlorethylene in bottom liquid) / amount of trichlorethylene in feed liquid × 10
0) was 98.8%, and EDC was added to the bottom of the second distillation column.
Was 85.2%. From this, the recovery ratio (%) of EDC through the first distillation column and the second distillation column (the removal ratio of EDC in the first distillation column (%) × the removal ratio of EDC in the second distillation column (%)) / 100) was 81.4%.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例2 第1蒸留塔には、内径32mm、実段数20段のオール
ダーショウ蒸留塔を使用した。この蒸留塔に、EDCを
熱分解し生成した塩化水素と塩化ビニルモノマーを分離
した後の未分解EDCの低沸物分離塔の塔頂留出液をフ
ィードした。蒸留塔の中央の10段からフィード液を5
46.0g/Hrの速度でフィードした。フィード液の
組成は表2に示す通りで、フィード液温60℃、還流比
4であった。塔底より窒素ガスを約30ml/分の速度
で吹き込みながら蒸留を行った。蒸留塔の塔頂温度は5
9.6℃、釜液温度は82.3℃であった。塔頂への留
出液量は217.4g/Hr、塔底缶出液量は328.
4g/Hrであり、留出液及び缶出液組成は表2に示す
通りであった。第1蒸留塔の塔底へのEDCの缶出率は
96.4%であった。次に、この第1蒸留塔の缶出液に
水を添加して、これを第2蒸留塔にフィードして蒸留を
行った。第2蒸留塔には、内径32mm、実段数80段
のオールダーショウ蒸留塔を使用した。蒸留塔の中央の
40段から、第1蒸留塔の缶出液を102.0g/Hr
の速度でフィードすると共に、同一段の40段から水を
2.9g/Hrの速度でフィードして連続蒸留を行っ
た。水の添加量は、第2蒸留塔にフィードする液中のベ
ンゼンとトリクロルエチレンの合計量に対して重量比率
で0.30である。フィード液温70℃、還流比20
で、塔頂温度69.2℃、留出液量29.8g/Hr、
釜液温度88.2℃、缶出液量75.0g/Hrであ
り、缶出液組成は表2に示す通りであった。第2蒸留塔
でのベンゼンの除去率は93.4%、トリクロルエチレ
ンの除去率は99.2%であり、第2蒸留塔の塔底への
EDCの缶出率は85.5%であった。これより、第1
蒸留塔と第2蒸留塔を通してのEDCの回収率は82.
4%であった。
Example 2 As the first distillation column, an Oldershaw distillation column having an inner diameter of 32 mm and an actual number of plates of 20 was used. To this distillation column, the top distillate of the low-boiling matter separation column of undecomposed EDC after separating hydrogen chloride and vinyl chloride monomer produced by thermally decomposing EDC was fed. Feed liquid from the middle 10 stages of the distillation column to 5
It was fed at a rate of 46.0 g / Hr. The composition of the feed solution was as shown in Table 2, and the feed solution temperature was 60 ° C. and the reflux ratio was 4. Distillation was performed while blowing nitrogen gas at a rate of about 30 ml / min from the bottom of the column. The top temperature of the distillation column is 5
The temperature of the kettle was 9.6 ° C and the temperature of the kettle was 82.3 ° C. The amount of distillate at the top of the column is 217.4 g / Hr, and the amount of bottoms discharged at the bottom is 328.
It was 4 g / Hr, and the distillate and bottoms compositions were as shown in Table 2. The removal rate of EDC to the bottom of the first distillation column was 96.4%. Next, water was added to the bottoms of the first distillation column, and this was fed to the second distillation column to perform distillation. As the second distillation column, an Oldershaw distillation column having an inner diameter of 32 mm and an actual number of stages of 80 was used. 102.0 g / Hr of bottom product from the first distillation column was fed from the central 40 stages of the distillation column.
, And water was fed from the same 40 stages at a rate of 2.9 g / Hr to perform continuous distillation. The amount of water added is 0.30 in terms of weight ratio to the total amount of benzene and trichloroethylene in the liquid fed to the second distillation column. Feed liquid temperature 70 ° C, reflux ratio 20
At a top temperature of 69.2 ° C., a distillate amount of 29.8 g / Hr,
The kettle liquid temperature was 88.2 ° C., the bottom liquid amount was 75.0 g / Hr, and the bottom liquid composition was as shown in Table 2. The removal rate of benzene in the second distillation column was 93.4%, the removal rate of trichloroethylene was 99.2%, and the removal rate of EDC to the bottom of the second distillation column was 85.5%. Was. From this, the first
The recovery of EDC through the distillation column and the second distillation column was 82.2.
4%.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明によれば、EDCの熱分解での未
分解EDCの低沸物分離塔の塔頂留出液から、クロロプ
レンや1,1−ジクロルエタン、クロロホルム等の低沸
点成分とベンゼン及びトリクロルエチレンを効率良く分
離除去して、高純度のEDCを得ることができる。本発
明は、第1蒸留塔でクロロプレンの重合を抑制して沸点
が70℃以下の低沸点成分を蒸留分離し、第2の蒸留塔
で第1蒸留塔の缶出液を蒸留することにより、ベンゼン
及びトリクロルエチレンを除去して塔底より高純度のE
DCを回収するものである。
According to the present invention, low boiling components such as chloroprene, 1,1-dichloroethane, and chloroform are removed from the top distillate of a low-boiling matter separation column for undecomposed EDC obtained by thermal decomposition of EDC. And trichloroethylene can be efficiently separated and removed to obtain high-purity EDC. The present invention suppresses the polymerization of chloroprene in the first distillation column, distills and separates low-boiling components having a boiling point of 70 ° C. or lower, and distills the bottoms of the first distillation column in the second distillation column. Benzene and trichloroethylene are removed to remove high purity E from the bottom of the column.
This is for recovering DC.

【0030】本発明の二段階蒸留分離法は蒸留操作のみ
で工程数が少なく、経済的にEDCが回収可能で、回収
したEDCはEDCの熱分解原料として使用可能であ
る。従って、工業的に極めて有利なEDCの回収方法で
ある。
In the two-stage distillation separation method of the present invention, the number of steps is small by only a distillation operation, EDC can be recovered economically, and the recovered EDC can be used as a raw material for pyrolysis of EDC. Therefore, it is an industrially very advantageous method of recovering EDC.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の方法によるEDCの熱分解に於
ける未分解EDCの低沸物分離塔塔頂留出液からのED
Cの回収工程を示すフローシートである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the ED from the top distillate of a low-boiling matter separation column of undecomposed EDC in the pyrolysis of EDC according to the method of the present invention.
4 is a flow sheet showing a recovery step of C.

【符号の説明】[Explanation of symbols]

C−1 第1蒸留塔 C−2 第2蒸留塔 E−1 第1蒸留塔コンデンサー E−2 第2蒸留塔コンデンサー 未分解EDCの低沸物分離塔塔頂留出液(第1蒸
留塔フィード液) 第1蒸留塔缶出液(第2蒸留塔フィード液) 第1蒸留塔留出液 第1蒸留塔還流液 水 第2蒸留塔缶出液(回収EDC) 第2蒸留塔留出液 第2蒸留塔還流液
C-1 First distillation column C-2 Second distillation column E-1 First distillation column condenser E-2 Second distillation column condenser Low-boiling matter separation tower top distillate of undecomposed EDC (first distillation column feed Liquid) First distillation column bottom liquid (second distillation column feed liquid) First distillation column distillate First distillation column reflux liquid Water Second distillation column bottom liquid (recovered EDC) Second distillation column distillate 2 Distillation column reflux

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】1,2−ジクロルエタンを熱分解し、生成
した塩化水素と塩化ビニルモノマーを分離した後の未分
解1,2−ジクロルエタンの低沸物分離塔の塔頂留出液
から1,2−ジクロルエタンを回収するに際し、第1の
蒸留塔で、クロロプレンを含む常圧での沸点が70℃以
下の成分を蒸留分離し、次に、第1の蒸留塔の缶出液を
第1の蒸留塔の後段に設けた第2の蒸留塔にフィードし
て蒸留し、塔頂よりベンゼン及びトリクロルエチレンを
留出させて除去し、塔底より1,2−ジクロルエタンを
回収することを特徴とする1,2−ジクロルエタンの回
収方法。
1. A 1,2-dichloroethane is thermally decomposed, and 1,2-dichloroethane is separated from a vinyl chloride monomer. In recovering 2-dichloroethane, components having a boiling point of 70 ° C. or less at normal pressure, including chloroprene, are separated by distillation in a first distillation column, and then the bottoms of the first distillation column are subjected to the first distillation column. It is fed to a second distillation column provided in the latter stage of the distillation column to perform distillation, and benzene and trichloroethylene are distilled off from the top of the column to be removed, and 1,2-dichloroethane is recovered from the bottom of the column. A method for recovering 1,2-dichloroethane.
【請求項2】第2の蒸留塔で、第1の蒸留塔の缶出液に
水を添加して、共沸蒸留により、ベンゼン及びトリクロ
ルエチレンを除去することを特徴とする請求項1に記載
の1,2−ジクロルエタンの回収方法。
2. The method according to claim 1, wherein water is added to the bottom of the first distillation column in the second distillation column, and benzene and trichloroethylene are removed by azeotropic distillation. Of 1,2-dichloroethane.
【請求項3】第1の蒸留塔の塔頂温度を65℃以下とし
て蒸留し、塔頂よりクロロプレンを除去することを特徴
とする請求項1又は請求項2に記載の1,2−ジクロル
エタンの回収方法。
3. The 1,2-dichloroethane of claim 1 or 2, wherein the first distillation column is subjected to distillation at a top temperature of 65 ° C. or lower to remove chloroprene from the top. Collection method.
【請求項4】第1の蒸留塔で、窒素雰囲気下及び/又は
重合禁止剤を添加して蒸留することを特徴とする請求項
1〜請求項3いずれかに記載の1,2−ジクロルエタン
の回収方法。
4. The 1,2-dichloroethane according to claim 1, wherein the distillation is carried out in a first distillation column under a nitrogen atmosphere and / or by adding a polymerization inhibitor. Collection method.
JP2000045110A 2000-02-17 2000-02-17 Method for recovering 1,2-dichloroethane Expired - Fee Related JP4432187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045110A JP4432187B2 (en) 2000-02-17 2000-02-17 Method for recovering 1,2-dichloroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045110A JP4432187B2 (en) 2000-02-17 2000-02-17 Method for recovering 1,2-dichloroethane

Publications (2)

Publication Number Publication Date
JP2001226297A true JP2001226297A (en) 2001-08-21
JP4432187B2 JP4432187B2 (en) 2010-03-17

Family

ID=18567754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045110A Expired - Fee Related JP4432187B2 (en) 2000-02-17 2000-02-17 Method for recovering 1,2-dichloroethane

Country Status (1)

Country Link
JP (1) JP4432187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114721A (en) * 2000-10-11 2002-04-16 Tosoh Corp Method for recovering high-purity 1,2-dichloroethane
CN111848335A (en) * 2019-05-27 2020-10-30 万华化学集团股份有限公司 Method for purifying 1, 2-dichloroethane in chloroethylene production process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002114721A (en) * 2000-10-11 2002-04-16 Tosoh Corp Method for recovering high-purity 1,2-dichloroethane
JP4691771B2 (en) * 2000-10-11 2011-06-01 東ソー株式会社 Method for recovering high purity 1,2-dichloroethane
CN111848335A (en) * 2019-05-27 2020-10-30 万华化学集团股份有限公司 Method for purifying 1, 2-dichloroethane in chloroethylene production process
CN111848335B (en) * 2019-05-27 2023-05-30 万华化学(福建)有限公司 Method for purifying 1, 2-dichloroethane in vinyl chloride production process

Also Published As

Publication number Publication date
JP4432187B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US7485760B2 (en) Integrated HFC trans-1234ze manufacture process
JP2019214596A (en) METHOD FOR PRODUCTION OF HFOtrans-1234ze FROM HFC-245fa
US9776938B2 (en) Plant for producing 2,3,3,3-tetrafluoropropene
EP1132365B1 (en) Azeotropic composition comprising 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene, method of separation and purification of the same, and process for producing 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene
JP2017122090A (en) Process for producing trans-1233zd
WO2012081482A1 (en) Method for producing c3 chlorinated hydrocarbon
JPH0269425A (en) Production of pure tetrafluoroethylene
US6392106B1 (en) Process for producing 1,1,1,2,2-pentafluoroethane
JP2007016048A (en) Purification of difluoromethane
JP5805812B2 (en) Integrated HFC Transformer-1234ZE Manufacturing Method
JP2019526557A (en) Process for dehydrochlorinating chlorinated alkanes
US6316682B1 (en) Process for preparing 1,1,1,3,3-pentafluoropropane
JP2001226297A (en) Method for recovering 1,2-dichloroethane
JP4432186B2 (en) Method for purifying 1,2-dichloroethane
US7371905B2 (en) Method of producing hydrofluorocarbons
US20020198418A1 (en) Process for the preparation of 1,1,1-trifluoro-2,2-dichloroethane
WO1992001659A1 (en) Method of removing chloroprene contained in 1,2-dichloroethane
JP4691771B2 (en) Method for recovering high purity 1,2-dichloroethane
US6103945A (en) Process for converting the low-boiling by-products formed during the thermal cracking of 1,2-dichloroethane
JPH08198783A (en) Production of 1,1,1,3,3-pentafluorobutane
JPH0247968B2 (en)
JP2001072623A (en) Purification of chlorinated hydrocarbon
JP2008156248A (en) Method for producing hydroxy compound
JPH11124359A (en) Production of formamide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4432187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees