JP2001225075A - Electrical cell - Google Patents

Electrical cell

Info

Publication number
JP2001225075A
JP2001225075A JP2000037882A JP2000037882A JP2001225075A JP 2001225075 A JP2001225075 A JP 2001225075A JP 2000037882 A JP2000037882 A JP 2000037882A JP 2000037882 A JP2000037882 A JP 2000037882A JP 2001225075 A JP2001225075 A JP 2001225075A
Authority
JP
Japan
Prior art keywords
electrolytic cell
plates
electrode
pair
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000037882A
Other languages
Japanese (ja)
Inventor
Takeshi Kawazu
豪 河津
Masaru Oshita
勝 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP2000037882A priority Critical patent/JP2001225075A/en
Publication of JP2001225075A publication Critical patent/JP2001225075A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized electrolytic cell with improved in electrolytic efficiency. SOLUTION: The electrolytic cell is equipped with a plurality of electrode plates 6, 7, a liquid tank 1 constituted so that a plurality of the electrode plates 6, 7 are arranged in the thickness direction thereof in a spaced-apart state and a liquid 10 to be electrolyzed flows from an inflow port 4 to an outflow port 5 through the gap between the electrode plates 6, 7 and flow barrier plates 21-26 arranged so as to cut off the flow channel 30 of the liquid 10 to be electrolyzed formed between the electrode plates so that the liquid 10 to be electrolyzed is passed through the flow channel 30 in mutually opposite direction in the direction of electrode plate extension in the cross-section of the flow channel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、次亜塩素酸ナトリ
ウム生成装置や電解水生成装置等の電解装置の電解槽に
関し、特に、小型のものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell of an electrolyzer such as a sodium hypochlorite generator or an electrolyzed water generator, and more particularly to a small-sized electrolyzer.

【0002】[0002]

【従来の技術】電解槽が用いられる電解装置として、例
えば次亜塩素酸ナトリウム生成装置や電解水生成装置等
がある。
2. Description of the Related Art Examples of an electrolysis apparatus using an electrolyzer include a sodium hypochlorite generator, an electrolyzed water generator, and the like.

【0003】次亜塩素酸ナトリウム生成装置は、上水道
の消毒等に用いる次亜塩素酸ナトリウムを生成するもの
で、一般的に、塩溶解槽からの食塩水を希釈水槽からの
希釈水で希釈し、この希釈食塩水を電解槽で電解して次
亜塩素酸ナトリウムを生成し、その次亜塩素酸ナトリウ
ムを次亜塩素酸ナトリウム貯留槽に貯留するとともに、
電解時に電解槽で発生した水素ガスを希釈ファンからの
空気によって希釈した後、大気に放出するよう構成され
ている。
[0003] The sodium hypochlorite generator is used to generate sodium hypochlorite used for disinfection of waterworks, etc., and generally dilutes a saline solution from a salt dissolving tank with dilution water from a dilution water tank. The diluted saline solution is electrolyzed in an electrolytic cell to produce sodium hypochlorite, and the sodium hypochlorite is stored in a sodium hypochlorite storage tank,
The hydrogen gas generated in the electrolytic cell during the electrolysis is diluted with air from a dilution fan and then released to the atmosphere.

【0004】このような次亜塩素酸ナトリウム生成装置
では、電解効率の向上が課題であり、この対策として、
電解槽を、流入口と流出口との間に上昇通路と下降通路
とが交互に形成されるよう仕切板で区画し、上昇通路内
に複数枚の電極板からなる電極ユニットを配設したもの
が知られている(特開平7-216572号公報参照)。この電
解槽では、被電解液たる希釈食塩水が、その供給量に見
合った流速及び流量で各上昇通路及び下降通路を経由し
て上昇及び下降を繰り返しながら下流へと流れて行き、
各上昇通路で対流を伴いながら電極ユニットにより電解
されるので、希釈食塩水の電解効率が著しく向上する。
In such a sodium hypochlorite generator, there is a problem of improving the electrolytic efficiency.
An electrolytic cell in which an ascending passage and a descending passage are alternately formed between an inflow port and an outflow port by a partition plate, and an electrode unit including a plurality of electrode plates is arranged in the ascending passage. Is known (see JP-A-7-216572). In this electrolytic cell, a diluted saline solution to be electrolyzed flows downstream while repeating ascending and descending via each ascending passage and descending passage at a flow rate and a flow rate corresponding to the supply amount,
Since electrolysis is performed by the electrode unit with convection in each ascending passage, the electrolysis efficiency of the diluted saline solution is significantly improved.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記次亜塩
素酸ナトリウム生成装置は、専ら、浄水場等の大規模な
施設で用いられてきたが、最近、簡易水道、プール、食
品工場等の小規模な施設でも用いられるようになってき
た。
The sodium hypochlorite generator has been used exclusively in large-scale facilities such as water purification plants. It is also being used in large-scale facilities.

【0006】しかしながら、上記のように複数の電解ユ
ニットを備える構成は、大規模な施設で用いられる大型
の電解槽には採用できるが、小規模な施設で用いられる
小型の電解槽には採用することができない。これは、そ
のような複数の電解ユニットを備える構成を採用する
と、電解槽が大型化してしまうからである。
[0006] However, the configuration having a plurality of electrolysis units as described above can be adopted for a large electrolytic cell used in a large-scale facility, but is adopted for a small electrolytic cell used in a small-scale facility. Can not do. This is because the adoption of such a configuration including a plurality of electrolytic units results in an increase in the size of the electrolytic cell.

【0007】従って、小型の電解槽では、依然、電解効
率の向上が課題として存在していた。
[0007] Therefore, in a small-sized electrolytic cell, improvement of electrolysis efficiency still exists as a problem.

【0008】本発明は、かかる技術的課題を解決するた
めになされたもので、電解効率を向上することが可能な
小型の電解槽を提供することを目的としている。
The present invention has been made to solve such technical problems, and has as its object to provide a small-sized electrolytic cell capable of improving the electrolytic efficiency.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る電解槽は、複数の電極板と、流入口及
び流出口を有する容器状に形成され、内部に上記複数の
電極板が間隔を有して厚み方向に並ぶように配置され、
被電解液が該流入口から上記複数の電極板の間を通って
該流出口に流れるように構成された液槽と、上記電極板
間に形成された被電解液の各流路に、該流路横断面にお
ける電極板延在方向において交互に反対の側に該被電解
液を通過せしめるようにして該流路を遮るようそれぞれ
1以上配設された阻流板とを備えている。かかる構成と
すると、被電解液が電極板間の流路を、該流路横断面に
おける電極板延在方向にジグザグ状に流れるため、被電
解液の電極板への有効接触面積が増大する。その結果、
電解効率を向上することができる。また、電極板間に阻
流板を配設する構成であるため、小型の電解槽において
も、その構成を採用して電解効率を向上させることがで
きる。
In order to solve the above-mentioned problems, an electrolytic cell according to the present invention is formed in a container shape having a plurality of electrode plates, an inlet and an outlet, and has the plurality of electrodes therein. The boards are arranged so as to be arranged in the thickness direction with an interval,
A liquid tank configured to allow the electrolyte to flow from the inflow port to the outlet through the space between the plurality of electrode plates; and a flow path for the electrolysis solution formed between the electrode plates. At least one baffle plate is provided on each side alternately in the direction of extension of the electrode plate in the cross section so as to allow the electrolyte to pass therethrough and block the flow path. With such a configuration, the electrolytic solution flows in the flow path between the electrode plates in a zigzag manner in the electrode plate extending direction in the cross section of the flow path, so that the effective contact area of the electrolytic solution with the electrode plate increases. as a result,
Electrolysis efficiency can be improved. In addition, since the baffle plate is provided between the electrode plates, the configuration can be adopted to improve the electrolysis efficiency even in a small electrolytic cell.

【0010】この場合、上記阻流板が、上記電極板間の
被電解液の各流路にそれぞれ複数対配設され、該対内の
上記阻流板の間隔と該対間の上記阻流板の間隔とが異な
るようにしてもよい。かかる構成とすると、対内の阻流
板の間隔と対間の阻流板の間隔とが等しい、すなわち、
阻流板を等間隔に配置した場合に比べて、電解効率を向
上することができる。
In this case, a plurality of pairs of the baffle plates are provided in each of the flow paths of the liquid to be electrolyzed between the electrode plates, and an interval between the baffle plates in the pair and the baffle plate between the pair are provided. May be different from each other. With such a configuration, the space between the baffle plates in the pair and the space between the baffle plates between the pair are equal, that is,
Electrolysis efficiency can be improved as compared with the case where the baffle plates are arranged at equal intervals.

【0011】さらにこの場合、上記対内の上記阻流板の
間隔と上記対間の上記阻流板の間隔との比が、略1:6
であるものとしてもよい。かかる構成とすると、電解効
率を最大限に向上することができる。
Further, in this case, the ratio of the space between the baffle plates in the pair and the space between the baffle plates between the pair is approximately 1: 6.
May be used. With this configuration, the electrolysis efficiency can be maximized.

【0012】また、上記の場合に、1つの液槽を区画し
て上記液槽を複数形成し、該形成された液槽毎に上記電
解槽を単位電解槽として形成してもよい。かかる構成と
すると、単位電解槽の向上した電解効率を保持しつつ、
その容量を単位電解槽の数に応じた容量に増大すること
ができる。
In the above case, one liquid tank may be partitioned to form a plurality of the liquid tanks, and the electrolytic tank may be formed as a unit electrolytic tank for each of the formed liquid tanks. With this configuration, while maintaining the improved electrolysis efficiency of the unit electrolyzer,
The capacity can be increased to a capacity corresponding to the number of unit electrolytic cells.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本実施の形態に係る電解槽の構成を
示す平面図、図2は図1のA−A矢視断面図である。図
1は、液槽の蓋部を外した状態を示している。また、本
実施の形態では電解槽が用いられる電解装置として、次
亜塩素酸ナトリウム生成装置を例示している。
FIG. 1 is a plan view showing the structure of the electrolytic cell according to the present embodiment, and FIG. 2 is a sectional view taken along the line AA of FIG. FIG. 1 shows a state where the lid of the liquid tank is removed. In the present embodiment, a sodium hypochlorite generator is illustrated as an electrolysis apparatus using an electrolyzer.

【0015】図1、図2において、電解槽100は、液槽
1を備えている。液槽1は、上端が開放された箱状の容
器からなる本体部2と、該本体部2の開放された上端に
合わさる平板状の蓋部3とで構成される。本体部2の右
側壁下部中央には流入口4が穿設され、本体部2の左側
壁上部中央には流出口5が穿設されている。従って、液
槽1は、右側が上流、左側が下流となっている。流入口
4は、塩溶解槽からの塩水を希釈水で希釈する希釈部
(図示せず)に接続されている。流出口5は次亜塩素酸
ナトリウム貯留槽に接続されている。蓋部3には水素ガ
ス排出孔3bが穿設され、該水素ガス排出孔3bは接続ダ
クト8を介して水素ガス排出ダクト9に接続されてい
る。水素ガス排出ダクト9の先端は、外部の大気中に開
口している。
1 and 2, the electrolytic cell 100 includes a liquid tank 1. The liquid tank 1 includes a main body 2 formed of a box-shaped container having an open upper end, and a flat lid 3 fitted to the open upper end of the main body 2. An inflow port 4 is formed in the lower center of the right side wall of the main body 2, and an outflow port 5 is formed in the upper center of the left side wall of the main body 2. Therefore, in the liquid tank 1, the right side is upstream and the left side is downstream. The inflow port 4 is connected to a diluting unit (not shown) that dilutes salt water from the salt dissolving tank with dilution water. The outlet 5 is connected to a sodium hypochlorite storage tank. A hydrogen gas discharge hole 3 b is formed in the lid 3, and the hydrogen gas discharge hole 3 b is connected to a hydrogen gas discharge duct 9 via a connection duct 8. The tip of the hydrogen gas discharge duct 9 is open to the outside atmosphere.

【0016】本体部2は、平面視において左右方向に長
い矩形断面を有する直方体形状に形成されている。本体
部2の後壁内面には矩形の第1の電極板6が貼設されて
いる。第1の電極板6は、後壁内面の4辺に対し、その
対応する辺が平行でかつ所定距離内方に位置するように
配置されている。そして、本体部2の前壁内面には矩形
の第2の電極板7が、第1の電極板6に対向するように
貼設されている。第1の電極板6の上端面の左端部には
矩形の板状の端子部6aが上方向に突設されている。端
子部6aは、蓋部3の貫通孔3aを通って液槽1の外部に
突出している。同様に、第2の電極板7の上端面の右端
部には矩形の板状の端子部7aが上方向に突設され(図
1参照)、蓋部3の貫通孔(図示せず)を通って液槽1
の外部に突出している。これら、第1の電極板6の端子
部6a、及び第2の電極板7の端子部7aは、直流電源
(図示せず)の正極、及び負極(又は負極、及び正極)
にそれぞれ接続されている。
The main body 2 is formed in a rectangular parallelepiped shape having a rectangular cross section that is long in the left-right direction in plan view. A rectangular first electrode plate 6 is attached to the inner surface of the rear wall of the main body 2. The first electrode plate 6 is arranged such that the corresponding sides are parallel to four sides of the inner surface of the rear wall and are located inside a predetermined distance. A rectangular second electrode plate 7 is attached to the inner surface of the front wall of the main body 2 so as to face the first electrode plate 6. At the left end of the upper end surface of the first electrode plate 6, a rectangular plate-like terminal portion 6a is provided to protrude upward. The terminal portion 6a projects outside the liquid tank 1 through the through hole 3a of the lid portion 3. Similarly, a rectangular plate-like terminal portion 7a projects upward from the right end of the upper end surface of the second electrode plate 7 (see FIG. 1), and a through hole (not shown) of the lid portion 3 is formed. Liquid tank 1
Projecting outside. The terminal portion 6a of the first electrode plate 6 and the terminal portion 7a of the second electrode plate 7 are a positive electrode and a negative electrode (or a negative electrode and a positive electrode) of a DC power supply (not shown).
Connected to each other.

【0017】第1の電極板6と第2の電極板7との間、
より正確に言えば第1の電極板6及び本体部2の後壁内
面と、第2の電極板7及び本体部2の前壁内面との間
に、複数枚(本実施の形態では6枚)の阻流板21〜26が
配設されている。6枚の阻流板21〜26は、第1の電極板
6及び本体部2の後壁内面と、第2の電極板7及び本体
部2の前壁内面との隙間の全幅に亘って左右方向に垂直
に延在するように配設されている。この第1の電極板6
と第2の電極板7との隙間は、数ミリ程度に設定され、
本実施の形態では例えば3ミリに設定されている。従っ
て、本実施の形態に係る電解槽100は小型のものであ
る。この6枚の阻流板21〜26のうち、1つ置きに配置さ
れた3枚の阻流板(以下、下側阻流板という)21,23,25
は、本体部2の底面に、その上端が第1,第2の電極板
6,7の上端と同じ高さに位置するように立設されてい
る。すなわち、3枚の下側阻流板21,23,25は、その上端
と蓋部3との間に所定の間隔D1を有している。また、3
枚の下側阻流板21,23,25は、その下端部、すなわち、上
下方向において第1,第2の電極板6,7の下端より下
方に位置する部分が、本体部2の後壁内面と前壁内面と
の間の全幅を遮り、かつその他の部分、すなわち、第1
の電極板と第2の電極板7とに挟まれた部分が、該第1
の電極板と第2の電極板7との隙間の全幅を遮るように
配設されている。そして、上記6枚の阻流板21〜26のう
ちの残り3枚の阻流板(以下上側阻流板という)22,24,
26は、その下端が本体部2の底面との間に所定の間隔D2
を有し、かつその上端が蓋部3との間に所定の間隔D3を
有するように配設されている。この所定の間隔D3は、上
記所定の間隔D1より小さく設定されている。すなわち、
上側阻流板22,24,26の上端は、下側阻流板21,23,25の上
端よりも高く位置するよう設定されている。また、これ
ら3枚の上側阻流板22,24,26は、その上端部、すなわ
ち、上下方向において第1,第2の電極板6,7の上端
より上方に位置する部分が、本体部2の後壁内面と前壁
内面との間の全幅を遮り、かつその他の部分、すなわ
ち、第1の電極板と第2の電極板7とに挟まれた部分
が、該第1の電極板と第2の電極板7との隙間の全幅を
遮るように配設されている。上記のように、3枚の上側
阻流板22,24,26の上端と蓋部3との間に所定の間隔D3を
有するように構成したのは、被電解液たる希釈塩水の電
解により発生する水素ガスが液槽1の上部に充満するた
め、その充満する水素ガスを水平方向に自由に移動せし
めて、水素ガス排出孔3bから水素ガス排出ダクトへと
排出されるようにするためである。
Between the first electrode plate 6 and the second electrode plate 7,
More precisely, between the first electrode plate 6 and the inner surface of the rear wall of the main body 2, and between the second electrode plate 7 and the inner surface of the front wall of the main body 2, a plurality of sheets (six sheets in this embodiment) are provided. ) Are provided. The six baffle plates 21 to 26 are formed over the entire width of the gap between the first electrode plate 6 and the inner surface of the rear wall of the main body 2 and the second electrode plate 7 and the inner surface of the front wall of the main body 2. It is arranged to extend perpendicular to the direction. This first electrode plate 6
The gap between the electrode and the second electrode plate 7 is set to about several millimeters,
In the present embodiment, for example, it is set to 3 mm. Therefore, the electrolytic cell 100 according to the present embodiment is small. Of the six baffle plates 21 to 26, three baffle plates (hereinafter referred to as lower baffle plates) 21, 23, and 25 arranged alternately are provided.
Is erected on the bottom surface of the main body 2 so that its upper end is located at the same height as the upper ends of the first and second electrode plates 6 and 7. In other words, the three lower baffles 21, 23, 25 have a predetermined distance D1 between their upper ends and the lid 3. Also, 3
The lower baffle plates 21, 23, 25 have lower end portions, that is, portions located below the lower ends of the first and second electrode plates 6, 7 in the vertical direction, and have a rear wall of the main body 2. Obstructs the entire width between the inner surface and the inner surface of the front wall, and the other portion, ie, the first
The portion sandwiched between the first electrode plate and the second electrode plate 7 is the first electrode plate.
And the second electrode plate 7 is disposed so as to block the entire width of the gap. The remaining three baffles (hereinafter referred to as upper baffles) 22, 24, among the six baffles 21 to 26,
26 is a predetermined distance D2 between the lower end and the bottom of the main body 2.
And the upper end thereof is arranged to have a predetermined distance D3 between itself and the lid 3. The predetermined interval D3 is set smaller than the predetermined interval D1. That is,
The upper ends of the upper baffles 22, 24, 26 are set to be higher than the upper ends of the lower baffles 21, 23, 25. In addition, the upper end portions of the three upper baffle plates 22, 24, and 26, that is, the portions located above the upper ends of the first and second electrode plates 6, 7 in the up-down direction, are connected to the main body portion 2. Block the entire width between the inner surface of the rear wall and the inner surface of the front wall, and the other portion, that is, the portion sandwiched between the first electrode plate and the second electrode plate 7, It is arranged so as to block the entire width of the gap with the second electrode plate 7. As described above, the predetermined interval D3 is provided between the upper ends of the three upper baffles 22, 24, and 26 and the lid 3, because the electrolysis is performed by the electrolysis of the diluted salt water as the liquid to be electrolyzed. This is because the filled hydrogen gas fills the upper part of the liquid tank 1, and the filled hydrogen gas is freely moved in the horizontal direction so that the hydrogen gas is discharged from the hydrogen gas discharge hole 3b to the hydrogen gas discharge duct. .

【0018】下側阻流板21,23,25は、それぞれ、上側阻
流板22,24,26と対をなし、従って、下側阻流板と上側阻
流板との対が3対形成されている。そして、対内の阻流
板同士の間隔D4と対間の阻流板同士の間隔D5との比が1
対6となるように設定されている。また、最上流の対の
下側阻流板21と本体部2の右側壁内面との間隔D6、及び
最下流の対の上側阻流板26と本体部2の左側壁内面との
間隔D7は、対間の阻流板同士の間隔D5と同じになるよう
設定されている。
The lower baffles 21, 23, 25 are respectively paired with the upper baffles 22, 24, 26, and therefore, three pairs of the lower baffle and the upper baffle are formed. Have been. The ratio of the distance D4 between the baffles in the pair to the distance D5 between the baffles in the pair is 1
It is set to be pair 6. The distance D6 between the lowermost baffle plate 21 of the most upstream pair and the inner surface of the right wall of the main body 2 and the distance D7 between the upper baffle plate 26 of the most downstream pair and the inner surface of the left wall of the main body 2 are , And is set to be the same as the interval D5 between the baffle plates between the pair.

【0019】次に、以上のように構成された電解槽100
の動作を説明する。
Next, the electrolytic cell 100 configured as described above
Will be described.

【0020】図1、図2において、第1の電極板6と第
2の電極板7との間に所定の直流電圧を印加し、流入口
4から希釈塩水10を流入させる。すると、流入口4から
流入した希釈塩水10は、図2に示すように、本体部2の
右側壁内面と下側阻流板21との間の領域を上昇し、次い
で該下側阻流板21の上方を通る。次いで、下側阻流板21
と上側阻流板22との間の領域を下降し、上側阻流板22の
下端と本体部2の底面との間を通る。以下、希釈塩水10
は、上記と同様にして、本体部2の後壁内面及び第1の
電極板6と、本体部2の前壁内面及び第2の電極板7と
の間に阻流板22〜26によって区画された各領域を、上下
方向にジグザグ状に流れて流出口5に至り、該流出口5
から流出する。
In FIGS. 1 and 2, a predetermined DC voltage is applied between the first electrode plate 6 and the second electrode plate 7, and the diluted salt water 10 flows through the inlet 4. Then, the diluted salt water 10 flowing from the inflow port 4 rises in the region between the inner surface of the right side wall of the main body 2 and the lower baffle plate 21 as shown in FIG. Pass over 21. Next, the lower baffle 21
It descends in the area between the upper baffle 22 and passes between the lower end of the upper baffle 22 and the bottom surface of the main body 2. Below, diluted saline 10
In the same manner as described above, the baffle plates 22 to 26 separate the inner wall surface of the main body 2 and the first electrode plate 6 from the inner surface of the front wall of the main body 2 and the second electrode plate 7. Each of the divided areas flows up and down in a zigzag manner to reach the outlet 5, where the outlet 5
Spill out of.

【0021】その際、希釈塩水10は、第1,第2の電極
6,7によって電気分解され、水素ガス11が発生すると
ともに次亜塩素酸ナトリウムが生成される。その発生し
た水素ガス11は希釈塩水10中を上昇して液槽1の上部に
充満し、水平方向に流れて、蓋部3の水素ガス排出孔3
bから接続ダクト8を通って水素ガス排出ダクト9に至
り、そこで希釈ファン(図示せず)からの空気で希釈さ
れて該水素ガス排出ダクト9の先端から大気中に排出さ
れる。また、このように液槽1の上部には水素ガス11が
充満するが、その一方、希釈塩水10はその供給量に見合
った流量及び流速で流れる。そこで、3枚の上側阻流板
22,24,26の上端は、希釈塩水10がその上端を超えて流れ
ないような高さに設定される。また、希釈塩水10の液面
は、流体抵抗による損失のため、上流から下流に向かう
に連れて若干低くなっている。ここで、本明細書におい
て、「電極板間に形成された被電解液の流路」とは、本
体部2の後壁内面及び第1の電極6と、本体部2の前壁
内面及び第2の電極板7との隙間のうち、図2に示すよ
うに、実際に被電解液(希釈塩水10)が流れる部分30、
すなわち、本体部2の底面から被電解液10の液面の高さ
位置までの間に存在する部分をいう。
At this time, the diluted salt water 10 is electrolyzed by the first and second electrodes 6 and 7, to generate hydrogen gas 11 and sodium hypochlorite. The generated hydrogen gas 11 rises in the diluted salt water 10, fills the upper portion of the liquid tank 1, flows horizontally, and flows in the hydrogen gas discharge hole 3 in the lid 3.
From b, it passes through the connection duct 8 to the hydrogen gas discharge duct 9, where it is diluted with air from a dilution fan (not shown) and discharged into the atmosphere from the tip of the hydrogen gas discharge duct 9. The upper portion of the liquid tank 1 is filled with the hydrogen gas 11 as described above, while the diluted salt water 10 flows at a flow rate and a flow rate corresponding to the supply amount. So, three upper baffles
The upper ends of 22, 24 and 26 are set to such a height that the diluted salt water 10 does not flow over the upper ends. Further, the liquid level of the diluted salt water 10 becomes slightly lower from upstream to downstream due to the loss due to the fluid resistance. Here, in the present specification, “the flow path of the electrolyte to be formed formed between the electrode plates” refers to the inner surface of the rear wall of the main body 2 and the first electrode 6 and the inner surface of the front wall of the main body 2 and the first electrode 6. As shown in FIG. 2, of the gap between the second electrode plate 7 and the second electrode plate 7, the portion 30 where the electrolytic solution (diluted saline 10) actually flows,
That is, it refers to a portion existing between the bottom surface of the main body 2 and the height position of the liquid surface of the electrolyte 10.

【0022】一方、生成された次亜塩素酸ナトリウムは
希釈塩水10中に溶解含有され、上流から下流に移動する
に連れてその濃度が高くなりつつ、該希釈塩水10ととも
に流出口5から流出する。
On the other hand, the generated sodium hypochlorite is dissolved and contained in the diluted salt water 10 and flows out from the outlet 5 together with the diluted salt water 10 while its concentration increases as it moves from upstream to downstream. .

【0023】この際、上記のように、希釈塩水10がその
流路30を上下方向にジグザグ状に流れるので、希釈塩水
10がその流路30を真っ直ぐに流れる場合に比べて、該流
路30の右端部上部30aや左端部下部30bが澱まなくなるた
め、希釈塩水10の第1,第2の電極板6,7への有効接
触面積が増大する。その結果、希釈塩水10の電解効率が
向上する。これを、具体的数値で示すと、例えば、電解
効率は、阻流板21〜26を設けない場合が約62〜63パーセ
ントであったのに対し、上記のように6枚の阻流板21〜
26を設けた場合には約70パーセントとなり、約11〜13パ
ーセント(約7〜8ポイント)向上した。なお、電解効
率は、(実際の生成量)/(理論生成量)で表される。
At this time, as described above, since the diluted salt water 10 flows in the flow path 30 in a vertical zigzag manner, the diluted salt water 10
Since the upper right end portion 30a and the lower left end portion 30b of the flow channel 30 do not stagnate as compared with the case where the flow 10 flows straight through the flow channel 30, the first and second electrode plates 6, 7 The effective contact area to the surface increases. As a result, the electrolysis efficiency of the diluted salt water 10 is improved. When this is shown by specific numerical values, for example, the electrolysis efficiency was about 62 to 63% when the baffle plates 21 to 26 were not provided, whereas the six baffle plates 21 as described above were used. ~
When 26 was provided, it was about 70%, an improvement of about 11 to 13% (about 7 to 8 points). The electrolysis efficiency is represented by (actual production amount) / (theoretical production amount).

【0024】また、第1,第2の電極板6,7間に阻流
板21〜26を配設する構成であるため、本実施の形態のよ
うに小型の電解槽100においても、その構成を採用して
電解効率を向上させることができる。
Further, since the baffle plates 21 to 26 are arranged between the first and second electrode plates 6 and 7, even in a small electrolytic cell 100 as in the present embodiment, the structure is Can be used to improve the electrolysis efficiency.

【0025】さらに、上記電解槽100の効果を図3を用
いて説明する。図3は阻流板の対内間隔と対間間隔との
比に対する電解効率の変化を示すグラフである。
The effect of the electrolytic cell 100 will be described with reference to FIG. FIG. 3 is a graph showing a change in electrolysis efficiency with respect to a ratio between a pair of inflow plates and a pair of discharge plates.

【0026】図1、図2の電解槽100において、3対の
阻流板21〜26について、対内の阻流板同士の間隔D4と対
間の阻流板同士の間隔D5との比を、1対1、1対3、1
対6、及び1対10の4条件に変化させた。すると、電解
効率は図3に示すように変化し、対内の阻流板同士の間
隔D4と対間の阻流板同士の間隔D5との比が1対1でない
とき、その比が1対1であるときに比べて高くなり、か
つ、その比が1対6のとき、最大(77.2パーセント)と
なった。その理由は未だ解明できていないが、この結果
から、対内の阻流板同士の間隔D4と対間の阻流板同士の
間隔D5との比は、本実施の形態のように、1対6に設定
するのが最適であることが判る。よって、本実施の形態
においては、電解効率を最大限に向上することが可能と
なっている。
In the electrolytic cell 100 shown in FIGS. 1 and 2, the ratio of the distance D4 between the baffles in the pair and the distance D5 between the baffles in the pair is determined for the three pairs of baffles 21 to 26. 1 to 1, 1 to 3, 1
The conditions were changed to four conditions of pair 6 and 1 to 10. Then, the electrolysis efficiency changes as shown in FIG. 3. When the ratio of the space D4 between the baffle plates in the pair and the space D5 between the baffle plates in the pair is not 1: 1, the ratio is 1: 1. And when the ratio was 1: 6, it reached the maximum (77.2%). Although the reason has not been elucidated yet, from this result, the ratio of the space D4 between the baffle plates in the pair and the space D5 between the baffle plates in the pair is 1 to 6 as in the present embodiment. It turns out that setting to is optimal. Therefore, in the present embodiment, it is possible to maximize the electrolysis efficiency.

【0027】次に、電解槽の他の構成例を説明する。Next, another configuration example of the electrolytic cell will be described.

【0028】図4は、本実施の形態に係る電解槽の他の
構成例を示す平面図である。図4は図1と同様、液槽の
蓋部を外した状態を示している。図4において、図1と
同一符号を付した部分は、同一又は相当する部分を示
す。電解槽200の液槽201は、図1の液槽1と同様の構造
を有し、右側壁に流入口103を、左側壁に流出口104を有
している。液槽1の左端部及び右端部には、仕切板42,4
3が、それぞれ、その内部空間の全幅に亘って配設され
ている。そして、その2枚の仕切板42,43で区画された
空間を、その長手方向に2分するように仕切板41が配設
されている。これにより、液槽201の内部に、2つの単
位電解槽101,102が形成されている。これら2つの単位
電解槽101の各々の構成は、図1の電解槽100の構成と全
く同じである。
FIG. 4 is a plan view showing another configuration example of the electrolytic cell according to the present embodiment. FIG. 4 shows a state in which the lid of the liquid tank is removed similarly to FIG. In FIG. 4, portions denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding portions. The liquid tank 201 of the electrolytic cell 200 has the same structure as the liquid tank 1 of FIG. 1, and has an inlet 103 on the right side wall and an outlet 104 on the left side wall. Partition plates 42, 4 are provided at the left and right ends of the liquid tank 1, respectively.
3 are respectively arranged over the entire width of the internal space. A partition plate 41 is provided so as to divide the space defined by the two partition plates 42 and 43 into two in the longitudinal direction. Thus, two unit electrolytic cells 101 and 102 are formed inside the liquid tank 201. The configuration of each of these two unit electrolytic cells 101 is exactly the same as the configuration of the electrolytic cell 100 of FIG.

【0029】このように構成された電解槽200では、流
入口103から流入した希釈水10は、2手に分かれ、2つ
の単位電解槽101,102の各々の流入口4,4から該各単
位電解槽101,102に流入し、そこでそれぞれ電解されて
各々の流出口5,5から流出し、そこで1つに合流し
て、流出口104から流出する。よって、図1の電解槽100
と同様の電解効率で図1の電解槽100の2倍の量の次亜
塩素酸ナトリウムを生成することができる。従って、次
亜塩素酸ナトリウム生成装置の容量を2倍にアップする
ことができる。
In the electrolytic cell 200 configured as described above, the dilution water 10 flowing from the inlet 103 is divided into two parts, and the diluting water 10 is supplied from the inlets 4 and 4 of the two unit electrolytic cells 101 and 102 to the respective unit electrolytic cells. It flows into 101 and 102 where it is respectively electrolyzed and flows out of each outlet 5 and 5, where it merges into one and flows out of outlet 104. Therefore, the electrolytic cell 100 of FIG.
It is possible to produce twice as much sodium hypochlorite as the electrolytic cell 100 of FIG. Therefore, the capacity of the sodium hypochlorite generator can be doubled.

【0030】なお、本実施の形態では、液槽1,101,102
内に2枚の電極板6,7を配設する場合を説明したが、
該液槽1,101,102内に3枚以上の電極板を配設してもよ
い。この場合には、電極板間に形成される被電解液の各
流路に、上記の場合と同様に阻流板を配設すればよい。
In this embodiment, the liquid tanks 1, 101, 102
Although the case where two electrode plates 6 and 7 are arranged in the inside has been described,
Three or more electrode plates may be provided in the liquid tanks 1, 101, 102. In this case, a baffle plate may be provided in each flow path of the electrolyte to be formed formed between the electrode plates as in the case described above.

【0031】また、本実施の形態では、本発明を次亜塩
素酸ナトリウム生成装置からなる電解装置の電解槽に適
用する場合を説明したが、他の電解装置、例えば電解水
生成装置の電解槽にも同様に本発明を適用することがで
きる。
Further, in the present embodiment, the case where the present invention is applied to the electrolytic cell of the electrolytic device including the sodium hypochlorite generating device has been described, but other electrolytic devices, for example, the electrolytic cell of the electrolytic water generating device. The present invention can be applied to the same manner.

【0032】[0032]

【発明の効果】本発明は、以上に説明したような形態で
実施され、以下に記載されるような効果を奏する。 (1)被電解液が電極板間の流路を、該流路横断面にお
ける電極板延在方向にジグザグ状に流れるため、被電解
液の電極板への有効接触面積が増大し、その結果、小型
の電解槽の電解効率を向上させることができる。 (2)対内の阻流板の間隔と対間の阻流板の間隔とが異
なるようにすると、阻流板を等間隔に配置した場合に比
べて、電解効率を向上することができる。 (3)対内の阻流板の間隔と対間の阻流板の間隔との比
を略1:6とすると、電解効率を最大限に向上すること
ができる。 (4)1つの液槽を区画して上記液槽を複数形成し、該
形成された液槽毎に電解槽を単位電解槽として形成する
と、単位電解槽の向上した電解効率を保持しつつ、その
容量を単位電解槽の数に応じた容量に増大することがで
きる。
The present invention is embodied in the form described above, and has the following effects. (1) Since the electrolyte flows in a flow path between the electrode plates in a zigzag manner in the electrode plate extending direction in the cross section of the flow path, the effective contact area of the electrolyte to the electrode plate increases, and as a result In addition, the electrolysis efficiency of a small electrolytic cell can be improved. (2) If the spacing between the baffle plates in the pair is different from the spacing between the baffle plates between the pair, the electrolysis efficiency can be improved as compared with the case where the baffle plates are arranged at equal intervals. (3) When the ratio of the space between the baffle plates in the pair and the space between the baffle plates between the pair is approximately 1: 6, the electrolysis efficiency can be maximized. (4) When one liquid tank is partitioned to form a plurality of the liquid tanks and the electrolytic tank is formed as a unit electrolytic tank for each of the formed liquid tanks, while maintaining the improved electrolytic efficiency of the unit electrolytic tank, The capacity can be increased to a capacity corresponding to the number of unit electrolytic cells.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る電解槽の構成を示す
平面図である。
FIG. 1 is a plan view showing a configuration of an electrolytic cell according to an embodiment of the present invention.

【図2】図1のA−A矢視断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】阻流板の対内間隔と対間間隔との比に対する電
解効率の変化を示すグラフである。
FIG. 3 is a graph showing a change in electrolysis efficiency with respect to a ratio between an inner space and a lower space of a baffle plate.

【図4】本発明の実施の形態に係る電解槽の他の構成例
を示す平面図である。
FIG. 4 is a plan view showing another configuration example of the electrolytic cell according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,201 液槽 2 本体部 3 蓋部 3a 貫通孔 3b 水素ガス排出孔 4 流入口 5 流出口 6 第1の電極板 6a 端子部 7 第2の電極板 7a 端子部 8 接続ダクト 9 水素ガス排出ダクト 10 希釈塩水 11 水素ガス 21,23,25 下側阻流板 22,24,26 上側阻流板 30 流路 30a 流路の右端部上部 30b 流路の左端部下部 41,42,43 仕切板 100,200 電解槽 101,102 単位電解槽 103 流入口 104 流出口 D1,D2,D3 所定の間隔 D4 対内の阻流板同士の間隔 D5 対間の阻流板同士の間隔 D6 最上流の対の下側阻流板と本体部の右側壁内面との
間隔 D7 最下流の対の上側阻流板と本体部の左側壁内面との
間隔
DESCRIPTION OF SYMBOLS 1,201 Liquid tank 2 Main body part 3 Cover part 3a Through hole 3b Hydrogen gas discharge hole 4 Inlet 5 Outlet 6 First electrode plate 6a Terminal part 7 Second electrode plate 7a Terminal part 8 Connection duct 9 Hydrogen gas discharge Duct 10 Diluted salt water 11 Hydrogen gas 21,23,25 Lower baffle plate 22,24,26 Upper baffle plate 30 Flow passage 30a Upper right end of flow passage 30b Lower left end of flow passage 41,42,43 Partition plate 100,200 Electrolyzer 101,102 Unit electrolyzer 103 Inlet 104 Outlet D1, D2, D3 Predetermined distance D4 Distance between baffle plates in pair D5 Distance between baffle plates in pair D6 Lower baffle in the most upstream pair D7 Distance between the inner wall of the main unit and the inner wall of the main unit.

フロントページの続き Fターム(参考) 4D061 DA04 DB07 DB10 EA03 EB11 EB16 EB17 EB20 EB33 4K021 AB07 AB25 BA02 BA03 CA01 CA08 CA09 CA10 DA03 DA09 DA15 DC07 Continued on the front page F-term (reference) 4D061 DA04 DB07 DB10 EA03 EB11 EB16 EB17 EB20 EB33 4K021 AB07 AB25 BA02 BA03 CA01 CA08 CA09 CA10 DA03 DA09 DA15 DC07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の電極板と、流入口及び流出口を有
する容器状に形成され、内部に上記複数の電極板が間隔
を有して厚み方向に並ぶように配置され、被電解液が該
流入口から上記複数の電極板の間を通って該流出口に流
れるように構成された液槽と、 上記電極板間に形成された被電解液の各流路に、該流路
横断面における電極板延在方向において交互に反対の側
に該被電解液を通過せしめるようにして該流路を遮るよ
うそれぞれ1以上配設された阻流板とを備えた電解槽。
1. A container having a plurality of electrode plates and an inflow port and an outflow port, wherein the plurality of electrode plates are arranged so as to be spaced apart from each other and arranged in a thickness direction. A liquid tank configured to flow from the inflow port to the outflow port between the plurality of electrode plates, and an electrode in the cross section of the flow channel in each flow path of the electrolyte to be formed formed between the electrode plates. An electrolyzer comprising at least one baffle plate disposed to alternately pass the liquid to be electrolyzed to the opposite side in the plate extending direction so as to block the flow path.
【請求項2】 上記阻流板が、上記電極板間の被電解液
の各流路にそれぞれ複数対配設され、 該対内の上記阻流板の間隔と該対間の上記阻流板の間隔
とが異なる請求項1記載の電解槽。
2. A plurality of pairs of the baffle plates are provided in each of the flow paths of the liquid to be electrolyzed between the electrode plates, and a distance between the baffle plates in the pair and a size of the baffle plate between the pair are set. The electrolytic cell according to claim 1, wherein the interval is different.
【請求項3】 上記対内の上記阻流板の間隔と上記対間
の上記阻流板の間隔との比が、略1:6である請求項2
記載の電解槽。
3. The ratio of the distance between the baffle plates in the pair to the distance between the baffle plates between the pair is approximately 1: 6.
The electrolytic cell as described.
【請求項4】 1つの液槽を区画して上記液槽を複数形
成し、該形成された液槽毎に上記電解槽を単位電解槽と
して形成した請求項1ないし3のいずれか1つの項に記
載の電解槽。
4. The liquid tank according to claim 1, wherein a plurality of the liquid tanks are formed by dividing one liquid tank, and the electrolytic cell is formed as a unit electrolytic cell for each of the formed liquid tanks. The electrolytic cell according to 1.
JP2000037882A 2000-02-16 2000-02-16 Electrical cell Pending JP2001225075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000037882A JP2001225075A (en) 2000-02-16 2000-02-16 Electrical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000037882A JP2001225075A (en) 2000-02-16 2000-02-16 Electrical cell

Publications (1)

Publication Number Publication Date
JP2001225075A true JP2001225075A (en) 2001-08-21

Family

ID=18561705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000037882A Pending JP2001225075A (en) 2000-02-16 2000-02-16 Electrical cell

Country Status (1)

Country Link
JP (1) JP2001225075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544513B2 (en) 2015-07-31 2020-01-28 Kabushiki Kaisha Toshiba Electrochemical reaction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544513B2 (en) 2015-07-31 2020-01-28 Kabushiki Kaisha Toshiba Electrochemical reaction device

Similar Documents

Publication Publication Date Title
EP2561121B1 (en) Electrolyzing system
US7014740B2 (en) Brown gas mass production apparatus including a line style electrolytic cell
RU2440302C2 (en) Apparatus for electrochemical water purification
EP1229148A4 (en) Unit cell for alkali chloride metal aqueous solution electrolytic tank
KR101474868B1 (en) Electrolyzer improving electrolvte diffusion efficiency and gas-exhaust efficiency
JP3672654B2 (en) End casing for an electrodialyzer, electrodialyzer equipped with such a casing, and use of this electrodialyzer
CA2710285C (en) Internal flow control in electrolytic cells
JP2001225075A (en) Electrical cell
EP0960960B1 (en) Ion exchange membrane electrolyzer
CN214088682U (en) Electrolytic tank for secondary sodium-recording generator
KR102014483B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
KR101751363B1 (en) Apparatus for producing sodium hypochlorite having integrated electrolyzer with vertical and horizontal flow
JP4838705B2 (en) Ozone water generator
FI65091C (en) ELEKTROLYSCELL
TWI686511B (en) Electrolysis device
JP3770530B2 (en) Electrolyzer for hypochlorite production
JP2013034933A (en) Apparatus and method for producing electrolytic water
JPH06200390A (en) Electrochemical cell with degassing device
KR102008987B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
KR20230146960A (en) HOCl acid water producing method
JP2005504180A (en) Membrane electrolytic cell for producing chlorine and alkali with increased electrode surface, and method for producing the same
JP6913446B2 (en) Electrode holder, multi-pole electrolytic cell and electrolyzed water generator
JPH07132292A (en) Direct-electrolysis electrolytic cell
KR101488937B1 (en) Electrolyzer
JP3471947B2 (en) Brine electrolysis sodium hypochlorite generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120