JP2001224190A - Regenerative control circuit of dc separately exited shunt motor and its regenerative control method - Google Patents

Regenerative control circuit of dc separately exited shunt motor and its regenerative control method

Info

Publication number
JP2001224190A
JP2001224190A JP2000029596A JP2000029596A JP2001224190A JP 2001224190 A JP2001224190 A JP 2001224190A JP 2000029596 A JP2000029596 A JP 2000029596A JP 2000029596 A JP2000029596 A JP 2000029596A JP 2001224190 A JP2001224190 A JP 2001224190A
Authority
JP
Japan
Prior art keywords
current
regenerative
armature
duty
regenerative control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000029596A
Other languages
Japanese (ja)
Other versions
JP3626893B2 (en
Inventor
Sumiomi Okazaki
純臣 岡崎
Shinichi Takano
真一 高野
Shinichi Kobayashi
真一 小林
Hideji Takagi
秀治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000029596A priority Critical patent/JP3626893B2/en
Publication of JP2001224190A publication Critical patent/JP2001224190A/en
Application granted granted Critical
Publication of JP3626893B2 publication Critical patent/JP3626893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Forklifts And Lifting Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent breakdown of a switching element by a method, where a regenerative current and a field current flow according to a command and brake torque is constant, while a battery current is not decreased, and an excessive regenerative current is restrained, when the battery voltage is decreased. SOLUTION: When the battery voltage is not decreased, the regenerative current and the field current are ensured according to the command, and the brake torque is controlled to be constant as normal. When the battery voltage is decreased, an overcurrent flows in a current flowing element 8 for first DUTY control, even if other switching elements are turned off, in normal case. By performing control in such a manner that DUTY of a current flowing element 7 for second DUTY control is decreased, the overcurrent flowing in the element 8 is restrained and breakdown of the element 8 can be prevented. The current flowing element for the first DUTY control is an IGBT, which is apt to be broken down by an overcurrent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、直流分巻他励モー
タの回生制御回路及びその回生制御方法に関し、特に、
IGBTが用いられこれに過大な電流が流れて破壊され
ることを防止する直流分巻他励モータの回生制御回路及
びその回生制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative control circuit and a regenerative control method for a DC shunt separately excited motor.
The present invention relates to a regenerative control circuit and a regenerative control method for a DC shunt separately excited motor that uses an IGBT and prevents an excessive current from flowing to the IGBT and destroying it.

【0002】[0002]

【従来の技術】フォークリフトには、バッテリーを電源
とする直流分巻他励モータが用いられる。このようなバ
ッテリフォークの回路は、ブレーキ時に回生電流をバッ
テリーに戻す回生式制動回路が設けられている。そのよ
うな回生式制動回路は、図5に示されるように、モータ
電機子101に並列にスイッチング素子102が接続
し、モータ回転数に応じて界磁電流を制御し、その制御
により流れる回生電流が十分に得られない場合に、モー
タ端子間をスイッチング素子102をON(DUTY1
00%)することにより、指令通りの回生電流が得られ
るように制御し、回生時のブレーキトルクが一定となる
ように電機子電流と界磁電流とを制御している。バッテ
リ電圧が低下した際には、スイッチング素子102がO
FFであっても、回生電流が過大になり、スイッチング
素子103が破壊される恐れがある。
2. Description of the Related Art A forklift uses a DC shunt separately excited motor powered by a battery. The circuit of such a battery fork is provided with a regenerative braking circuit that returns a regenerative current to the battery during braking. In such a regenerative braking circuit, as shown in FIG. 5, a switching element 102 is connected in parallel to a motor armature 101, controls a field current according to the motor speed, and generates a regenerative current flowing through the control. Is not sufficiently obtained, the switching element 102 is turned on between the motor terminals (DUTY1
00%), the armature current and the field current are controlled so that the regenerative current as instructed is obtained, and the brake torque during regeneration is constant. When the battery voltage drops, the switching element 102
Even in the case of the FF, the regenerative current becomes excessive and the switching element 103 may be destroyed.

【0003】バッテリー電圧が低下していない間は、指
令通りの回生電流と界磁電流が流れてブレーキトルクが
一定であるが、バッテリー電圧が低下した際に回生電流
の過大化を抑制してスイッチング素子103の破壊を防
止することが望まれる。
While the battery voltage is not reduced, the regenerative current and the field current flow as instructed and the brake torque is constant, but when the battery voltage is reduced, switching is performed by suppressing the regenerative current from becoming excessively large. It is desired to prevent the element 103 from being broken.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、バッ
テリー電圧が低下していない間は、指令通りの回生電流
と界磁電流が流れてブレーキトルクが一定であるが、バ
ッテリー電圧が低下した際に回生電流の過大化を抑制し
てスイッチング素子の破壊を防止することができる直流
分巻他励モータの回生制御回路及びその回生制御方法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a regenerative current and a field current as instructed as long as the battery voltage is not reduced, so that the brake torque is constant, but the battery voltage is reduced. An object of the present invention is to provide a regenerative control circuit and a regenerative control method for a DC shunt separately excited motor capable of preventing an excessive increase in a regenerative current and preventing destruction of a switching element.

【0005】[0005]

【課題を解決するための手段】その課題を解決するため
の手段が、下記のように表現される。その表現中に現れ
る技術的事項には、括弧()つきで、番号、記号等が添
記されている。その番号、記号等は、本発明の実施の複
数・形態又は複数の実施例のうちの少なくとも1つの実
施の形態又は複数の実施例を構成する技術的事項、特
に、その実施の形態又は実施例に対応する図面に表現さ
れている技術的事項に付せられている参照番号、参照記
号等に一致している。このような参照番号、参照記号
は、請求項記載の技術的事項と実施の形態又は実施例の
技術的事項との対応・橋渡しを明確にしている。このよ
うな対応・橋渡しは、請求項記載の技術的事項が実施の
形態又は実施例の技術的事項に限定されて解釈されるこ
とを意味しない。
Means for solving the problem are described as follows. The technical items appearing in the expression are appended with numbers, symbols, and the like in parentheses (). The numbers, symbols, and the like are technical items that constitute at least one embodiment or a plurality of the embodiments of the present invention, in particular, the embodiments or the examples. Corresponds to the reference numerals, reference symbols, and the like assigned to the technical matters expressed in the drawings corresponding to the above. Such reference numbers and reference symbols clarify the correspondence and bridging between the technical matters described in the claims and the technical matters of the embodiments or examples. Such correspondence / bridge does not mean that the technical matters described in the claims are interpreted as being limited to the technical matters of the embodiments or the examples.

【0006】本発明による直流分巻他励モータの回生制
御回路は、電池(1)と、電池(1)の両極(3,4)
間に並列に接続される電機子(5)と界磁巻線(6)と
から形成されるモータと、両極(3,4)間に電機子
(5)と直列に接続され電機子(5)に流れる電機子電
流(Ia)を制御する第1DUTY制御用通電素子
(8)と、界磁巻線(6)に流れる界磁電流を制御する
第2DUTY制御用通電素子(7)と、電機子電流(I
a)を検出するセンサー(11)とを含み、回生時の電
機子電流(Ia)が規定値以上であることをセンサー
(11)が検出した際に第2DUTY制御用通電素子
(7)のDUTYが低下する。バッテリー電圧が低下し
ていない場合に、指令通りの回生電流と界磁電流を確保
してブレーキトルクが一定になる制御は従来通りであ
り、バッテリ電圧が低下した際には従来では他のスイッ
チング素子(図5の102)を仮にOFFにした場合で
も第1DUTY制御用通電素子(8)に過大電流が流れ
るところであるが、第2DUTY制御用通電素子(7)
のDUTYを低下させる制御により、第1DUTY制御
用通電素子(8)に流れる過電流を抑制して、それの破
壊を防止することができる。第1DUTY制御用通電素
子は、特に、過電流により破壊される恐れが高いIGB
Tである。このようなモータは、フォークリフトに用い
られて特に有効である。
A regenerative control circuit for a DC shunt separately excited motor according to the present invention comprises a battery (1) and both poles (3, 4) of the battery (1).
A motor formed by an armature (5) and a field winding (6) connected in parallel between the armature (5) and an armature (5) connected in series with the armature (5) between both poles (3, 4); ), A first DUTY control energizing element (8) for controlling an armature current (Ia) flowing therethrough, a second DUTY control energizing element (7) for controlling a field current flowing through a field winding (6), and Child current (I
a) for detecting the current flowing through the second duty control energizing element (7) when the sensor (11) detects that the armature current (Ia) during regeneration is equal to or greater than a specified value. Decrease. When the battery voltage is not reduced, the control to secure the regenerative current and the field current as instructed to keep the brake torque constant is the same as the conventional control. Even if (102 in FIG. 5) is temporarily turned off, an excessive current flows through the first DUTY control energizing element (8), but the second DUTY control energizing element (7).
, The overcurrent flowing through the first DUTY control energizing element (8) can be suppressed and its destruction can be prevented. In particular, the first duty control energizing element is an IGB that is highly likely to be destroyed by an overcurrent.
T. Such a motor is particularly effective when used in a forklift.

【0007】本発明による直流分巻他励モータの回生制
御方法は、回生電流(Ia)を測定すること、回生電流
が規定値以上である場合に界磁電流(If)を低減する
こととを含む。低減することは、PWM指令により実行
されることである。
[0007] A regenerative control method for a DC shunt separately excited motor according to the present invention includes measuring a regenerative current (Ia) and reducing a field current (If) when the regenerative current is equal to or greater than a specified value. Including. The reduction is to be performed by a PWM command.

【0008】[0008]

【発明の実施の形態】図に一致対応して、本発明による
直流分巻他励モータの回生制御回路の実施の形態は、フ
ォークリフトに搭載され、バッテリとともに電流制御回
路が設けられている。そのバッテリ1は、電流制御回路
2に直列に接続されている。電流制御回路2は、バッテ
リ1の正極側回路線3とバッテリ1の負極側回路線4と
を備えている。正極側回路線3と負極側回路線4との間
に、電機子巻線が励磁されて推力を受ける電機子5と界
磁巻線6とが並列に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Corresponding to the drawings, an embodiment of a regenerative control circuit for a DC shunt separately excited motor according to the present invention is mounted on a forklift and provided with a battery and a current control circuit. The battery 1 is connected to the current control circuit 2 in series. The current control circuit 2 includes a positive circuit line 3 of the battery 1 and a negative circuit line 4 of the battery 1. An armature 5 and a field winding 6 are connected in parallel between the positive side circuit line 3 and the negative side circuit line 4 to excite the armature winding and receive a thrust.

【0009】界磁巻線6は、それぞれに開閉する4個の
DUTY制御用通電素子7の間でブリッジ接続により介
設されている。正極側回路線3と負極側回路線4の間
で、DUTY制御用IGBT8が電機子5に直列に接続
している。DUTY制御用IGBT8と正極側回路線3
との間で開閉し、更に、DUTY制御用素子9が電機子
5に並列に接続している。
The field winding 6 is bridge-connected between four duty control energizing elements 7 which open and close, respectively. Between the positive side circuit line 3 and the negative side circuit line 4, an IGBT 8 for DUTY control is connected in series to the armature 5. IGBT 8 for duty control and positive side circuit line 3
And a duty control element 9 is connected to the armature 5 in parallel.

【0010】2つの電流検出センサが設けられている。
1つの電流検出センサは、電機子5に流れる電機子電流
を検出する電機子電流センサ11である。他の1つの電
流検出センサは、界磁巻線6に流れる界磁電流を検出す
る界磁電流センサ12である。
[0010] Two current detection sensors are provided.
One current detection sensor is an armature current sensor 11 that detects an armature current flowing through the armature 5. Another current detection sensor is a field current sensor 12 that detects a field current flowing through the field winding 6.

【0011】バッテリ電圧が低下していない場合には、
図2に示されるように、DUTY制御用素子9のDUT
Y制御とDUTY制御用通電素子7のDUTY制御、又
は、DUTY制御用通電素子7のDUTY制御のみによ
り、回生電流Iaと界磁電流Ifを制御することによ
り、従来の通り、回生ブレーキトルクが一定に制御され
る。バッテリ電圧が低下した場合、図3のフローに示さ
れるように、制限値Ia’より低目に設定される基準値
Ia”を越える回生電流Iaが、電機子電流センサ11
により検出される(ステップS1)。Ia”<Ia<I
a’であれば(ステップS2)、DUTY制御用通電素
子7のDUTYを低下させるようにPWM指令をDUT
Y制御用通電素子7に与え(ステップS3)、界磁電流
Ifを少なくすることにより、電機子5の巻線が界磁巻
線6から受ける励起力を減少させる。この励起力の減少
は、回線電流Iaを減少させる。この減少は、DUTY
制御用IGBT8を過電流から防止してDUTY制御用
IGBT8を保護することができる。
If the battery voltage has not dropped,
As shown in FIG. 2, the DUT of the DUTY control element 9
By controlling the regenerative current Ia and the field current If only by the DUTY control of the Y control and the DUTY control energizing element 7 or only the DUTY control of the DUTY control energizing element 7, the regenerative braking torque is kept constant as before. Is controlled. When the battery voltage decreases, as shown in the flow chart of FIG. 3, the regenerative current Ia exceeding the reference value Ia ″ set lower than the limit value Ia ′ is applied to the armature current sensor 11.
(Step S1). Ia "<Ia <I
If it is a '(step S2), the PWM command is issued to the DUT so as to decrease the DUTY of the DUTY control energizing element 7.
The excitation force applied to the windings of the armature 5 from the field windings 6 is reduced by applying the currents to the Y control energizing elements 7 (step S3) to reduce the field current If. This decrease in the excitation force reduces the line current Ia. This decrease is due to DUTY
The control IGBT 8 can be protected from overcurrent to protect the duty control IGBT 8.

【0012】[0012]

【発明の効果】本発明による直流分巻他励モータの回生
制御回路及びその回生制御方法は、電池電圧が低下した
ときにも回生電流の過大化を防止することによって回生
電流が流れるDUTY制御用素子を有効に保護すること
ができる。
A regenerative control circuit and a regenerative control method for a DC shunt separately excited motor according to the present invention are used for DUTY control in which regenerative current flows by preventing excessive regenerative current even when the battery voltage drops. The element can be effectively protected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による直流分巻他励モータの回
生制御回路の実施の形態を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a regenerative control circuit of a DC shunt separately excited motor according to the present invention.

【図2】図2は、図1の一部の動作状態を示す回路図で
ある。
FIG. 2 is a circuit diagram showing an operation state of a part of FIG. 1;

【図3】図3は、本発明による直流分巻他励モータの回
生制御方法の実施の形態を示すフロー図である。
FIG. 3 is a flowchart illustrating an embodiment of a regeneration control method for a DC shunt separately excited motor according to the present invention.

【図4】図4は、公知装置を示す回路図である。FIG. 4 is a circuit diagram showing a known device.

【符号の説明】[Explanation of symbols]

1…電池 3,4…両極 5…電機子 6…界磁巻線 7…第2DUTY制御用通電素子 8…第1DUTY制御用通電素子 11…センサー Ia…電機子電流 If…界磁電流 DESCRIPTION OF SYMBOLS 1 ... Battery 3, 4 ... Bipolar 5 ... Armature 6 ... Field winding 7 ... Second DUTY control energizing element 8 ... First DUTY control energizing element 11 ... Sensor Ia ... Armature current If ... Field current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 真一 愛知県名古屋市中村区岩塚町字高道1番地 三菱重工業株式会社名古屋機器製作所内 (72)発明者 高木 秀治 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内 Fターム(参考) 3F333 AA02 AB13 DB07 FA18 FA20 FA32 FE04 FE09 5H115 PA08 PG05 PI16 PO17 PU04 PU06 PV23 QI04 RB19 RB20 SE03 TO12 TU02 5H530 AA14 BB21 CC23 CD33 CE16 CF15 DD05 DD13 DD28 EE05 EF01 5H571 AA02 BB07 CC04 DD01 DD02 EE08 FF04 GG04 HA10 HB02 HB04 HD02 LL22 MM02  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shinichi Kobayashi 1 Nagoya Equipment Works, Iwazuka-cho, Nakamura-ku, Nagoya City, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. No. 10 Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace Systems Works F-term (reference) 3F333 AA02 AB13 DB07 FA18 FA20 FA32 FE04 FE09 5H115 PA08 PG05 PI16 PO17 PU04 PU06 PV23 QI04 RB19 RB20 SE03 TO12 TU02 5H530 AA14 BB21 CC23 CD33 DD16 CF15 DD15 DD28 EE05 EF01 5H571 AA02 BB07 CC04 DD01 DD02 EE08 FF04 GG04 HA10 HB02 HB04 HD02 LL22 MM02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電池と、 前記電池の両極間に並列に接続される電機子と界磁巻線
とから形成されるモータと、 前記両極間に前記電機子と直列に接続され前記電機子に
流れる電機子電流を制御する第1DUTY制御用通電素
子と、 前記界磁巻線に流れる界磁電流を制御する第2DUTY
制御用通電素子と、前記電機子電流を検出するセンサー
とを含み、 回生時の前記電機子電流が規定値以上であることを前記
センサーが検出した際に前記第2DUTY制御用通電素
子のDUTYが低下する直流分巻他励モータの回生制御
回路。
1. A motor formed by a battery, an armature and a field winding connected in parallel between both poles of the battery, and a motor connected in series with the armature between the poles and connected to the armature. A first DUTY control energizing element for controlling a flowing armature current; and a second DUTY for controlling a field current flowing through the field winding.
A control energizing element and a sensor for detecting the armature current are included. When the sensor detects that the armature current at the time of regeneration is equal to or greater than a specified value, the duty of the second DUTY control energizing element is Decreasing DC regenerative motor regenerative control circuit.
【請求項2】請求項1において、 前記第1DUTY制御用通電素子は過電流により破壊さ
れる恐れがあるIGBTである直流分巻他励モータの回
生制御回路。
2. The regenerative control circuit according to claim 1, wherein the first duty control energizing element is an IGBT which is IGBT which may be destroyed by an overcurrent.
【請求項3】請求項1において、 前記モータは、フォークリフトに搭載されている直流分
巻他励モータの回生制御回路。
3. The regenerative control circuit according to claim 1, wherein the motor is a DC shunt separately excited motor mounted on a forklift.
【請求項4】回生電流を測定すること、 前記回生電流が規定値以上である場合に界磁電流を低減
することとを含む直流分巻他励モータの回生制御方法。
4. A regenerative control method for a DC shunt separately excited motor, comprising: measuring a regenerative current; and reducing a field current when the regenerative current is equal to or greater than a specified value.
【請求項5】請求項3において、 前記低減することはPWM指令により実行されることで
ある直流分巻他励モータの回生制御方法。
5. The method according to claim 3, wherein said reducing is performed by a PWM command.
JP2000029596A 2000-02-07 2000-02-07 Regenerative control circuit for DC shunt separately excited motor and its regenerative control method Expired - Fee Related JP3626893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000029596A JP3626893B2 (en) 2000-02-07 2000-02-07 Regenerative control circuit for DC shunt separately excited motor and its regenerative control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000029596A JP3626893B2 (en) 2000-02-07 2000-02-07 Regenerative control circuit for DC shunt separately excited motor and its regenerative control method

Publications (2)

Publication Number Publication Date
JP2001224190A true JP2001224190A (en) 2001-08-17
JP3626893B2 JP3626893B2 (en) 2005-03-09

Family

ID=18554831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000029596A Expired - Fee Related JP3626893B2 (en) 2000-02-07 2000-02-07 Regenerative control circuit for DC shunt separately excited motor and its regenerative control method

Country Status (1)

Country Link
JP (1) JP3626893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370687C (en) * 2006-03-31 2008-02-20 西安交通大学 Electric forklift running driving control system having energy recovery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370687C (en) * 2006-03-31 2008-02-20 西安交通大学 Electric forklift running driving control system having energy recovery

Also Published As

Publication number Publication date
JP3626893B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP4177387B2 (en) Motor control device
JP5265931B2 (en) Power supply
JP3684871B2 (en) Temperature protection control device for power converter
US8789645B2 (en) Electric power steering device
US9571026B2 (en) Inverter apparatus
JP2019122238A (en) Motor control device and control method thereof
JP2001224190A (en) Regenerative control circuit of dc separately exited shunt motor and its regenerative control method
JPH0826910B2 (en) Short circuit ground fault detection device for electromagnetic clutch for vehicle
JPS6357342A (en) Electromagnetic clutch control device for vehicle
JP2006321603A (en) Vehicular safety device
JP2014023180A (en) Control device for inverter
JP6737545B2 (en) Lifting magnet device
JP5326544B2 (en) Inductive load driving method and inductive load driving circuit
JP2000032603A (en) Motor control equipment and control method therefor
JP3953358B2 (en) Control method of permanent magnet motor
KR20100066119A (en) Motor control system
JP3542290B2 (en) Drive control device for DC motor
JP6264333B2 (en) Motor drive device
JP2004306858A (en) Electric power steering device
JPH08340601A (en) Drive controller for electric car
JP2730354B2 (en) Fault diagnosis device in DC motor drive control device
JPH074652Y2 (en) Output short circuit protection device for constant current control circuit
WO2015022800A1 (en) Control device and program
JPH06178412A (en) Controlling device for electric car
JPH05316743A (en) Controller for driving inverter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees