JP2001221989A - Power source circuit for liquid crystal display device - Google Patents

Power source circuit for liquid crystal display device

Info

Publication number
JP2001221989A
JP2001221989A JP2000029358A JP2000029358A JP2001221989A JP 2001221989 A JP2001221989 A JP 2001221989A JP 2000029358 A JP2000029358 A JP 2000029358A JP 2000029358 A JP2000029358 A JP 2000029358A JP 2001221989 A JP2001221989 A JP 2001221989A
Authority
JP
Japan
Prior art keywords
voltage
liquid crystal
driver
circuit
common driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000029358A
Other languages
Japanese (ja)
Inventor
Shigeki Matsuo
茂樹 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000029358A priority Critical patent/JP2001221989A/en
Publication of JP2001221989A publication Critical patent/JP2001221989A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a power source circuit for driving liquid crystal whose cost is lowered and whose power consumption is reduced. SOLUTION: This circuit is a power source circuit for a liquid crystal display device in which the power source voltage of the logic part of a driver IC for drive is used as an input voltage and it is boosted in a charge pump circuit and the boosted voltage is supplied as the selection voltage of the high potential side of a common driver via a liquid crystal driving voltage adjusting circuit ad the input voltage is negatively doubtingly lowered in a charge pump circuit and it is supplied as the selection voltage of the low voltage-side of the common driver and the non-selection voltage of the common driver is the high voltage-side voltage of the power source voltage of the logic part of the driver IC and, also, it is the center voltage between the selection voltage of the high potential side and the selection voltage of the low potential side of the common driver and a voltage that the power source voltage of the logic part of the driver IC is doublingly boosted in a charge pump circuit is used as the power source voltage of operational amplifiers and a voltage that the selection voltage of the common driver is divided by resistors is supplied as liquid crystal driving voltages of segment drivers for driving liquid crystal via the operational amplifiers connected as voltage followers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単純マトリクス液晶
表示装置の液晶駆動用電源回路に関するものである。
The present invention relates to a power supply circuit for driving a liquid crystal of a simple matrix liquid crystal display device.

【0002】[0002]

【従来の技術】近年、液晶表示装置は中小型の携帯情報
端末やノートパソコンから大型のモニターにまで、応用
が幅広く展開されている。なかでも携帯情報端末等にお
いては、外部からの入射光を反射させて表示をおこなう
反射型液晶表示装置が注目されている。
2. Description of the Related Art In recent years, liquid crystal display devices have been widely used in applications ranging from small and medium-sized portable information terminals and notebook computers to large monitors. Above all, in a portable information terminal or the like, a reflection type liquid crystal display device which performs display by reflecting external incident light has been receiving attention.

【0003】この反射型液晶表示装置によれば、バック
ライトを使用せず、従来の透過型液晶表示装置に比べて
照明部分の電力は削減され、小型軽量で低消費電力化が
達成されるが、その反面、液晶パネル自体の消費電力
は、従来の透過型液晶表示装置と同じであって、その点
では未だ低消費電力化が達成されず、そのため液晶パネ
ル自体の消費電力を低減させる技術開発が望まれてい
る。図4によって単純マトリクス型液晶表示装置に使用
する液晶駆動用電源回路の構成を示す。
According to this reflective liquid crystal display device, the backlight is not used, and the power of the illuminating portion is reduced as compared with the conventional transmissive liquid crystal display device. On the other hand, the power consumption of the liquid crystal panel itself is the same as that of the conventional transmissive liquid crystal display device, and in that respect, low power consumption has not yet been achieved. Therefore, technology development has been conducted to reduce the power consumption of the liquid crystal panel itself. Is desired. FIG. 4 shows a configuration of a power supply circuit for driving a liquid crystal used in a simple matrix type liquid crystal display device.

【0004】電源電圧VEE−VSSを入力電圧として、さ
らにトランジスタTR10、ボリュームVR10、分圧
抵抗R10よりなる液晶駆動電圧調整回路を配設してい
る。電源電圧VEE−VSSは通常、20〜50V程度であ
って、液晶駆動電圧調整回路でもって入力電圧を調整
し、液晶駆動用のコモンドライバの高電位側の選択電圧
であるVH を出力している。
A power supply voltage VEE-VSS is used as an input voltage, and a liquid crystal drive voltage adjusting circuit including a transistor TR10, a volume VR10, and a voltage dividing resistor R10 is provided. The power supply voltage VEE-VSS is usually about 20 to 50 V, and the input voltage is adjusted by a liquid crystal drive voltage adjustment circuit to output VH which is a high-potential side selection voltage of a common driver for driving the liquid crystal. .

【0005】また、液晶駆動電圧調整回路には抵抗R1
1〜R14にて分割されながら直列接続され、このよう
に分割された各電圧がボルテージフォロア接続された演
算増幅器OP11〜OP14を介して液晶駆動用のセグ
メントドライバの液晶駆動電圧VS1、VS2ならびにコモ
ンドライバの非選択電圧V Mとして出力される。
The liquid crystal drive voltage adjusting circuit has a resistor R1.
1 to R14, the divided voltages are connected in series, and the divided voltages are connected via voltage-follower connected operational amplifiers OP11 to OP14 to the liquid crystal driving voltages VS1, VS2 of the liquid crystal driving segment driver and the common driver. Is output as the non-selection voltage VM.

【0006】液晶駆動用のコモンドライバの低電位側の
選択電圧であるV Lについては、入力電源の低電位側の
電圧VSSが使用される。
As the low-potential-side selection voltage V L of the common driver for driving the liquid crystal, the low-potential-side voltage VSS of the input power supply is used.

【0007】よって、液晶駆動電圧としては、前記V
H、VS1、V M、VS2、V Lの5レベルの電圧となり、
これら各電圧が液晶駆動用ドライバICを通して液晶パ
ネルに印加される。
Therefore, the liquid crystal driving voltage is V
H, VS1, VM, VS2, and VL.
These voltages are applied to the liquid crystal panel through the driver IC for driving the liquid crystal.

【0008】ちなみに、VH −VM =VM −VL 、VS1
−VM =VM −VS2の関係があり、液晶のしきい値電圧
やデューティーによるが、一般的にVH −VM は20V
〜50V程度であり、VS1−V Mは1V〜2V程度であ
る。
Incidentally, VH-VM = VM-VL, VS1
There is a relation of -VM = VM-VS2, and depending on the threshold voltage and duty of the liquid crystal, VH-VM is generally 20V.
5050V, and VS1−VM is about 1V to 2V.

【0009】さらにまた、このような液晶駆動電源回路
においては、入力電源の高電位側の電圧VEEと各演算増
幅器OP1〜OP4のプラス側電源端子が接続され、入
力電源の低電位側の電圧VSSと各演算増幅器OP1〜O
P4のマイナス側電源端子が接続されている。
Further, in such a liquid crystal drive power supply circuit, the high-potential-side voltage VEE of the input power supply is connected to the positive-side power supply terminals of the operational amplifiers OP1 to OP4, and the low-potential-side voltage VSS of the input power supply is connected. And each operational amplifier OP1 to OP
The negative side power terminal of P4 is connected.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の液晶駆動用電源回路では、液晶駆動電圧の
VS1,V M,VS2の3電圧を演算増幅器OP11〜OP
13で供給しているが、かかる演算増幅器の電源に対し
20V〜50V程度の高い電圧が使用され、そして、V
EEからVSSに演算増幅器を介して定常的に流れる定常電
流によって、この演算増幅器での消費電力が大きくな
り、そのために液晶駆動用電源回路の消費電力が増大
し、さらに回路構成が複雑になり、その結果、液晶駆動
用電源回路をIC化した場合、チップサイズが大型化
し、高コストになるという課題があった。本発明は叙上
に鑑みて完成されたものであり、その目的は簡単な回路
構成にして、低コストおよび低消費電力を達成した液晶
駆動用電源回路を提供することにある。
However, in the conventional power supply circuit for driving a liquid crystal as described above, the three liquid crystal driving voltages VS1, VM and VS2 are applied to the operational amplifiers OP11 to OP11.
13, a high voltage of about 20 V to 50 V is used for the power supply of the operational amplifier.
The steady current flowing from EE to VSS through the operational amplifier steadily increases the power consumption of this operational amplifier, which increases the power consumption of the power supply circuit for driving the liquid crystal, and further complicates the circuit configuration. As a result, when the power supply circuit for driving the liquid crystal is formed into an IC, there is a problem that the chip size increases and the cost increases. The present invention has been completed in view of the above, and an object of the present invention is to provide a liquid crystal driving power supply circuit having a simple circuit configuration and achieving low cost and low power consumption.

【0011】[0011]

【課題を解決するための手段】本発明の液晶駆動用電源
回路は、液晶パネルの駆動用ドライバICのロジック部
の電源電圧を入力電圧として用いて、この入力電圧をチ
ャージポンプ回路にて昇圧することでもって液晶駆動用
のコモンドライバの高電位側の選択電圧を液晶駆動電圧
調整回路を介して供給し、上記コモンドライバの高電位
側の選択電圧をチャージポンプ回路でほぼ−2倍降圧す
ることにより液晶駆動用のコモンドライバの低電位側の
選択電圧を供給し、さらに上記コモンドライバの非選択
電圧がドライバICのロジック部の電源電圧の高電圧側
の電圧であるとともに、コモンドライバの高電位側の選
択電圧とコモンドライバの低電位側の選択電圧とのほぼ
中心電位であり、上記ドライバICのロジック部の電源
電圧をチャージポンプ回路にてほぼ2倍昇圧した電圧を
演算増幅器の電源電圧として使用し、コモンドライバの
選択電圧を所定のバイアス比になるように抵抗分割した
電圧をボルテージフォロワ接続された演算増幅器を介し
て液晶駆動用のセグメントドライバの液晶駆動電圧とし
て供給するように構成したことを特徴とする。
According to the present invention, a power supply circuit for driving a liquid crystal uses a power supply voltage of a logic portion of a driver IC for driving a liquid crystal panel as an input voltage and boosts the input voltage by a charge pump circuit. By supplying the selection voltage on the high potential side of the common driver for driving the liquid crystal through the liquid crystal drive voltage adjustment circuit, the selection voltage on the high potential side of the common driver is stepped down by approximately -2 times by the charge pump circuit. Supplies the selection voltage on the low potential side of the common driver for driving the liquid crystal. The non-selection voltage of the common driver is the voltage on the high voltage side of the power supply voltage of the logic portion of the driver IC, and the high potential of the common driver is supplied. This is approximately the center potential between the selection voltage on the common side and the selection voltage on the low potential side of the common driver. The voltage obtained by boosting the voltage almost twice by the step-up circuit is used as the power supply voltage of the operational amplifier, and the voltage obtained by dividing the selection voltage of the common driver by a resistance so as to have a predetermined bias ratio is supplied to the liquid crystal through a voltage follower-connected operational amplifier. The liquid crystal device is characterized in that it is configured to be supplied as a liquid crystal driving voltage of a driving segment driver.

【0012】[0012]

【発明の実施の形態】本発明を図1〜図3によって詳述
する。図1は本発明の液晶駆動用電源回路を示し、図2
は本発明の液晶駆動用電源回路に使用するチャージポン
プ型8倍昇圧回路の基本構成図、図3は本発明の液晶駆
動用電源回路に使用するチャージポンプ型−2倍降圧回
路の基本構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to FIGS. FIG. 1 shows a power supply circuit for driving a liquid crystal according to the present invention, and FIG.
FIG. 3 is a basic configuration diagram of a charge pump type 8 × booster circuit used in the liquid crystal drive power supply circuit of the present invention. FIG. 3 is a basic configuration diagram of a charge pump type × 2 booster circuit used in the liquid crystal drive power supply circuit of the present invention. It is.

【0013】図1に示すとおり、液晶駆動用ドライバI
Cのロジック電源電圧VDD−VSSを入力電圧とした単一
電源入力となっている。この入力電圧は2〜5V程度で
あり、以下、入力電圧VDD−VEEが3.3Vである場合
について説明をする。
As shown in FIG. 1, a liquid crystal driving driver I
It is a single power supply input with the logic power supply voltage VDD-VSS of C as the input voltage. This input voltage is about 2 to 5 V. Hereinafter, a case where the input voltage VDD-VEE is 3.3 V will be described.

【0014】まず入力電圧をチャージポンプ型昇圧回路
CHP1により入力電圧の8倍昇圧をおこない、これに
よって液晶駆動電圧の元となる高電位電圧VB (約2
6.4V)を発生させる。つぎに高電位電圧VB を液晶
パネルの最適駆動電圧に調整するためにトランジスタT
R0、ボリュームVR0、分圧抵抗R0からなる液晶駆
動電圧調整回路を設け、この液晶駆動電圧調整回路を介
して液晶駆動電圧のコモンドライバの高電位側の選択電
圧となるVH を発生させる。その後、このVH をチャー
ジポンプ型降圧回路CHP2により−2倍降圧をおこな
い、液晶駆動電圧のコモンドライバの低電位側の選択電
圧となるVL を発生させる。
First, the input voltage is boosted by eight times the input voltage by the charge pump type booster circuit CHP1, thereby obtaining the high potential voltage VB (about 2
6.4V). Next, in order to adjust the high potential voltage VB to the optimum driving voltage of the liquid crystal panel, the transistor T is adjusted.
A liquid crystal drive voltage adjusting circuit including R0, volume VR0, and voltage dividing resistor R0 is provided, and VH which is a selection voltage on the high potential side of the common driver of the liquid crystal drive voltage is generated through the liquid crystal drive voltage adjusting circuit. Thereafter, this VH is stepped down by a factor of -2 by the charge pump type step-down circuit CHP2 to generate VL which is a low-potential side selection voltage of the common driver of the liquid crystal drive voltage.

【0015】ついで、ロジック電源電圧VDDをチャージ
ポンプ型降圧回路CHP3により2倍昇圧をおこない、
セグメントドライバの高電位側の液晶駆動電圧を供給す
るための演算増幅器OP1の電源電圧を発生させる。そ
して、液晶駆動電圧が最適なバイアス比になるように、
VH −VDDとの間に分圧抵抗R1、R2を挿入し、これ
ら各分圧抵抗R1、R2の抵抗でもって分圧された電圧
を、ボルテージフォロワ接続された演算増幅器OP1を
介して、液晶駆動用セグメントドライバの高電位側の液
晶駆動電圧となる電圧VS1を発生させる。
Next, the logic power supply voltage VDD is boosted twice by the charge pump type step-down circuit CHP3,
The power supply voltage of the operational amplifier OP1 for supplying the liquid crystal drive voltage on the high potential side of the segment driver is generated. Then, so that the liquid crystal drive voltage has the optimum bias ratio,
The voltage dividing resistors R1 and R2 are inserted between VH and VDD, and the voltage divided by the resistors R1 and R2 is applied to the liquid crystal drive via an operational amplifier OP1 connected in a voltage follower connection. A voltage VS1, which is a liquid crystal driving voltage on the high potential side of the segment driver for the LCD, is generated.

【0016】つぎに、VSS−VL間に分圧抵抗R3,R
4(R1=R4,R2=R3)を挿入し、この抵抗で分
圧された電圧をボルテージフォロワ接続された演算増幅
器OP2を介して、液晶駆動用セグメントドライバの低
電位側の液晶駆動電圧となる電圧VS2を発生させる。
Next, voltage dividing resistors R3 and R3 are connected between VSS and VL.
4 (R1 = R4, R2 = R3), and the voltage divided by this resistor becomes the liquid crystal driving voltage on the low potential side of the liquid crystal driving segment driver via the operational amplifier OP2 connected in a voltage follower connection. A voltage VS2 is generated.

【0017】演算増幅器OP2の電源としては、ロジッ
ク電源電圧VDD−VSSを使用し、また、コモンドライバ
の非選択電圧VMとしては入力電圧のVDDを用いる。以
上のとおり、本発明においては、このようにして簡単な
回路構成にて、低コストおよび低消費電力が達成され
る。たとえば、入力電圧VDD−VEEが3.3Vである場
合に、1/240デューティーの液晶パネルを(R1+
R2)/R2=15の設定にて駆動すると、VH =2
4.3V、VL =−17.7V、VS1=4.7V、VS2
=−1.9V、VM =3.3Vにすることで、最適な画
像が得られ、3.8“QVGAのカラー液晶パネルにお
ける消費電力が約18mWとなり、従来の液晶駆動用電
源回路に比べて大幅に低電力化となった。(チャージポ
ンプ回路の基本構成)つぎに前記チャージポンプ回路を
図2および図3により詳しく説明する。図2に示すチャ
ージポンプ回路によれば、MOSトランジスタ等による
スイッチS1〜S8、転送容量(C1,C3,C5,C
7)、保持容量(C2,C4,C6,C8)で構成され
ている。スイッチS1とスイッチS2、スイッチS3と
スイッチS4、スイッチS5とスイッチS6、スイッチ
S7とスイッチS8はそれぞれ連動して動作し、回路図
上で常に同方向に倒れるように構成されている。
The logic power supply voltage VDD-VSS is used as the power supply of the operational amplifier OP2, and the input voltage VDD is used as the non-selection voltage VM of the common driver. As described above, in the present invention, low cost and low power consumption can be achieved with a simple circuit configuration. For example, when the input voltage VDD-VEE is 3.3 V, the liquid crystal panel with a duty of 1/240 is set to (R1 +
When driving with the setting of R2) / R2 = 15, VH = 2
4.3V, VL = -17.7V, VS1 = 4.7V, VS2
= -1.9V and VM = 3.3V, an optimum image can be obtained, and the power consumption of the 3.8 "QVGA color liquid crystal panel is about 18 mW, which is lower than that of the conventional liquid crystal driving power supply circuit. (Basic configuration of charge pump circuit) Next, the charge pump circuit will be described in detail with reference to Fig. 2 and Fig. 3. According to the charge pump circuit shown in Fig. 2, a switch using a MOS transistor or the like is used. S1 to S8, transfer capacity (C1, C3, C5, C
7), and storage capacitors (C2, C4, C6, C8). The switch S1 and the switch S2, the switch S3 and the switch S4, the switch S5 and the switch S6, the switch S7 and the switch S8 operate in conjunction with each other, and are configured to always fall in the same direction on the circuit diagram.

【0018】以下、8倍昇圧のチャージポンプ回路の動
作について説明する。
Hereinafter, the operation of the charge pump circuit of eightfold boosting will be described.

【0019】まず、入力電圧Vinが入力されている状態
でもって、各スイッチS1、S2が図示のように下方向
に倒れることで、入力電圧Vinに応じた電荷がC1に充
電される。
First, in a state where the input voltage Vin is being input, the switches S1 and S2 are tilted downward as shown in the figure, so that a charge corresponding to the input voltage Vin is charged to C1.

【0020】つぎに各スイッチS1、S2を上方向に倒
すことにより、C1に充電された電荷がC2に分配転送
される。
Next, when the switches S1 and S2 are tilted upward, the charge charged in C1 is distributed and transferred to C2.

【0021】このように各スイッチS1、S2を図上の
上下方向に交互に倒すようなスイッチング動作を繰り返
すことで、C2の両端子間(ノードb−c間)にはVin
とほぼ等しい電圧が保持され、したがってノードa−c
間にはVinのほぼ2倍の電圧が発生することとなる。
By repeating the switching operation in which the switches S1 and S2 are alternately turned up and down in the figure, Vin is applied between both terminals of C2 (between nodes b and c).
And a voltage approximately equal to
Between them, a voltage approximately twice as high as Vin is generated.

【0022】つぎに各スイッチS3、S4が図示のよう
に下方向に倒れている状態では、ノードa−c間の電圧
2×Vinに応じた電荷がC3に充電される。
Next, when the switches S3 and S4 are tilted downward as shown in the figure, C3 is charged with a charge corresponding to the voltage 2 × Vin between the nodes a and c.

【0023】つづけて各スイッチS3、S4を上方向に
倒すことにより、C3に充電された電荷がC4に分配転
送される。このように各スイッチS3、S4を図上にて
上下方向に交互に倒すようなスイッチング動作を繰り返
すことで、C4の両端子間(ノードc−d間)には2×
Vinとほぼ等しい電圧が保持される。よって、ノードa
−d間にはVinのほぼ4倍の電圧が発生する。
Subsequently, when the switches S3 and S4 are tilted upward, the charge charged in C3 is distributed and transferred to C4. By repeating the switching operation in which the switches S3 and S4 are alternately turned up and down in the figure in this manner, 2 × is placed between both terminals of C4 (between nodes cd).
A voltage substantially equal to Vin is maintained. Therefore, node a
A voltage approximately four times Vin is generated between -d.

【0024】そして、各スイッチS5、S6が図示のと
おり下方向に倒れている状態では、ノードa−d間の電
圧4×Vinに応じた電荷がC5に充電される。つぎに各
スイッチS5、S6を上方向に倒すことで、C5に充電
された電荷がC6に分配転送される。このようにスイッ
チS5、S6を上下方向に交互に倒すようなスイッチン
グ動作を繰り返すことで、C6の両端子間(ノードd−
e間)には4×Vinとほぼ等しい電圧が保持される。よ
って、ノードa−e間にはVinのほぼ8倍の電圧が発生
することとなる。
When the switches S5 and S6 are tilted downward as shown in the figure, C5 is charged with a charge corresponding to the voltage 4 × Vin between the nodes a and d. Next, when the switches S5 and S6 are tilted upward, the charge charged in C5 is distributed and transferred to C6. By repeating the switching operation in which the switches S5 and S6 are alternately turned up and down in this manner, a connection between both terminals of C6 (node d−
During (e), a voltage substantially equal to 4 × Vin is held. Therefore, a voltage approximately eight times Vin is generated between the nodes ae.

【0025】かくして、図2に示すようなチャージポン
プ回路によって、入力電圧Vinを8倍昇圧した電圧が出
力電圧Vout して出力される。つぎに他のチャージポン
プ回路を図3により説明する。同図は−2倍降圧のチャ
ージポンプ回路の動作である。
Thus, a voltage obtained by boosting the input voltage Vin by eight times is output as the output voltage Vout by the charge pump circuit as shown in FIG. Next, another charge pump circuit will be described with reference to FIG. FIG. 9 shows the operation of the charge pump circuit of -2 step-down.

【0026】まず、入力電圧Vinが入力されている状態
で図のように各スイッチS7、S8が下方向に倒れるこ
とで、入力電圧Vinに応じた電荷がC7に充電される。
First, when the input voltage Vin is being input, the switches S7 and S8 are tilted downward as shown in the figure, so that a charge corresponding to the input voltage Vin is charged to C7.

【0027】つぎに各スイッチS7、S8を上方向に倒
すことにより、C7に充電された電荷がC8に分配転送
される。このように各スイッチS7、S8を上下方向に
交互に倒すようなスイッチング動作を繰り返すことで、
C8の両端子間(ノードg−h間)にはVinとほぼ等し
い電圧が保持され、これによってノードf−h間にはV
inのほぼ2倍の電圧が発生する。したがって、図3のチ
ャージポンプ回路によれば、入力電圧Vinを−2倍降圧
した電圧が出力電圧Vout として出力される。
Next, when the switches S7 and S8 are tilted upward, the electric charge charged in C7 is distributed and transferred to C8. By repeating the switching operation in which the switches S7 and S8 are alternately turned up and down in this manner,
A voltage substantially equal to Vin is held between both terminals of C8 (between nodes g and h), and as a result, V is applied between nodes f and h.
A voltage approximately twice as large as in is generated. Therefore, according to the charge pump circuit of FIG. 3, a voltage obtained by stepping down the input voltage Vin by -2 times is output as the output voltage Vout.

【0028】[0028]

【発明の効果】以上のとおり、本発明の液晶駆動用電源
回路によれば、液晶パネルの駆動用ドライバICのロジ
ック部の電源電圧を入力電圧として用いて、この入力電
圧をチャージポンプ回路にて昇圧することでもって液晶
駆動用のコモンドライバの高電位側の選択電圧を液晶駆
動電圧調整回路を介して供給し、コモンドライバの高電
位側の選択電圧をチャージポンプ回路でほぼ−2倍降圧
することにより液晶駆動用のコモンドライバの低電位側
の選択電圧を供給し、さらにコモンドライバの非選択電
圧がドライバICのロジック部の電源電圧の高電圧側の
電圧であるとともに、コモンドライバの高電位側の選択
電圧とコモンドライバの低電位側の選択電圧とのほぼ中
心電位であり、ドライバICのロジック部の電源電圧を
チャージポンプ回路にてほぼ2倍昇圧した電圧を演算増
幅器の電源電圧として使用し、コモンドライバの選択電
圧を所定のバイアス比になるように抵抗分割した電圧を
ボルテージフォロワ接続された演算増幅器を介して液晶
駆動用のセグメントドライバの液晶駆動電圧として供給
するように構成したことで、要するに高圧側の電源を変
換効率の高いチャージポンプ回路にて形成し、一部の低
圧側の電源だけに演算増幅器を使用したことで、簡単な
回路構成になり、これにより、低コストおよび低消費電
力を達成できた。
As described above, according to the power supply circuit for driving a liquid crystal of the present invention, the power supply voltage of the logic section of the driver IC for driving the liquid crystal panel is used as the input voltage, and this input voltage is used by the charge pump circuit. By increasing the voltage, the high-potential-side selection voltage of the common driver for driving the liquid crystal is supplied through the liquid-crystal drive voltage adjustment circuit, and the high-potential-side selection voltage of the common driver is reduced by approximately -2 times by the charge pump circuit. Thus, the selection voltage on the low potential side of the common driver for driving the liquid crystal is supplied, and the non-selection voltage of the common driver is the voltage on the high voltage side of the power supply voltage of the logic part of the driver IC, and the high potential of the common driver This is approximately the center potential between the selection voltage on the side and the selection voltage on the low potential side of the common driver. Is used as the power supply voltage of the operational amplifier, and the voltage obtained by dividing the selection voltage of the common driver by a resistance so as to have a predetermined bias ratio is supplied to the liquid crystal drive via the operational amplifier connected with a voltage follower. In other words, the high-voltage side power supply is formed by a charge pump circuit with high conversion efficiency, and the operational amplifier is used only for a part of the low-voltage side power supply. As a result, a simple circuit configuration can be achieved, thereby achieving low cost and low power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶駆動用電源回路を示す図である。FIG. 1 is a diagram showing a power supply circuit for driving a liquid crystal of the present invention.

【図2】本発明の液晶駆動用電源回路に使用するチャー
ジポンプ型8倍昇圧回路の基本構成図である。
FIG. 2 is a basic configuration diagram of a charge pump type 8 × booster circuit used for a liquid crystal drive power supply circuit of the present invention.

【図3】本発明の液晶駆動用電源回路に使用するチャー
ジポンプ型―2倍降圧回路の基本構成図である。
FIG. 3 is a diagram showing a basic configuration of a charge pump type-2 × step-down circuit used in a power supply circuit for driving a liquid crystal according to the present invention.

【図4】従来の液晶駆動用電源回路を示す図である。FIG. 4 is a diagram showing a conventional liquid crystal driving power supply circuit.

【符号の説明】[Explanation of symbols]

CHP1 チャージポンプ型昇圧回路 VB 高電位電圧 TR0 トランジスタ TR0 ボリューム TR0 分圧抵抗 VH、VL 選択電圧 CHP2 チャージポンプ型降圧回路 VDD ロジック電源電圧 CHP3 チャージポンプ型降圧回路 OP1、2 演算増幅器 R1、R2、R3、R4分圧抵抗 CHP1 Charge pump type booster circuit VB High potential voltage TR0 Transistor TR0 Volume TR0 Divider resistance VH, VL Selection voltage CHP2 Charge pump type step-down circuit VDD Logic power supply voltage CHP3 Charge pump type step-down circuit OP1, 2 Operational amplifiers R1, R2, R3, R4 voltage divider resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液晶パネルの駆動用ドライバICのロジッ
ク部の電源電圧を入力電圧として用いて、この入力電圧
をチャージポンプ回路にて昇圧することでもって液晶駆
動用のコモンドライバの高電位側の選択電圧を液晶駆動
電圧調整回路を介して供給し、上記コモンドライバの高
電位側の選択電圧をチャージポンプ回路でほぼ−2倍降
圧することにより液晶駆動用のコモンドライバの低電位
側の選択電圧を供給し、さらに上記コモンドライバの非
選択電圧がドライバICのロジック部の電源電圧の高電
圧側の電圧であるとともに、コモンドライバの高電位側
の選択電圧とコモンドライバの低電位側の選択電圧との
ほぼ中心電位であり、上記ドライバICのロジック部の
電源電圧をチャージポンプ回路にてほぼ2倍昇圧した電
圧を演算増幅器の電源電圧として使用し、コモンドライ
バの選択電圧を所定のバイアス比になるように抵抗分割
した電圧をボルテージフォロワ接続された演算増幅器を
介して液晶駆動用のセグメントドライバの液晶駆動電圧
として供給するように構成したことを特徴とする液晶表
示装置用電源回路。
1. A high-potential side of a common driver for driving a liquid crystal by using a power supply voltage of a logic part of a driver IC for driving a liquid crystal panel as an input voltage and boosting the input voltage by a charge pump circuit. The selection voltage is supplied through a liquid crystal drive voltage adjustment circuit, and the selection voltage on the high potential side of the common driver is stepped down by approximately -2 times by the charge pump circuit, so that the selection voltage on the low potential side of the liquid crystal drive common driver is reduced. And the non-selection voltage of the common driver is a voltage on the high voltage side of the power supply voltage of the logic portion of the driver IC, and the selection voltage on the high potential side of the common driver and the selection voltage on the low potential side of the common driver. And a voltage obtained by boosting the power supply voltage of the logic portion of the driver IC almost twice by the charge pump circuit to the operational amplifier. It is used as a source voltage, and a voltage obtained by dividing a selection voltage of a common driver by a resistance so as to have a predetermined bias ratio is supplied as a liquid crystal drive voltage of a segment driver for driving a liquid crystal through an operational amplifier connected with a voltage follower. A power supply circuit for a liquid crystal display device, comprising:
JP2000029358A 2000-02-07 2000-02-07 Power source circuit for liquid crystal display device Pending JP2001221989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000029358A JP2001221989A (en) 2000-02-07 2000-02-07 Power source circuit for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000029358A JP2001221989A (en) 2000-02-07 2000-02-07 Power source circuit for liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2001221989A true JP2001221989A (en) 2001-08-17

Family

ID=18554632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000029358A Pending JP2001221989A (en) 2000-02-07 2000-02-07 Power source circuit for liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2001221989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946193A (en) * 2012-10-26 2013-02-27 华为技术有限公司 Method for increasing comparison speed of comparator circuit and comparator circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946193A (en) * 2012-10-26 2013-02-27 华为技术有限公司 Method for increasing comparison speed of comparator circuit and comparator circuit

Similar Documents

Publication Publication Date Title
US8125432B2 (en) Common voltage generation circuit employing a charge-pump operation to generate low-potential-side voltage
US20060022925A1 (en) Grayscale voltage generation circuit, driver circuit, and electro-optical device
KR20050041945A (en) Luminescent element driving device, display module including luminescent element driving device and electronic apparatus having display module
TW200917192A (en) Driving circuit capable of simultaneously driving three-color bistable liquid crystals
JP2007060732A (en) Display
JPH08262407A (en) Driving device of thin-film transistor liquid-crystal display device
CN101136186A (en) Power supply circuit, display driver, and voltage supply method
JP4010124B2 (en) Power supply circuit, liquid crystal display device and electronic device
KR20080011896A (en) Gate on voltage generation circuit and gate off voltage generation circuit and liquid crystal display having the same
US20080204121A1 (en) Voltage generating circuit having charge pump and liquid crystal display using same
JP4462844B2 (en) Power circuit
US7099166B2 (en) Voltage boosting circuit and method
US7230471B2 (en) Charge pump circuit of LCD driver including driver having variable current driving capability
KR20060042401A (en) Load carrying capacity driver circuit and liquid crystal driver circuit
US6084580A (en) Voltage generating circuit and liquid crystal display device incorporating the voltage generating circuit
Nonaka et al. 54.1: A Low‐Power SOG LCD with Integrated DACs and a DC‐DC Converter for Mobile Applications
JP3372142B2 (en) Liquid crystal display device and its driving circuit
JPH1031200A (en) Divided voltage generator for liquid crystal driving
JP2001221989A (en) Power source circuit for liquid crystal display device
JP4069546B2 (en) LCD drive voltage generator
US20080122826A1 (en) Driving circuit for adjusting common voltage and liquid crystal display using same
US6653900B2 (en) Driving method and related apparatus for improving power efficiency of an operational transconductance amplifier
JP2001125062A (en) Power source circuit for liquid crystal display device
JP4039414B2 (en) Voltage supply circuit, power supply circuit, display driver, electro-optical device, and electronic apparatus
CN110718199A (en) Display panel and booster circuit thereof