JP2001221629A - Method for inspecting shape of plastic body - Google Patents

Method for inspecting shape of plastic body

Info

Publication number
JP2001221629A
JP2001221629A JP2000030736A JP2000030736A JP2001221629A JP 2001221629 A JP2001221629 A JP 2001221629A JP 2000030736 A JP2000030736 A JP 2000030736A JP 2000030736 A JP2000030736 A JP 2000030736A JP 2001221629 A JP2001221629 A JP 2001221629A
Authority
JP
Japan
Prior art keywords
shape
resin material
substrate
plastic body
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030736A
Other languages
Japanese (ja)
Inventor
Masakazu Yokoyama
正和 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000030736A priority Critical patent/JP2001221629A/en
Publication of JP2001221629A publication Critical patent/JP2001221629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape inspecting method, capable of simply and highly accurately inspecting the surface shape of a plastic body, even it is a plastic body with a fine surface shape such as a reflecting plate to be used for a reflecting-type liquid crystal display device, and to provide its substrate material. SOLUTION: A resin material is applied to a plastic body (substrate material 1) formed into a prescribed shape, hardened and is integrated under conditions which does not change the shape of the plastic body. Then the plastic body and hardened resin material 2 are cut to prepare a sample piece, and the cross- sectional shape of the plastic body is observed through the use of the sample piece.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形体の形状検査方
法に関し、より詳しくは液晶表示装置用の反射板やその
基材等の表面形状の検査に適した検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting the shape of a molded product, and more particularly to an inspection method suitable for inspecting the surface shape of a reflector for a liquid crystal display device and its base material.

【従来の技術】[Prior art]

【0002】近時、反射型液晶表示装置に使用される反
射板として、断面が微細な鋸歯状となったものが開発さ
れている。この反射板は、ポリカーボネート樹脂等の合
成樹脂を用いて、図4に示すような断面が鋸歯状の基材
1を成形し、この基材1の表面にアルミニウム等の金属
反射膜を蒸着して製造される。かかる反射板は、光反射
特性に高い精度が要求されるため、反射面となる表面の
形状に高い精度が要求される。具体的には、図4に示す
基材1の表面は、通常、ピッチ(A)が10〜40μm
で高さ(B)が3〜50μmの非常に微細な鋸歯形状を
有するため、当該ピッチおよび高さが所定の許容範囲内
に入っているか否か、さらに各ピッチごとの形状は正し
く現れているか否かを検査する必要がある。
Recently, a reflection plate having a fine cross section has been developed as a reflection plate used in a reflection type liquid crystal display device. This reflector is formed by forming a substrate 1 having a sawtooth cross section as shown in FIG. 4 using a synthetic resin such as a polycarbonate resin, and depositing a metal reflection film such as aluminum on the surface of the substrate 1. Manufactured. Since such reflectors require high precision in light reflection characteristics, high precision is required in the shape of the surface serving as the reflection surface. Specifically, the surface of the substrate 1 shown in FIG. 4 usually has a pitch (A) of 10 to 40 μm.
Has a very fine sawtooth shape with a height (B) of 3 to 50 μm, so that whether the pitch and height are within a predetermined allowable range, and whether the shape for each pitch appears correctly It is necessary to check whether or not.

【0003】基材1の成形は、通常、合成樹脂板の表面
へのエンボス加工によって行われる。この場合、基材1
の製造条件によっては、基材1の表面形状が変形するお
それがあるため、金属反射膜の蒸着前にあらかじめ基材
1の表面形状を検査する必要がある。また、金属反射膜
の蒸着工程においては、蒸着時の熱で基材表面が変形す
るおそれがあるため、金属反射膜の蒸着後にも反射板の
表面形状を検査する必要がある。
The molding of the substrate 1 is usually performed by embossing the surface of a synthetic resin plate. In this case, the substrate 1
Depending on the manufacturing conditions, the surface shape of the substrate 1 may be deformed. Therefore, it is necessary to inspect the surface shape of the substrate 1 before vapor deposition of the metal reflection film. In addition, in the step of depositing the metal reflection film, since the surface of the base material may be deformed by heat during the deposition, it is necessary to inspect the surface shape of the reflection plate even after the deposition of the metal reflection film.

【0004】成形体等の微細な表面形状の検査には、一
般に表面観察顕微鏡(レーザースキャン方式)による形
状観察や切断面を走査型電子顕微鏡で観察する方法によ
り行われている。前者ではレーザーの反射光を利用して
いるため表面形状によっては反射光が得られにくく正し
い計測ができない場合がある。一方後者の場合は予備処
理として成形体をミクロトーム等で薄く切削して試料片
を作成するが、切削時に変形しやすいため、もとの形状
を損なわずに切削することはきわめて困難であり、この
ため得られた試料片を走査型電子顕微鏡で観察しても、
正確に形状を観察するのは困難である。
Inspection of a fine surface shape of a molded article or the like is generally performed by a method of observing a shape with a surface observation microscope (laser scan method) or a method of observing a cut surface with a scanning electron microscope. In the former case, the reflected light of the laser is used, so that it may be difficult to obtain the reflected light depending on the surface shape and correct measurement may not be performed. On the other hand, in the latter case, as a preliminary treatment, the molded body is thinly cut with a microtome or the like to prepare a sample piece, but it is very difficult to cut without losing the original shape because it is easily deformed at the time of cutting. Observing the obtained specimen with a scanning electron microscope,
It is difficult to observe the shape accurately.

【0005】[0005]

【発明が解決しようとする課題】上記のような問題を解
決するために、基材1の表面にシリコーン樹脂を流し込
み、硬化させた後、硬化したシリコーン樹脂を剥がし
て、いわゆるシリコーン・レプリカを作製し、このレプ
リカを切削して、表面形状を表面観察顕微鏡にて観察す
ることが提案されている。しかしながら、このような方
法は、レプリカの作製に多大の時間と費用を必要とする
と共に、検査の精度も劣るという問題がある。
In order to solve the above-mentioned problems, a silicone resin is poured into the surface of the substrate 1 and cured, and then the cured silicone resin is peeled off to produce a so-called silicone replica. Then, it has been proposed to cut the replica and observe the surface shape with a surface observation microscope. However, such a method requires a great deal of time and cost for producing a replica, and also has a problem that the accuracy of inspection is inferior.

【0006】従って、本発明の目的は、前記基材のよう
な微細な表面形状を有する成形体であっても、簡単にか
つ高精度で表面形状の検査を行うことができる検査方法
を提供することである。
Accordingly, an object of the present invention is to provide an inspection method capable of easily and highly accurately inspecting a surface shape even of a molded article having a fine surface shape such as the base material. That is.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の本発明の形状検査方法は、所定形状に成形された成形
体に、この成形体の形状を変化させない条件下で樹脂材
を塗布し硬化させて一体化した後、成形体および硬化樹
脂材を切削して、試料片を作成し、この試料片を用いて
成形体の断面形状を観察することを特徴とする。ここ
で、成形体の形状を変化させない条件下で樹脂材を塗布
し硬化させるとは、樹脂材の塗布時および硬化時に成形
体に熱変形や収縮、膨張等の外力が実質的に作用しない
条件であることを意味する。
According to the shape inspection method of the present invention for solving the above-mentioned problems, a resin material is applied to a molded article formed into a predetermined shape under conditions that do not change the shape of the molded article. After being cured and integrated, the molded body and the cured resin material are cut to form a sample piece, and the cross-sectional shape of the molded body is observed using the sample piece. Here, applying and curing the resin material under conditions that do not change the shape of the molded body means that the external force such as thermal deformation, shrinkage, or expansion does not substantially act on the molded body during application and curing of the resin material. Means that

【0008】このように、本発明では、成形体の表面に
樹脂材を塗布し硬化させているので、硬化樹脂材によっ
て成形体の表面形状が固定保護された状態となり、それ
ゆえこのような成形体を切削しても、成形体の表面形状
が変形するおそれがなく、正確な表面観察が可能とな
る。
As described above, in the present invention, since the resin material is applied to the surface of the molded body and cured, the surface shape of the molded body is fixed and protected by the cured resin material. Even if the body is cut, there is no possibility that the surface shape of the formed body is deformed, and accurate surface observation is possible.

【0009】本発明の検査方法では、成形体の表面を金
属薄膜で被覆した後、前記樹脂材を塗布するのが好まし
い。これにより、成形体と硬化樹脂材との界面が明瞭と
なり、成形体の形状観察が容易になる。本発明の検査方
法は、特に反射型液晶表示装置に使用される反射板やそ
の基材の検査に好適である。
In the inspection method of the present invention, it is preferable to coat the surface of the molded body with a metal thin film and then apply the resin material. Thereby, the interface between the molded article and the cured resin material becomes clear, and the shape observation of the molded article becomes easy. The inspection method of the present invention is particularly suitable for inspection of a reflection plate used for a reflection type liquid crystal display device and its base material.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態を説明
する。この実施形態は、本発明の検査方法を反射型液晶
表示装置に使用される反射板の検査に適用したものであ
る。図1はこの実施形態にかかる検査方法を示してお
り、同図(a)はポリカーボネート樹脂からなる基材1
(成形体)を示している。基材1の表面1aは、前記し
たようにエンボス加工により断面が鋸歯状に成形されて
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. In this embodiment, the inspection method of the present invention is applied to inspection of a reflector used in a reflection type liquid crystal display device. FIG. 1 shows an inspection method according to this embodiment, and FIG. 1A shows a substrate 1 made of a polycarbonate resin.
(Mold). The cross section of the surface 1a of the base material 1 is formed in a sawtooth shape by embossing as described above.

【0011】本発明の方法により検査を行うには、ま
ず、切削時に基材1がたわむのを防止するために、基材
1を適当な補強材3の表面に接着固定する。補強材3と
しては、種々の硬質材、例えばアクリル系樹脂板等が挙
げられる。また、補強材3に接着するための接着剤とし
ては、例えば常温硬化型のエポキシ樹脂接着剤等が使用
可能である。
In order to carry out the inspection according to the method of the present invention, first, the substrate 1 is bonded and fixed to the surface of a suitable reinforcing material 3 in order to prevent the substrate 1 from bending during cutting. Examples of the reinforcing material 3 include various hard materials, for example, an acrylic resin plate. Further, as an adhesive for bonding to the reinforcing material 3, for example, a room temperature curing type epoxy resin adhesive or the like can be used.

【0012】基材1を補強材3に接着後、基材1の表面
1aに樹脂材を塗布する。樹脂材としては、基材1との
接着性に優れ、かつ塗布時や硬化時に基材1の形状を変
化させないものが使用される。このような樹脂材として
は、無溶剤型で常温硬化性を有するものが好ましく、溶
剤を含有する場合には基材1を膨潤させるおそれがあ
る。また、加熱硬化型の樹脂では基材1が硬化時に熱変
形するおそれがある。さらに、硬化時に硬化収縮等を起
こさない寸法安定性に優れたものが好ましい。このよう
な樹脂材としては、例えば前記した補強材3への接着に
使用したのと同じ常温硬化型のエポキシ樹脂接着剤等が
挙げられる。
After bonding the substrate 1 to the reinforcing member 3, a resin material is applied to the surface 1a of the substrate 1. As the resin material, a resin material that is excellent in adhesiveness to the base material 1 and does not change the shape of the base material 1 during application or curing is used. As such a resin material, a non-solvent type material having room-temperature curability is preferable, and when a solvent is contained, the base material 1 may swell. In the case of a heat-curable resin, the substrate 1 may be thermally deformed during curing. Further, those having excellent dimensional stability that do not cause curing shrinkage or the like during curing are preferable. As such a resin material, for example, the same cold-setting epoxy resin adhesive used for bonding to the reinforcing material 3 described above can be used.

【0013】樹脂材の塗布方法や塗布量は特に制限され
ず、刷毛塗り、流し込み、浸漬等の方法により任意な厚
さに塗布すればよい。塗布後、樹脂材を硬化させて、図
1(b)に示すように、表面に硬化樹脂材2が積層接着
された基材1を得る。ついで、ミクロトームによりガラ
スナイフ、ダイヤモンドナイフ等の切削具を使用して、
基材1を硬化樹脂材2と共に厚さ0.5〜5μmで送り
出して切削加工し、表面を平滑にして試料とする。そし
て、試料の断面形状を観察して、表面形状や寸法が正し
く成形されているか否かを検査する。
The method and amount of application of the resin material are not particularly limited, and the resin material may be applied to an arbitrary thickness by a method such as brushing, pouring, dipping, or the like. After the application, the resin material is cured to obtain a substrate 1 having a cured resin material 2 laminated and adhered to the surface, as shown in FIG. Then, using a cutting tool such as a glass knife and a diamond knife with a microtome,
The base material 1 is sent out together with the cured resin material 2 at a thickness of 0.5 to 5 μm and cut and processed to make the surface smooth and used as a sample. Then, the cross-sectional shape of the sample is observed to check whether the surface shape and dimensions are correctly formed.

【0014】観察は、例えば電界放射型走査電子顕微鏡
(以下、FE−SEMという)、熱電子銃型走査電子顕
微鏡等によって行うことができる。形状観察は、基材1
の1ピッチ当たりの長さおよび高さ(図4に示すAおよ
びB)のほか、形状自体(例えば1ピッチ当たりの断面
形状が正確に二等辺三角形になっているか否か)等につ
いても行い、その結果に基づいて良否判定を行う。
The observation can be performed by, for example, a field emission scanning electron microscope (hereinafter referred to as FE-SEM), a thermal electron gun scanning electron microscope, or the like. Observation of substrate shape
In addition to the length and height per pitch (A and B shown in FIG. 4), the shape itself (for example, whether or not the cross-sectional shape per pitch is exactly an isosceles triangle) is also performed. A pass / fail judgment is made based on the result.

【0015】この実施形態によれば、基材1は裏面が補
強材3で補強され、表面形状は樹脂材を塗布・硬化させ
て形成した硬化樹脂材2で固定保護されているので、切
削時に基材1がたわんだり、切削方向等に変形するのが
防止される。このため、成形された形状を保持したまま
で切削することができ、検査精度が向上する。また、検
査結果は成形等の製造が適切に行われたか否かを正しく
判断する基礎となり、反射板の性能向上、品質不良の低
減に大きく寄与することができる。
According to this embodiment, the back surface of the base material 1 is reinforced by the reinforcing material 3, and the surface shape is fixed and protected by the cured resin material 2 formed by applying and curing a resin material. The substrate 1 is prevented from bending or deforming in the cutting direction or the like. For this reason, cutting can be performed while maintaining the formed shape, and inspection accuracy is improved. In addition, the inspection results serve as a basis for correctly determining whether or not manufacturing such as molding has been appropriately performed, and can greatly contribute to improving the performance of the reflection plate and reducing quality defects.

【0016】本発明の好ましい実施形態によれば、図2
に示すように、基材1の表面に金(Au)蒸着膜4(金
属薄膜)を設け、このAu蒸着膜4の表面に樹脂材を塗
布・硬化させて硬化樹脂材2を形成する。このように基
材1と硬化樹脂材2との間にAu蒸着膜4を介在させる
ことにより、両者の界面が明瞭になり、基材1の形状観
察がより一層容易になり、検査精度も向上するという利
点がある。
According to a preferred embodiment of the present invention, FIG.
As shown in (1), a gold (Au) vapor-deposited film 4 (metal thin film) is provided on the surface of a substrate 1, and a resin material is applied and cured on the surface of the Au vapor-deposited film 4 to form a cured resin material 2. By interposing the Au vapor-deposited film 4 between the base material 1 and the cured resin material 2 as described above, the interface between the two becomes clear, the shape observation of the base material 1 is further facilitated, and the inspection accuracy is improved. There is an advantage of doing so.

【0017】Au蒸着膜4は、例えば真空蒸着法、イオ
ンスパッタリング法等によって形成することができる。
Au蒸着膜4の形成時に基材1が変形するのを防止する
うえで、Au蒸着膜4の厚さはできるだけ薄いのが好ま
しく、通常20〜200Å程度であるのが適当である。
The Au deposited film 4 can be formed by, for example, a vacuum deposition method, an ion sputtering method or the like.
In order to prevent the substrate 1 from being deformed during the formation of the Au vapor-deposited film 4, the thickness of the Au vapor-deposited film 4 is preferably as thin as possible, and is usually about 20 to 200 °.

【0018】このようにして基材1が所定形状に成形さ
れていることを検査によって確認した後、図3に示すよ
うに、基材1の表面に金属反射膜5を形成して反射板6
を得る。金属反射膜5としては、通常、アルミニウム蒸
着膜、金蒸着膜、銀蒸着膜等が使用される。これらの蒸
着膜は、例えば真空蒸着法、イオンスパッタリング法等
によって形成される。また、金属反射膜5の厚さは、通
常200Å〜1000Å程度と比較的厚いため、金属反
射膜の形成時に基材1が熱等で変形、その他の損傷を受
けるおそれがある。このため、金属反射膜の形成により
基材1の形状に異常がないか否かを検査する必要があ
る。
After confirming by inspection that the base material 1 is formed in a predetermined shape in this way, as shown in FIG. 3, a metal reflection film 5 is formed on the surface of the base material 1 and a reflection plate 6 is formed.
Get. As the metal reflection film 5, an aluminum evaporation film, a gold evaporation film, a silver evaporation film, or the like is usually used. These deposited films are formed by, for example, a vacuum deposition method, an ion sputtering method, or the like. Further, since the thickness of the metal reflection film 5 is relatively large, usually about 200 to 1000 degrees, the base material 1 may be deformed by heat or the like and may be damaged when the metal reflection film is formed. For this reason, it is necessary to inspect whether or not the shape of the substrate 1 is abnormal due to the formation of the metal reflection film.

【0019】そこで、所定形状に成形された成形体から
なる基材1の表面に金属反射膜5を形成した反射板6の
表面に、前記と同様にして、基材1の形状を変化させな
い条件下で樹脂材を塗布し硬化させて一体化した後、反
射板6および硬化樹脂材2を切削して、試料片を作成
し、この試料片を用いて反射板6の形状観察を行う。こ
れにより、金属反射膜5の形成時に基材1が熱等で変
形、その他の損傷を受けたか否かを確実に検査できるの
で、この検査結果に基づいて、金属反射膜5の作製条件
をより適切なものに設定することができる。
Therefore, in the same manner as described above, the condition for not changing the shape of the base material 1 is provided on the surface of the reflecting plate 6 in which the metal reflecting film 5 is formed on the surface of the base material 1 formed of a molded body having a predetermined shape. After applying and curing the resin material below to integrate, the reflector plate 6 and the cured resin material 2 are cut to form a sample, and the shape of the reflector 6 is observed using the sample. Thereby, it is possible to reliably inspect whether or not the base material 1 has been deformed by heat or the like during the formation of the metal reflection film 5 or not. It can be set to an appropriate one.

【0020】なお、以上の実施形態は、液晶表示装置用
反射板およびその基材の形状検査方法についてのもので
あるが、形状検査を必要とする他の成形品についても同
様にして適用可能である。
Although the above embodiment relates to a method for inspecting the shape of a reflection plate for a liquid crystal display device and its base material, the present invention can be similarly applied to other molded products requiring a shape inspection. is there.

【0021】[0021]

【実施例】以下、実施例および比較例を挙げて、本発明
の検査方法を詳細に説明する。
The inspection method of the present invention will be described in detail below with reference to examples and comparative examples.

【0022】実施例1 ポリカーボネート樹脂成形板の表面をエンボス加工して
得た基材の裏面を補強材(ポリメチルメタクレート棒
材)に急速硬化型エポキシ樹脂接着剤(チバガイギー社
製の「アラルダイト ラピッド」)を用いて常温で接着
した。ついで、基材の表面にも同じエポキシ樹脂接着剤
をプラスチック製のヘラにて塗布し常温で硬化させた。
ついで、基材をミクロトームにより厚さ1μmで送り出
し切削加工し、切削面が平滑な試料を得た。この試料切
削加工面の補強材と試料の側面にドータイト(導電性塗
料:藤倉化成株式会社製)を塗布し、風乾し、カーボン
を蒸着し導電性を付与した後、この試料の断面形状をF
E−SEM(日立:S−4500型、5kV、10μ
A、WD(対物レンズ間距離)=15、コンデンサーレ
ンズの励磁強さ 5、絞り3)にて観察した。その結
果、基材は断面形状が損なわれずに切削されており、こ
のため基材の断面形状を正確に観察し評価することが可
能となった。
Example 1 A back surface of a base material obtained by embossing the surface of a polycarbonate resin molded plate was used as a reinforcing material (polymethyl methacrylate rod) and a quick-curing epoxy resin adhesive ("Araldite Rapid" manufactured by Ciba Geigy). )) At room temperature. Next, the same epoxy resin adhesive was applied to the surface of the substrate with a spatula made of plastic and cured at room temperature.
Next, the base material was sent out with a microtome at a thickness of 1 μm and cut to obtain a sample with a smooth cut surface. Dotite (conductive paint: manufactured by Fujikura Kasei Co., Ltd.) is applied to the reinforcing material on the cut surface of the sample and the side surface of the sample, air-dried, and carbon is vapor-deposited to impart conductivity.
E-SEM (Hitachi: Model S-4500, 5 kV, 10 μ
A, WD (distance between objective lenses) = 15, excitation intensity of condenser lens 5, diaphragm 3). As a result, the base material was cut without impairing the cross-sectional shape, which made it possible to accurately observe and evaluate the cross-sectional shape of the base material.

【0023】実施例2 実施例1で用いたと同様の裏面をエポキシ樹脂で補強し
た基材の表面にイオンスパッタリング法にて金(Au)
を50秒蒸着して厚さ100ÅのAu蒸着膜を形成した
以外は、実施例1と同様にしてその断面形状を観察し
た。 その結果、硬化樹脂材と基材との間にAu蒸着膜
を介在させることにより、それらの界面が明瞭となり、
基材の形状検査がより正確で容易なものになった。
Example 2 Gold (Au) was applied by ion sputtering to the surface of a substrate whose back surface was the same as that used in Example 1 and was reinforced with epoxy resin.
Was formed in the same manner as in Example 1 except that a Au vapor deposition film having a thickness of 100 ° was formed by vapor deposition for 50 seconds. As a result, by interposing the Au vapor-deposited film between the cured resin material and the base material, their interface becomes clear,
Inspection of the shape of the substrate has become more accurate and easier.

【0024】実施例3 基材の表面にアルミニウムを蒸着して厚さ600Åのア
ルミニウム蒸着膜を形成した後、実施例1と同じエポキ
シ樹脂接着剤を塗布した以外は、実施例2と同様にし
て、その断面形状を観察した。その結果、反射板は断面
形状が損なわれずに切削されており、このため、反射板
の断面形状を正確に観察し評価することが可能となっ
た。
Example 3 Aluminum was vapor-deposited on the surface of a substrate to form a 600-mm-thick aluminum vapor-deposited film, and then the same epoxy resin adhesive as in Example 1 was applied. The cross-sectional shape was observed. As a result, the reflector was cut without impairing the cross-sectional shape, and therefore, it became possible to accurately observe and evaluate the cross-sectional shape of the reflector.

【0025】比較例1 ポリカーボネート樹脂成形板の表面をエンボス加工して
得た基材をミクロトームにより厚さ1μmで切削加工し
て試料を得た。この試料を両面粘着テープ上に切削表面
を上にして貼り付け、試料台に固定した。この試料の端
面の基材部面にAgペーストを塗布後、風乾し、Pt−
Pd蒸着を50秒間行った。ついで、試料の断面形状を
FE−SEMにて実施例1〜3と同条件で観察した。
Comparative Example 1 A base material obtained by embossing the surface of a polycarbonate resin molded plate was cut to a thickness of 1 μm by a microtome to obtain a sample. This sample was affixed on a double-sided adhesive tape with the cut surface facing up, and fixed to a sample table. An Ag paste was applied to the substrate surface at the end surface of the sample, air-dried, and Pt-
Pd deposition was performed for 50 seconds. Then, the cross-sectional shape of the sample was observed by FE-SEM under the same conditions as in Examples 1 to 3.

【0026】比較例2 ポリカーボネート樹脂成形板の表面をエンボス加工して
得た基材の表面に厚さ600Åのアルミニウム蒸着膜を
形成して反射板を作製した。この反射板をミクロトーム
にて厚さ1μmで切削加工して試料を得た。この試料を
両面粘着テープの上に切削表面を上にして貼り付け、試
料台に固定した。この試料の端面の基材部面に周囲にA
gペーストを塗布後、風乾し、Pt−Pd蒸着を50秒
間行った。ついで、試料の断面形状をFE−SEMにて
実施例1〜3と同条件で観察した。前記観察の結果、比
較例1,2では、基材および反射板の表面形状は切削方
向に変形しており、正確な断面形状を観察できなかっ
た。
Comparative Example 2 A 600 mm thick aluminum vapor-deposited film was formed on the surface of a substrate obtained by embossing the surface of a polycarbonate resin molded plate to produce a reflector. This reflector was cut with a microtome at a thickness of 1 μm to obtain a sample. This sample was stuck on a double-sided adhesive tape with the cut surface facing up, and fixed to a sample table. A around the substrate surface of the end surface of this sample
g paste was applied, air-dried, and Pt-Pd deposition was performed for 50 seconds. Next, the cross-sectional shape of the sample was observed by FE-SEM under the same conditions as in Examples 1 to 3. As a result of the observation, in Comparative Examples 1 and 2, the surface shapes of the base material and the reflecting plate were deformed in the cutting direction, and an accurate cross-sectional shape could not be observed.

【0027】[0027]

【発明の効果】本発明によれば、微細な表面形状を有す
る成形体であっても、簡単にかつ高精度で表面形状(断
面形状)の検査を行うことができるので、製造条件をよ
り適切なものにすることが可能となり、製品の品質向
上、不良品の低減に大きく寄与できるという効果があ
る。
According to the present invention, it is possible to easily and accurately inspect the surface shape (cross-sectional shape) of a molded product having a fine surface shape. This has the effect of greatly contributing to the improvement of product quality and the reduction of defective products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の好ましい実施形態を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a preferred embodiment of the present invention.

【図3】本発明において検査対象となる反射板の一例を
示す断面図である。
FIG. 3 is a cross-sectional view illustrating an example of a reflection plate to be inspected in the present invention.

【図4】反射板に使用される基材の一部拡大図を含む斜
視図である。
FIG. 4 is a perspective view including a partially enlarged view of a base material used for a reflection plate.

【符号の説明】[Explanation of symbols]

1 基材 2 硬化樹脂材 3 補強材 4 Au蒸着膜(金属薄膜) 5 アルミニウム蒸着膜(金属反射膜) 6 反射板 DESCRIPTION OF SYMBOLS 1 Base material 2 Cured resin material 3 Reinforcement material 4 Au vapor deposition film (metal thin film) 5 Aluminum vapor deposition film (metal reflection film) 6 Reflector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】所定形状に成形された成形体に、この成形
体の形状を変化させない条件下で樹脂材を塗布し硬化さ
せて一体化した後、成形体および硬化樹脂材を切削して
試料片を作成し、この試料片を用いて成形体の断面形状
を観察することを特徴とする成形体の形状検査方法。
1. A molded article formed into a predetermined shape is coated with a resin material under conditions that do not change the shape of the molded article, cured and integrated, and the molded article and the cured resin material are cut to obtain a sample. A method for inspecting the shape of a molded body, comprising: preparing a piece; and observing a cross-sectional shape of the molded body using the sample piece.
【請求項2】前記成形体の表面を金属薄膜で被覆した
後、前記樹脂材を塗布する請求項1記載の形状検査方
法。
2. The shape inspection method according to claim 1, wherein the resin material is applied after covering the surface of the molded body with a metal thin film.
【請求項3】所定形状に成形された基材の表面に金属反
射膜を形成してなる反射板の表面に、前記基材の形状を
変化させない条件下で樹脂材を塗布し硬化させて一体化
した後、反射板および硬化樹脂材を切削して、試料片を
作成し、この試料片を用いて反射板の断面形状を観察す
ることを特徴とする反射板の表面形状検査方法。
3. A resin material is applied and cured on a surface of a reflector formed by forming a metal reflective film on a surface of a substrate formed in a predetermined shape under conditions that do not change the shape of the substrate. A method for inspecting the surface shape of a reflector, comprising cutting a reflector and a cured resin material to form a sample piece, and observing a cross-sectional shape of the reflector using the sample piece.
JP2000030736A 2000-02-08 2000-02-08 Method for inspecting shape of plastic body Pending JP2001221629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030736A JP2001221629A (en) 2000-02-08 2000-02-08 Method for inspecting shape of plastic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030736A JP2001221629A (en) 2000-02-08 2000-02-08 Method for inspecting shape of plastic body

Publications (1)

Publication Number Publication Date
JP2001221629A true JP2001221629A (en) 2001-08-17

Family

ID=18555713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030736A Pending JP2001221629A (en) 2000-02-08 2000-02-08 Method for inspecting shape of plastic body

Country Status (1)

Country Link
JP (1) JP2001221629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469863A (en) * 2009-04-30 2010-11-03 R & A Rules Ltd Measuring surface profile of golf clubs, calibrating image capture device and apparatus for preparing a measurement specimen by taking a cast of a surface
CN107621250A (en) * 2017-11-06 2018-01-23 广州市建筑科学研究院有限公司 A kind of roughness detecting method of concrete prefabricated element faying face

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469863A (en) * 2009-04-30 2010-11-03 R & A Rules Ltd Measuring surface profile of golf clubs, calibrating image capture device and apparatus for preparing a measurement specimen by taking a cast of a surface
CN107621250A (en) * 2017-11-06 2018-01-23 广州市建筑科学研究院有限公司 A kind of roughness detecting method of concrete prefabricated element faying face
CN107621250B (en) * 2017-11-06 2020-02-11 广州市建筑科学研究院有限公司 Roughness detection method for concrete prefabricated part joint surface

Similar Documents

Publication Publication Date Title
JP3955438B2 (en) Curved optical device and manufacturing method thereof
US20020162399A1 (en) Pressure sensor and method of manufacturing the same
WO2015010605A1 (en) Method using peel-and-stick to fabricate an optical fiber end-face metallic micro/nanostructure
US6498830B2 (en) Method and apparatus for fabricating curved crystal x-ray optics
JP2001221629A (en) Method for inspecting shape of plastic body
US4367014A (en) Polygonal rotary scanners
JPH06254868A (en) Manufacture of composite precisely molded product
JPH08503592A (en) High frequency focused transducer and method of making the same
US4564271A (en) Ring resonator and method of forming
US8496863B2 (en) Method for producing a replication master, replication method and replication master
FR2635725A1 (en) PRINTING ELEMENT AND PRINTING METHOD FOR COPYING MICROSTRUCTURES
JP2017080899A (en) High flatness structure
JPH01196537A (en) Method and apparatus for evaluating adhesion strength of film
JPH0250066B2 (en)
JP4187337B2 (en) Composite optical components
WO2022188051A1 (en) Machine of paste shrinkage and expansion in z direction
JP2000241608A (en) Resin bonded optical element and manufacture therefor
JP2005055266A (en) Manufacturing method of doubly-curved spectroscopic element, and doubly-curved spectroscopic element
JP2006177994A (en) Replica optical element
JPH06258508A (en) Parting method and parting device
JPH0886905A (en) Production of optical member with metal film
JPS63210801A (en) Curved mirror
JPH04204224A (en) Ceramic or quartz load cell
JPS58224302A (en) Optical part made of plastics
JPH04125447A (en) Method for analyzing bleed product on plastic surface