JP2001221169A5 - - Google Patents

Download PDF

Info

Publication number
JP2001221169A5
JP2001221169A5 JP2000315876A JP2000315876A JP2001221169A5 JP 2001221169 A5 JP2001221169 A5 JP 2001221169A5 JP 2000315876 A JP2000315876 A JP 2000315876A JP 2000315876 A JP2000315876 A JP 2000315876A JP 2001221169 A5 JP2001221169 A5 JP 2001221169A5
Authority
JP
Japan
Prior art keywords
swivel
scroll
shaft
bearing
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000315876A
Other languages
Japanese (ja)
Other versions
JP2001221169A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2000315876A priority Critical patent/JP2001221169A/en
Priority claimed from JP2000315876A external-priority patent/JP2001221169A/en
Publication of JP2001221169A publication Critical patent/JP2001221169A/en
Publication of JP2001221169A5 publication Critical patent/JP2001221169A5/ja
Pending legal-status Critical Current

Links

Description

【書類名】 明細書
【発明の名称】 複数連結式スクロール圧縮機
【特許請求の範囲】
【請求項1】端面幅が一様な円柱内に中心軸に平行な壁面で形成される渦巻き状の壁面を有する溝ないしは端板に直立したラップを設けた固定スクロールと円形端板の片面に端板に垂直で一様な高さの渦巻き状突起で形成されるラップを設けた旋回スクロールの互いの渦巻き形状部を噛み合わせて圧縮室を形成するとともに旋回スクロ−ルに自転防止機構を連結したスクロ−ル圧縮機において、
(1)円柱の内側に設けた端面に平行な仕切り板の両側に溝深さが一様で等しいと同時に互いに鏡像の関係となる渦巻き形状をした第一固定溝と第二固定溝を設けた中央に円形の軸貫通穴とその穴から外周に向けて開けられた吐出孔から構成された両歯付きの固定スクロ−ル。
(2)およそ円形端板の片面に設けられた端板に垂直で一様な高さの渦巻き状壁面を有する突起の外周側を一定幅の第一旋回ラップで形成し、その内周側に形成する球根状の軸受ボスのおよそ中央部に軸受ボスと前記端板を貫通して両端面に開口する軸貫通穴の内壁に1個ないしは複数個で構成される旋回軸受を装着するとともに第一旋回ラップを設けた端板の裏側となる背面に自転防止機構の一部が構成された第一旋回スクロ−ル。
(3)およそ円形端板の片面に前記第一旋回ラップと同じ高さで鏡像の関係となる渦巻き形状の第二旋回ラップを固定するとともに第一旋回スクロ−ルと同様の旋回軸受と自転防止機構の一部を設けて構成された第二旋回スクロール。
(4)およそ円形の外周部を前記固定スクロ−ルの一端に固定し、中央部に主軸受を設けるとともに第一旋回スクロ−ルの端板間に装着される自転防止機構の一部が構成された第一フレーム。
(5)およそ円形の外周部を前記固定スクロ−ルの前記第一フレームの反対側の端面に固定し、中央部に副軸受を設けるとともに第二旋回スクロ−ルの端板間に装着される自転防止機構の一部が構成された第二フレーム。
(6)第一旋回スクロ−ルと第二旋回スクロ−ルそれぞれの旋回軸受に挿入される第一旋回軸と第二旋回軸を、回転中心に対する偏心方向を互いに180°対向させて設けるとともに互いの旋回軸間には第一旋回スクロ−ルに設けた旋回軸受の幅の2倍強の幅を有する連結部Aを設け、また第二旋回軸と副軸との間には第一旋回スクロ−ルないしは第二旋回スクロ−ルに設けた旋回軸受の内で長い方の旋回軸受の幅の1倍強の幅を有する連結部Bを備え、さらには主軸と第一旋回軸との間及び副軸と第二旋回軸との間にそれぞれの大きさが同程度のバランサ−を設けたシャフト。
(7)第一旋回スクロール端板と第一フレ−ムとの間に設けた第一旋回スクロールの自転を防止する第一自転防止機構。
(8)第二旋回スクロール端板と第二フレ−ムとの間に設けた第二旋回スクロールの自転を防止する第二自転防止機構。
以上で構成された設けたことを特徴とする複数連結式スクロール圧縮機。
【請求項2】2つの圧縮室を分離する仕切り板を渦巻き溝底面に平行に2分割した面を掘り込んで設けた高低圧空間に連通しない密閉空間と作動室を連通するバイパス穴を仕切り板に設けるとともに該密閉空間内に前記バイパス穴を閉じるように弁機構を装着して構成した両歯付き固定スクロ−ルから構成されたことを特徴とする請求項1記載の複数連結式スクロール圧縮機。
【請求項3】およそ円柱の両端面に平行な仕切り板の両側に同じに巻き方向となる渦巻き形状の第一固定溝と第二固定溝を個別に設けた両歯付きの固定スクロ−ルの第一固定溝と第二固定溝それぞれに勘合する第一旋回ラップを設けた第一旋回スクロ−ルと第二旋回ラップを設けた第二旋回スクロ−ルを噛み合せてそれぞれ第一圧縮室と第二圧縮室を形成させるとともに前記第一旋回スクロ−ルと第二旋回スクロ−ルを互いに同期した旋回運動が行わせるように構成されたスクロ−ル圧縮機に於いて、第一固定溝と第一旋回ラップ間で形成される第一圧縮室の最小密閉空間の容積と第二固定溝と第二旋回ラップ間で形成される第二圧縮室の最大密閉空間の容積を同等に構成した上で前記最小密閉空間と最大密閉空間を連通する通路を両歯付きの固定スクロ−ルの仕切り板内に設けて2段圧縮機構を構成されたことを特徴とする複数連結式スクロール圧縮機。
【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、作動流体として気体を用いる冷凍空調用圧縮機や空気用圧縮機に利用される大容量化に適した複数連結式スクロール圧縮機に関する。
【0002】
【従来の技術】
スクロ−ル圧縮機は通常2つの圧縮室を形成する1組の圧縮機構部から構成されているが、このような圧縮機の大容量化を図る場合の制約条件として圧縮室を形成する渦巻き状のラップ強度や旋回スクロ−ルの遠心力およびガス圧縮荷重を受ける軸受の耐久性さらには渦巻き状のラップを加工する機械の大きさ等が挙げられる。
【0003】
これらの制約条件を克服する手段として、複数台の圧縮機を用いて1台当りの大きさを小さくするのと同じ考えから前記制約条件を満足する圧縮機構部を複数組結合して合計した圧縮機容量を拡大する手段がある。
【0004】
これら複数組の圧縮機構部を隣接して設ける構成の1つに旋回スクロールの端板の両面に渦巻き状のラップを2個形成して2組の圧縮機構部を構成する両歯付き旋回スクロールが従来から提案されている。
【0005】
この内、旋回スクロ−ル中心部に動力伝達軸を通すための軸貫通穴を有する両歯付き旋回スクロ−ルの公知例として、特開平9−126159号公報や特開平9−324770号公報が挙げられる。
また、固定スクロ−ルの中央端板を挟んで両面に2か所渦巻き状のラップを設けて2組の圧縮機構部を構成する両歯付き固定スクロ−ルの公知例として、特開平4−101089号公報や特開平4−159478号公報が挙げられる。
【0006】
【発明が解決しようとしている課題】
本発明が解決しようとしている課題は、軸貫通穴のある両歯付き旋回スクロールでは、旋回スクロ−ルに円軌道上の公転運動を与えるための自転防止機構を構成上渦巻き状ラップよりも外側に突き出た端板外周に設けざるをえないことから圧縮機外径寸法が大幅に拡大する問題があった。
【0007】
また、2組の圧縮機構分のガス圧縮荷重が同方向に同時に作用することによる軸受荷重増大や両歯に伴う旋回スクロ−ルの重量増大で遠心力が大きくなることで軸受荷重がさらに増大して耐久性が低下する問題や、この遠心力に釣り合うバランサ−も大きくなる問題があった。
【0008】
さらには、旋回スクロ−ル端板両面にラップが固定されて一体となっているので、旋回スクロ−ルの軸方向の動きを制御して2か所のラップ先端隙間を調整してシ−ルするこができないのと旋回スクロ−ルに作用するスラスト力にアンバランスが生じた場合の制御が困難となり、振動の増大や信頼性及び性能が低下する問題があった。
【0009】
また、固定スクロ−ルのラップを支える枠体に比べて剛性が相当低い旋回スクロ−ルの端板両面にラップを設けると加工精度が大幅に低下すると同時に運転時に作用する荷重や温度変化による大きな変形が生じて性能や耐久性を低下させる問題があった。
【0010】
さらには、両歯付き固定スクロ−ルの構成に於いては、組み付け上から旋回スクロ−ル側の軸受径よりもフレ−ム側の軸受径が小さくなり負荷能力が低下する問題や軸受径が異なることから生産性が低下する問題があった。加えて、高低圧間の軸シ−ルがすべり軸受兼用となっているために損傷する問題があった。
【0011】
本発明は圧縮機の大容量化を図るに際して、軸受負荷を分散させることにより信頼性を確保した上で小型軽量化と効率向上を同時達成できる空気圧縮機及び冷凍空調用圧縮機を提供することを目的とする。
【0012】
【課題を解決するための手段】
以下、上記従来の課題を解決する手段について説明する。
【0013】
高さが一様な円柱の中心軸に平行な壁面で形成される渦巻き状の壁面を有する第一固定ラップの先端面が円柱端面と同一平面上にあって渦巻き溝部が開口し、円柱のその反対面は渦巻き溝部の底面を形成する端板が設けられた固定スクロールと第一固定ラップの先端面に合わせた渦巻き形状が一致するすなはち互いに鏡像の関係となる渦巻き形状をした第二固定ラップを有する固定スクロ−ルの端板を互いに背面を合わせて一体として構成された仕切り板のその中央に設けた円形の軸貫通穴とその穴から外周に向けて開けられた吐出孔から両歯付き固定スクロ−ルが構成される。
【0014】
そして、端板の片面の中央部には軸貫通穴を有する球根状の軸受ボスが設けられ、その外側には渦巻き状の壁面で形成される一定幅の一様な高さを有する旋回ラップを直立させて設けた第一旋回スクロ−ルとこれと鏡像の関係にある旋回ラップを設けた第二旋回スクロ−ルを前記固定スクロールの第一固定ラップと第二固定ラップそれぞれに適合するように噛み合わせて第一圧縮室1と第二圧縮室2を形成するとともに各軸貫通穴に通して旋回スクロ−ルを駆動するシャフトと各旋回スクロ−ル端板背面側にそれぞれ設けた自転防止機構から2組の圧縮機構部が構成される。
【0015】
また第一及び第二旋回スクロ−ルの軸貫通穴内には旋回スクロ−ルの遠心力やガス圧縮荷重を直接支える旋回軸受が装着されている。そして、その荷重を支える軸受の幅は圧縮室を形成する旋回ラップの高さの中心点と旋回スクロ−ルの重心点間の距離におよそ等しく設定される。
【0016】
次に渦巻き中心と旋回スクロ−ルの軸貫通穴の軸心の関係を渦巻き曲線にインボリュ−ト曲線を用いた場合について見ると、旋回ラップの一部である球根状のボスの外壁はインボリュ−ト曲線で形成され、そのボスのおよそ中心に設けた軸貫通穴の軸心はインボリュ−ト曲線の基礎円中心に対して偏心して設けられ、その偏心量は旋回半径の半分から旋回半径にラップ歯厚を加えた値の半分に設定される。
【0017】
モータの動力を旋回軸受を介して旋回スクロ−ルに伝達するシャフトを両歯付き固定スクロ−ルの軸貫通穴と2個の旋回スクロ−ルに設けたそれぞれの軸貫通穴に通し動力源に近い第一フレ−ム中心部に設けた主軸受と第二フレ−ム中心部に設けた副軸受によりシャフトが支えられている。
【0018】
前記主軸受と副軸受それぞれに支えられるシャフトの主軸と副軸の軸心を結ぶシャフトの回転中心に対して、固定スクロ−ルと旋回スクロ−ルのそれぞれの渦巻き中心の偏心量すなはち旋回半径分だけ偏心した2個の旋回スクロ−ルそれぞれの旋回軸受に挿入された主軸側の第一旋回軸と副軸側に近い第二旋回軸が互いに偏心方向を180°対向させて上下ないしは前後に突出した形状のシャフトを用いることにより、それぞれの旋回スクロ−ルが相対的に180°対向した位置で駆動される。
【0019】
また第一旋回軸と第二旋回軸間に設けた連結部A及び副軸受と第二旋回軸間に設けた連結部Bそれぞれの最小の長さとその形状は2個の旋回スクロ−ルをシャフトの定位置に組み込む手順から決定される。
【0020】
すなはち連結部Aの最小長さは旋回軸受の幅の2倍強となり、連結部Bのそれは旋回軸受の幅の1倍強の寸法で形成される。
【0021】
さらに、シャフト全体で剛性が最も低くなる連結部Aの中央括れ部の厚さは、必要な強度を確保するためと組み立て時旋回スクロ−ルの組み入れを可能とするように連結部Aの全体形状が決められる。連結部Bも同様に強度と旋回スクロ−ルの組み入れを可能とするようにその形状が決められる。
【0022】
前記主軸受と副軸受を備えたそれぞれのフレ−ムとそれぞれに対応する旋回スクロ−ル端板の背面側との間に複数個設けたピンクランク機構ないしは往復摺動面を有するオルダム機構で構成される自転防止機構がそれぞれ1組づつ装着される。その自転防止機構の一部は圧縮室を形成する旋回ラップの端板背面側に掛るように配置されて小型化が図られている。
【0023】
また、2か所の旋回スクロ−ルに旋回軸を加えた質量の重心位置がシャフト回転中心に対し偏心し互いに180°位相反転していることから生じる反対方向の遠心力と釣り合わせるバランサ−が主軸ないしは副軸から外側に離れた位置にそれぞれ各1個づつ向きを互いに反転させてシャフトに設けられ、各バランサ−の重心とそれぞれに近い旋回軸に作用する遠心力の作用中心との距離を等しくして互いのバランサ−形状を合わせるように構成されている。
【0024】
当該圧縮機の運転中は、旋回スクロ−ルの外周部が低圧空間となり、圧縮ガスが吐出される両歯付き固定スクロ−ルの仕切り板中央の軸貫通穴内は高圧空間が形成される。
【0025】
高圧空間内に吐出された圧縮ガスは仕切り板内に設けられた吐出孔から直接外部に吐出されるか、または固定スクロ−ル外壁に設けた吐出通路を経て副軸受を有する第二フレ−ムに設けた高圧室に流入した後吐出管から外部に吐出される。 【0026】
しかし、旋回スクロ−ル内をシャフトが貫通する上記構成においては、仕切り板内の高圧空間と旋回スクロ−ル外周部の低圧空間を遮断してシ−ルする機構が必要となるが、そのオイルフリ−機構に適した手段として2個の旋回スクロールそれぞれの旋回ラップ先端側の旋回軸受に隣接した位置に軸シ−ルを装着して旋回軸受内部を低圧空間とする方法がある。
【0027】
他の油潤滑構造に適した手段としては2個の旋回スクロ−ル端板背面側とそれらに近い第一フレ−ム及び第二フレ−ムそれぞれとの間にそれぞれリングシ−ルを設けて旋回軸受内部を高圧空間とする方法がある。
【0028】
旋回スクロ−ルと固定スクロ−ルのそれぞれのラップ先端隙間を低減して圧縮室間をシ−ルする方法として、ラップ先端にチップシ−ルを装着する手段があり、また旋回スクロ−ル端板背面側に高圧ないしは低圧と高圧の中間敵圧力を作用させてそれぞれの旋回スクロ−ルを固定スクロ−ル側に押し付ける方法がある。
【0029】
上記発明の技術手段に基づく働きは以下の通りである。
【0030】
両歯付き固定スクロ−ルの圧縮室を分離する仕切り板の内部や外周のフレ−ムを固定する厚肉部を利用して設けたガス通路により圧縮ガスの吐出が容易となる。また、第一と第二圧縮機構部へ流入し圧縮されて吐出されるタイムングを180°位相をずらすことによりガス流速が平均化されて圧力脈動が軽減すると同時に圧力損失も低減する。
【0031】
シャフトに設けた2個の旋回軸は互いに180°対向しているので旋回軸に作用する2組の圧縮機構部から生じるガス圧縮荷重及び旋回スクロ−ルを主体とする遠心力は互いに方向が逆となって相殺される。
【0032】
但し、これら荷重に伴うモ−メントは残るので、ガス荷重に伴うモ−メントを受ける小さな荷重が主軸受と副軸受に作用し、遠心力に伴うモ−メントは主軸受と副軸受近傍に各1個設けた小さなバランサ−で解消させられる。
【0033】
また両歯付き固定スクロ−ルは一体としてもよいが、圧縮室を分割する仕切り板を渦巻き溝底面に平行に2分割した面に設けた空間に吐出バイパス弁などの制御弁を装着することにより、圧縮機の特性向上が図られる。
【0034】
旋回軸受や主軸などに転がり軸受を採用し、自転防止機構として転がり軸受を用いたピンクランク機構を適用すると同時に旋回スクロ−ル中央ボス内で旋回軸受の旋回ラップ先端側の隣接した位置に軸シ−ルを2か所装着して高低圧空間を分離することにより、吐出空間に曝された部分を除くシャフトを低圧空間に置いたオイルフリ−機構が容易に達成できる。
【0035】
または、旋回軸受や主軸などに滑り軸受を採用し、自転防止機構として往復摺動面を有するオルダム機構を適用すると同時に旋回スクロ−ル端板背面とフレ−ムとの間にリングシ−ル機構を装着して高低圧空間を分離することによりシャフト全体を高圧空間に置いた油潤滑構造が容易に得られる。
【0036】
上記両歯付き固定スクロ−ルを用いた2組の圧縮機構部をさらに複数追加して容量拡大を図る別の発明は容易に考えられる。
【0037】
別の発明として、第一圧縮機構部の固定スクロ−ルと旋回スクロ−ルの渦巻き状溝間で形成される最小密閉空間の容積と第二圧縮機構部の渦巻き状溝間で形成される最大密閉空間の容積を同等となるように構成した上で前記最小密閉空間と最大密閉空間を連通する通路を設けることにより、2段圧縮機構が容易に構成される。
【0038】
【発明の実施の形態】
以下、本発明の一実施例を図1ないしは図19を用いて説明する。
【0039】
図1は本発明の一実施例を示したオイルフリ−機構に適用した場合の複数連結式スクロ−ル圧縮機の断面図である。断面で示されている部分に第一フレーム11と左端に配置された第二フレーム12との間に挟み込むように設けられた隣接している2組の圧縮機構部が示され、第一フレーム11に固定されたケ−ス16内に隠れて見えない部分に2組の圧縮機構部を貫くシャフト6に直結したモ−タが収納されている。
【0040】
また、図2に示されているように円柱の両端面から互いに中央に向けて内側に同じ幅と深さで設けられた2つの渦巻き状の固定溝3bと3dを中央で仕切る仕切り板3aのおよそ中央に円形の軸貫通穴3fを設けて両歯付き固定スクロ−ル3が構成されている。
【0041】
その固定スクロ−ル3の右側の第一固定溝3bに、円形端板4aの片面中央部に外壁の輪郭が渦巻き曲線で形成される球根状の軸受ボス4cから外側に向けて一定幅の渦巻き状の突起で形成される高さが一様な旋回ラップ4bを直立させて設けるとともに軸受ボス4cのおよそ中央に開けられた端板4aをも貫通する軸貫通穴4dを有する第一旋回スクロ−ル4の前記旋回ラップ4bを噛み合わせて第一圧縮室1が形成され、これらに加えて図4に示されているように当該旋回スクロ−ル端板4aと第一フレ−ムとの間に設けた3本のクランク軸15から構成される第一自転防止機構13及びおよそ図面中央を横に貫通する偏心した旋回軸を有するシャフト6から第一圧縮機構部が構成されている。
【0042】
また図3に示されているように両歯付き固定スクロ−ル3の左側に設けた第二固定溝3dに、第一旋回スクロ−ル4の鏡像となる第二旋回スクロ−ル5の旋回ラップ5bを噛み合わせて第二圧縮室2が形成され、これらに加えて当該旋回スクロ−ル端板5aと第二フレ−ムとの間に設けた3本のクランク軸15から構成される第二自転防止機構14及びおよそ図面中央を横に貫通する偏心した旋回軸を有するシャフト6から第二圧縮機構部が構成されている。
【0043】
第一圧縮室1と第二圧縮室2を形成する渦巻きは非対称ラップ形状で形成されているが、対称ラップ形状でも良く、その巻き方向は図2と図3から判るように第二フレ−ム12側から見た場合にどちらも反時計回りの同一方向で形成され、渦巻き溝が開口する側から見た場合には巻き方向は逆転して互いに鏡像の関係にある。
【0044】
従って、一方向から渦巻き中心を合わせて見た場合の第一圧縮室1と第二圧縮室2の渦巻きの巻き始め位置と巻終り位置は同一で重なるように形成されて作動ガスの吸い込み位置と圧縮ガスの吐出位置は同じになる。それに合わせて、固定スクロ−ル仕切り板3aの吸い込み位置には第一圧縮室1と第二圧縮室2を連通する連通路3iが設けられ、仕切り板3a中央の吐出位置には軸貫通穴3gが設けられて吐出空間30が形成されている。
【0045】
そして、固定スクロ−ル3の固定溝の巻き終り外側には第一圧縮室1と第二圧縮室2の吸入側を連通する連通路3iが設けられるとともに圧縮ガスを吐出する通路として、端板中央部に設けた吐出空間30に開口する吐出孔3gとそれにつながる吐出通路3hが設けられ、第二フレームに設けられた吐出通路12cから図1の左端に設けられた高圧室31に吐出された後吐出管18から外部に出される。
【0046】
旋回スクロ−ルの球根形状した軸受ボス4cの詳しい形状を図6の中央部拡大図である図13を用いて説明する。
【0047】
旋回ラップ4b及び軸受ボス4cの輪郭はインボリュ−ト曲線から形成され、軸受ボス外壁の点▲P▼はインボリュ−ト曲線の開始位置を表す。
【0048】
点▲P▼の左に形成されている半円弧形状の壁面は第一固定ラップ3c巻き始め先端壁面に対する包絡線として示され、その先端壁面がラップ歯厚を直径とする半円弧形状をしている場合は、旋回スクロ−ル側の点▲P▼から始まる半円弧形状の直径は旋回半径の2倍にラップ歯厚を加えた値に等しく設定される。
【0049】
また、図中+印の中心点を表すOaはインボリュ−ト曲線の基礎円中心をObは軸貫通穴4d及び旋回軸受4eの中心点を表している。
【0050】
そして、Oaに対するObの相対的な座標は、点▲P▼とこれより半周すなはちπラジアン外に進んだ点▲Q▼との中間点ないしは第一チップシ−ル22が点▲Q▼近傍まで設けられている場合には第一チップシ−ルの内線で点▲Q▼に最も近い点と点▲P▼との中間点として設定される。
【0051】
図7に示す旋回軸受4eには転がり軸受が用いられているが、旋回軸表面との接触長さすなはち軸受幅Lbは旋回スクロ−ルの重心点と旋回ラップの高さ方向の中央位置との距離から決められ、Lbはこの距離より1割前後から2割長くするのが好適であり、第二旋回スクロ−ルの旋回軸受5eも同様に構成される。
【0052】
これら旋回軸受を複数個の玉軸受で構成する場合には、前記Lbは両端に配置された玉軸受の中心間距離に相当する。
【0053】
さらには、軸貫通穴4dの吐出空間30に連通する第一旋回ラップ先端側と低圧空間に連通する端板3a背面側の空間を仕切る軸シ−ル7が第一旋回軸受4eの第一旋回ラップ先端側に設けられている。第二旋回スクロールの軸貫通穴5d内にも同様に高低圧空間を仕切る軸シ−ルが第二旋回軸受5eの吐出空間側に設けられている。
【0054】
固定スクロ−ルの平面図である図12の中央部拡大図の図14に示した+印の中心点を表すOaはインボリュ−ト曲線の基礎円中心をObは軸貫通穴3fの中心を表している。Obの位置はシャフトの回転中心すなはち主軸受11aと副軸受12aの軸心を結ぶ線におよそ一致しており、その軸貫通穴の直径は旋回軸の直径に旋回半径の2倍を加えた値に等しいかそれより若干大きく設定されている。
【0055】
図15のシャフト6に設けた第一旋回軸6aと第二旋回軸6bは主軸6cと副軸6dの軸心に対して共に旋回半径だけ偏心しているのと同時に互いに180°対向した位置に配置されている。
【0056】
これら旋回軸は第一旋回スクロ−ルの軸貫通穴4d内に装着された旋回軸受4eと第二旋回スクロ−ルの軸貫通穴5d内に装着された旋回軸受5eにそれぞれ挿入される。
【0057】
また、第一旋回軸6aと第二旋回軸6bとの間には連結部A6eが、第二旋回軸6bと副軸6dとの間には連結部B6fが設けられているが、これら連結部2か所の形状はシャフトに加わる荷重を支えるに必要な強度を確保するためと第一旋回スクロ−ル4と第二旋回スクロ−ル5を所定の位置まで組み込む方法から決められる。
【0058】
図中の連結部Aの長さL1とL2は共に第一旋回スクロ−ルの旋回軸受4eに軸シ−ル7の幅を加えた長さにおよそ等しく、第二旋回軸6bの長さL3は旋回軸受5eに軸シ−ル7の幅を加えた長さにおよそ等しい。そして、連結部Bの長さL4はL1かL3の内長いほうに合わせる。
【0059】
図1の慣性力が作用する軸系をモデル化した図19に示すようにシャフトの第一旋回軸に作用する第一旋回スクロ−ル4と第一旋回軸6aの遠心力W2と第二旋回軸に作用する第二旋回スクロ−ル5と第二旋回軸6bの遠心力W1は互いに方向が反対で大きさがおよそ等しいので力は釣り合って相殺されるが、残される回転モ−メントを消去するために図に示すような小さな遠心力W3とW4を有するバランサ−が主軸受11aと副軸受12aの前後にそれぞれ配置される。そして、W3とW4の大きさはW1とW2よりそれぞれ遠ざかるほど小さな値で済むことになる。
【0060】
また図15に示すシャフト6の外観図からおよそ判別できるように、第一旋回軸6a、第二旋回軸6b、主軸6c及び副軸6dの径を全て等しくして、連結部B6fよりおよそ2倍長い連結部A6eを設けて構成させることもできる。
【0061】
以上の如く構成された複数連結式スクロ−ル圧縮機の働きについて以下説明する。
【0062】
モ−タに直結されたシャフト6が回転することにより、第一旋回軸6aから動力が伝達されて第一旋回スクロ−ル4が駆動されるが、3本のクランク軸15からなる自転防止機構により第一旋回スクロ−ルは円軌道上の公転運動すなはち旋回運動を行い固定スクロ−ル3との間に形成される第一圧縮室1に外周からガス吸い込んだ後に圧縮して中央の吐出空間30に流出させる。
【0063】
第二旋回軸6bから動力が伝達される第二旋回スクロ−ル5も第一旋回スクロールと同様の働きをするが、旋回運動及び圧縮行程は第一旋回スクロールより180°位相のずれた状態となるために、圧縮室へのガスの流入及び吐出空間へのガスの流出は第一圧縮室1と第二圧縮室2から交互に行われて、吸い込み側と吐出側のガス速度の変動が少なく圧力脈動も小さくなる。
【0064】
吐出空間に流出したガスは固定スクロールに設けた吐出孔及び吐出通路から第二フレ−ム内の吐出通路を経て高圧室31に流入し、吐出管から外部に流出する。
【0065】
そして、第一旋回スクロ−ル4と第二旋回スクロ−ル5に独立して構成されることによりガス圧縮に伴なうガス圧縮荷重及び旋回スクロ−ルの遠心力の分散による旋回軸受への負荷が大幅に軽減することや第一圧縮室と第二圧縮室の旋回運動が互いに180°位相が異なることからガス圧縮に伴なうガス圧縮荷重及び旋回スクロ−ルの遠心力が相殺されて、主軸受11a及び副軸受12aへの負荷の大幅な軽減が可能となる。
【0066】
また、第一と第二の旋回軸受、主軸受と副軸受及び3個2組あるピンクランク機構の各軸受それぞれを転がり軸受で構成すると同時に2か所ある旋回軸受の吐出空間側の隣接した位置に設けた軸シ−ルにより高低圧空間が仕切られることにより容易にオイルフリ−機構が構成される。
【0067】
次に、図1の発明では固定スクロ−ルは一体構成としたが、図9に示した端板中央を縦に割って固定スクロ−ルを2分割にした端板面にガス通路や弁機構を装着した後合わせて一体として構成することも容易に類推できる。
【0068】
また第一圧縮室と第二圧縮室の渦巻き形状及び圧縮行程の位相を変えることも容易に類推できるが、この場合に第一旋回スクロールの組み込み上第二旋回軸の偏心量は第一旋回軸の偏心量より小さくする必要がある。
【0069】
図1の発明はオイルフリ−機構を前提とした構成で示しているが、ケ−ス内に潤滑油を封入して滑り軸受で構成された各摺動部に油を供給して潤滑する構成を図示していないが、高低圧空間の仕切り位置を図1の軸シ−ルを廃止して旋回スクロ−ルの端板とフレ−ムとの間に移動して公知技術となっているリングシ−ルを装着するとともに自転防止機構としてオルダム機構を用いて、その内側に作用する高圧により旋回スクロ−ルを押し付ける構成とすることにより容易に達成される。
【0070】
さらに図1の発明から容易に類推できる別の発明として、第一圧縮室の吐出直前に形成される最小密閉空間の容積と第二圧縮室の圧縮行程開始直前の最大密閉空間の容積を同一に形成し該最小密閉空間と該最大密閉空間を連通する通路を設けることにより2段式圧縮機構が容易に達成される。
【0071】
【発明の効果】
以上の如く構成された複数連結式スクロール圧縮機において、第一及び第二旋回スクロ−ル端板背面に設けた空間に自転防止機構を装着することにより、旋回スクロ−ルの端板の大きさは自転防止機構を除く渦巻き形状から決められることから圧縮機の小型軽量化が図れる効果がある。
【0072】
2個の旋回スクロ−ルを独立させると同時に180°対向させた動きを与えることにより、2か所の旋回軸受や主軸受と副軸受さらには自転防止機構に作用する遠心力やガス圧縮荷重を分散させるとともに大幅に軽減できることにより軸受の耐久性が向上する。さらに、第一圧縮室と第二圧縮室で発生するガス圧縮荷重が互いに相殺されてトルク変動が小さくなって低振動化が図れる効果がある。
【0073】
また、主軸受や副軸受に作用する荷重は大幅に軽減できることや2個ある独立して構成された旋回スクロールそれぞれの圧縮室間シ−ル隙間の最適化を図ること、そして剛性の高い固定スクロール側を両歯とすることにより渦巻きの加工精度が高められて高効率化が図れる効果がある。
【0074】
さらには、シャフトの副軸をさらに延ばして4組以上の圧縮機構部を連結して大容量化を図ることや両歯付き固定スクロ−ルの中央吐出空間を2分することにより2段圧縮機構も容易に構成できる効果がある。
【図面の簡単な説明】
【図1】本発明のスクロール圧縮機の断面図
【図2】図1のA−A断面図
【図3】図1のB−B断面図
【図4】図1のC−C断面図
【図5】図1のD−D断面図
【図6】第一旋回スクロールの平面図
【図7】図6のA−A断面図
【図8】第一圧縮室側の両歯付き固定スクロールの側面図
【図9】図8のA−A断面図
【図10】図8のB−B断面図
【図11】第二旋回スクロールの平面図
【図12】第二圧縮室側の両歯付き固定スクロールの側面図
【図13】図6の中央拡大図
【図14】図8の中央拡大図
【図15】シャフトの正面図
【図16】図15のA矢視図
【図17】図15のB−B断面図
【図18】図15のC−C断面図
【図19】シャフトに作用する遠心力のモデル図
【符号の説明】
1 第一圧縮室
2 第二圧縮室
3 固定スクロ−ル
3a 仕切り板
3b 第一固定溝
3c 第一固定ラップ
3d 第二固定溝
3e 第二固定ラップ
3f 軸貫通穴
3g 吐出孔
4 第一旋回スクロ−ル
4a 端板
4b 旋回ラップ
4c 軸受ボス
4d 軸貫通穴
4e 旋回軸受
5 第二旋回スクロ−ル
5a 端板
5b 旋回ラップ
5c 旋回ボス
5d 軸貫通穴
5e 旋回軸受
6 シャフト
6a 第一旋回軸
6b 第二旋回軸
6c 主軸
6d 副軸
6e 連結部A
6f 連結部B
7 第一軸シ−ル
8 第二軸シ−ル
9 第一バランサ
10 第二バランサ
11 第一フレ−ム
11a 主軸受
12 第二フレ−ム
12a 副軸受
13 第一自転防止機構
14 第二自転防止機構
15 クランク軸
30 吐出空間
31 高圧室

[Document name] Specification [Title of invention] Multiple connection type scroll compressor [Claims]
1. A groove having a spiral wall surface formed by a wall surface parallel to a central axis in a cylinder having a uniform end face width, or a fixed scroll provided with an upright wrap on an end plate and one side of a circular end plate. A compression chamber is formed by meshing the spiral shaped parts of the swirl scroll provided with a wrap formed by spiral protrusions perpendicular to the end plate and having a uniform height, and a rotation prevention mechanism is connected to the swirl scroll. In the cylindrical compressor
(1) A spiral-shaped first fixing groove and a second fixing groove are provided on both sides of a partition plate parallel to the end face provided inside the cylinder so that the groove depths are uniform and equal, and at the same time, they are in a mirror image relationship with each other. A fixed scroll with both teeth consisting of a circular shaft through hole in the center and a discharge hole drilled from the hole toward the outer circumference.
(2) The outer peripheral side of the protrusion having a spiral wall surface perpendicular to the end plate provided on one side of the circular end plate and having a uniform height is formed by a first swirl wrap having a constant width, and is formed on the inner peripheral side thereof. A swivel bearing composed of one or more is mounted on the inner wall of the shaft through hole that penetrates the bearing boss and the end plate and opens on both end surfaces at approximately the center of the spherical bearing boss to be formed. The first swivel scroll in which a part of the rotation prevention mechanism is configured on the back side, which is the back side of the end plate provided with the swivel wrap.
(3) A spiral-shaped second swirl lap, which has a mirror image relationship at the same height as the first swivel lap, is fixed to one side of the circular end plate, and a swivel bearing similar to the first swivel scroll and rotation prevention. A second swirl scroll configured with a part of the mechanism.
(4) A substantially circular outer peripheral portion is fixed to one end of the fixed scroll, a main bearing is provided in the central portion, and a part of the rotation prevention mechanism mounted between the end plates of the first swivel scroll constitutes a part. The first frame that was made.
(5) A substantially circular outer peripheral portion is fixed to the opposite end surface of the first frame of the fixed scroll, an auxiliary bearing is provided in the central portion, and the outer peripheral portion is mounted between the end plates of the second swivel scroll. The second frame that is part of the rotation prevention mechanism.
(6) The first swivel shaft and the second swivel shaft inserted into the swivel bearings of the first swivel scroll and the second swivel scroll are provided so that the eccentric directions with respect to the center of rotation are 180 ° opposite to each other. A connecting portion A having a width of more than twice the width of the swivel bearing provided in the first swivel scroll is provided between the swivel shafts of the above, and the first swivel scroll is provided between the second swivel shaft and the auxiliary shaft. A connecting portion B having a width of more than 1 times the width of the longer swivel bearing among the swivel bearings provided on the wheel or the second swivel scroll is provided, and further, between the main shaft and the first swivel shaft and A shaft in which balancers of the same size are provided between the auxiliary shaft and the second swivel shaft.
(7) The first rotation prevention mechanism for preventing the rotation of the first rotation scroll provided between the end plate of the first rotation scroll and the first frame.
(8) A second rotation prevention mechanism for preventing the rotation of the second rotation scroll provided between the end plate of the second rotation scroll and the second frame.
A multi-link scroll compressor characterized by being provided as described above.
2. A partition plate having a bypass hole that communicates between a closed space that does not communicate with a high-low pressure space and a bypass hole that is provided by digging a surface in which a partition plate that separates two compression chambers is divided into two parts parallel to the bottom surface of the spiral groove. The multi-communicating scroll compressor according to claim 1, further comprising a fixed scroll with both teeth, which is provided in a closed space and equipped with a valve mechanism so as to close the bypass hole. ..
3. A double-toothed fixed scroll in which a spiral-shaped first fixing groove and a second fixing groove having the same winding direction are individually provided on both sides of a partition plate substantially parallel to both end faces of a cylinder. The first swivel cylinder provided with the first swivel lap that fits into each of the first fixing groove and the second fixing groove and the second swivel cylinder provided with the second swivel lap are meshed with each other to form the first compression chamber and the first swivel space, respectively. (Ii) In a scroll compressor configured to form a compression chamber and to perform a turning motion in which the first turning scroll and the second turning scroll are synchronized with each other, the first fixed groove and the first After configuring the volume of the minimum closed space of the first compression chamber formed between one swirl lap and the volume of the maximum closed space of the second compression chamber formed between the second fixing groove and the second swirl lap equally. A multi-connection type scroll compressor characterized in that a passage connecting the minimum closed space and the maximum closed space is provided in a partition plate of a fixed scroll with both teeth to form a two-stage compression mechanism.
Description: TECHNICAL FIELD [Detailed description of the invention]
[0001]
[Technical field to which the invention belongs]
The present invention relates to a multi-coupled scroll compressor suitable for increasing the capacity used in a compressor for refrigeration and air conditioning that uses gas as a working fluid and a compressor for air.
0002.
[Conventional technology]
A scroll compressor is usually composed of a set of compression mechanism parts that form two compression chambers, but a spiral shape that forms a compression chamber is a constraint condition when increasing the capacity of such a compressor. The lap strength, the centrifugal force of the swivel scroll, the durability of the bearing that receives the gas compressive load, and the size of the machine that processes the spiral wrap.
0003
As a means of overcoming these constraints, compression is totaled by combining a plurality of sets of compression mechanism units that satisfy the constraints from the same idea that the size of each compressor is reduced by using a plurality of compressors. There is a way to increase the capacity of the machine.
0004
One of the configurations in which a plurality of sets of compression mechanism portions are provided adjacent to each other is a double-toothed swivel scroll that constitutes two sets of compression mechanism portions by forming two spiral wraps on both sides of the end plate of the swivel scroll. It has been proposed conventionally.
0005
Among these, JP-A-9-126159 and JP-A-9-324770 are known examples of a double-toothed swivel scroll having a shaft through hole for passing a power transmission shaft in the center of the swivel scroll. Can be mentioned.
Further, as a known example of a double-toothed fixed scroll in which two spiral wraps are provided on both sides of the central end plate of the fixed scroll to form two sets of compression mechanism portions, JP-A-4- Examples thereof include Japanese Patent Application Laid-Open No. 101089 and Japanese Patent Application Laid-Open No. 4-159478.
0006
[Problems to be Solved by the Invention]
The problem to be solved by the present invention is that in a double-toothed swivel scroll having a shaft through hole, a rotation prevention mechanism for giving a revolving motion on a circular orbit to the swivel scroll is configured to be outside the spiral wrap. Since it has to be provided on the outer circumference of the protruding end plate, there is a problem that the outer diameter of the compressor is significantly increased.
0007
In addition, the bearing load increases due to the increase in bearing load due to the simultaneous action of the gas compression loads for the two sets of compression mechanisms in the same direction, and the increase in centrifugal force due to the increase in the weight of the swivel scroll associated with both teeth. Therefore, there is a problem that the durability is lowered and a balancer that balances this centrifugal force is also increased.
0008
Furthermore, since the wraps are fixed on both sides of the swivel scroll end plate and integrated, the movement of the swivel scroll in the axial direction is controlled to adjust the gaps between the two lap tips and seal. If this is not possible and the thrust force acting on the swivel scroll is unbalanced, it becomes difficult to control, and there is a problem that vibration increases and reliability and performance deteriorate.
0009
In addition, if wraps are provided on both sides of the end plate of the swivel scroll, which has considerably lower rigidity than the frame that supports the wrap of the fixed scroll, the machining accuracy will be significantly reduced, and at the same time, it will be large due to the load and temperature changes that act during operation. There is a problem that deformation occurs and performance and durability are deteriorated.
0010
Furthermore, in the configuration of the fixed scroll with both teeth, there is a problem that the bearing diameter on the frame side becomes smaller than the bearing diameter on the swivel scroll side from the assembly, and the load capacity decreases, and the bearing diameter. There was a problem that productivity decreased because of the difference. In addition, there is a problem of damage because the shaft seal between high and low pressure is also used as a slide bearing.
0011
The present invention provides an air compressor and a compressor for refrigeration and air conditioning that can simultaneously achieve compactness, weight reduction and efficiency improvement while ensuring reliability by dispersing the bearing load when increasing the capacity of the compressor. With the goal.
0012
[Means for solving problems]
Hereinafter, means for solving the above-mentioned conventional problems will be described.
0013
The tip surface of the first fixed wrap having a spiral wall surface formed by a wall surface parallel to the central axis of a cylinder having a uniform height is on the same plane as the end surface of the cylinder, and the spiral groove portion is opened. On the opposite surface, the fixed scroll provided with the end plate forming the bottom surface of the spiral groove portion and the spiral shape matching the tip surface of the first fixed wrap match, that is, the second fixed having a spiral shape that is in a mirror image relationship with each other. Both teeth from a circular shaft through hole provided in the center of a partition plate formed by integrating the end plates of a fixed cylinder having a wrap with the back surfaces facing each other and a discharge hole formed from the hole toward the outer circumference. A fixed scroll is constructed.
0014.
A bulb-shaped bearing boss having a shaft through hole is provided in the center of one side of the end plate, and a swivel wrap having a constant width and a uniform height formed by a spiral wall surface is provided on the outside thereof. The first swivel scroll provided upright and the second swivel scroll provided with the swivel lap that is in a mirror image relationship with the first swivel scroll are adapted to the first fixed lap and the second fixed lap of the fixed scroll. A shaft that meshes with each other to form a first compression chamber 1 and a second compression chamber 2 and drives a swivel scroll through each shaft through hole, and a rotation prevention mechanism provided on the back side of each swivel scroll end plate. Two sets of compression mechanism units are configured from.
0015.
Further, a swivel bearing that directly supports the centrifugal force and the gas compression load of the swivel scroll is mounted in the shaft through hole of the first and second swivel scrolls. The width of the bearing that supports the load is set approximately equal to the distance between the center point of the height of the swivel lap forming the compression chamber and the center of gravity of the swivel scroll.
0016.
Next, looking at the relationship between the center of the spiral and the axial center of the shaft through hole of the swirl scroll when using the involute curve for the swirl curve, the outer wall of the bulb-shaped boss, which is part of the swirl lap, is involuted. The axis of the shaft through hole formed at the center of the boss is eccentric to the center of the base circle of the spiral curve, and the amount of eccentricity wraps from half the turning radius to the turning radius. It is set to half of the value including the tooth thickness.
[0017]
The shaft that transmits the power of the motor to the swivel scroll via the swivel bearing is passed through the shaft through hole of the fixed scroll with both teeth and the shaft through hole provided in the two swivel scrolls to serve as the power source. The shaft is supported by a main bearing provided in the center of the first frame and an auxiliary bearing provided in the center of the second frame.
0018
The amount of eccentricity of the spiral center of each of the fixed scroll and the swivel scroll, that is, swivel, with respect to the rotation center of the shaft connecting the spindle and the sub-axis of the shaft supported by the main bearing and the sub bearing, respectively. Two swivel scrolls eccentric by the radius The first swivel shaft on the spindle side and the second swivel shaft near the sub-shaft side, which are inserted into the swivel bearings of each, face each other by 180 ° in the eccentric direction and move up and down or back and forth. By using a shaft having a protruding shape, the respective swivel scrolls are driven at positions facing each other by 180 °.
0019
Further, the minimum length and shape of each of the connecting portion A provided between the first swivel shaft and the second swivel shaft and the connecting portion B provided between the auxiliary bearing and the second swivel shaft have two swivel scrolls as shafts. It is determined from the procedure of incorporating in place.
0020
That is, the minimum length of the connecting portion A is a little over twice the width of the swivel bearing, and that of the connecting portion B is formed with a dimension of a little over one times the width of the swivel bearing.
0021.
Further, the thickness of the central constriction portion of the connecting portion A having the lowest rigidity in the entire shaft is the overall shape of the connecting portion A so as to secure the required strength and to enable the incorporation of the swivel scroll during assembly. Is decided. The shape of the connecting portion B is also determined so as to allow the incorporation of strength and swivel scrolls.
0022.
It is composed of a plurality of pin crank mechanisms or an old dam mechanism having a reciprocating sliding surface provided between each frame having the main bearing and the auxiliary bearing and the back side of the corresponding swivel scroll end plate. One set of each rotation prevention mechanism is installed. A part of the rotation prevention mechanism is arranged so as to hang on the back surface side of the end plate of the swirl wrap forming the compression chamber to reduce the size.
[0023]
In addition, there is a balancer that balances the centrifugal force in the opposite direction generated by the fact that the position of the center of gravity of the mass of the two swivel scrolls plus the swivel axis is eccentric with respect to the center of rotation of the shaft and is 180 ° phase inverted from each other. The distance between the center of gravity of each balancer and the center of action of the centrifugal force acting on the swivel shaft close to each other is set on the shaft by reversing the direction of each one at a position distant from the main shaft or the sub shaft to the outside. They are configured to be equal and match each other's balancer shapes.
0024
During the operation of the compressor, the outer peripheral portion of the swirl scroll becomes a low-pressure space, and a high-pressure space is formed in the shaft through hole in the center of the partition plate of the fixed scroll with both teeth to which the compressed gas is discharged.
0025
The compressed gas discharged into the high-pressure space is directly discharged to the outside from a discharge hole provided in the partition plate, or a second frame having an auxiliary bearing via a discharge passage provided in the outer wall of the fixed scroll. After flowing into the high-pressure chamber provided in the above, the gas is discharged to the outside from the discharge pipe. 0026
However, in the above configuration in which the shaft penetrates the inside of the swirl scroll, a mechanism for blocking and sealing the high pressure space in the partition plate and the low pressure space on the outer periphery of the swirl scroll is required. -As a means suitable for the mechanism, there is a method of mounting a shaft seal at a position adjacent to the swivel bearing on the tip side of the swivel lap of each of the two swivel scrolls to make the inside of the swivel bearing a low pressure space.
[0027]
As a means suitable for other oil-lubricated structures, ring seals are provided between the back side of the two swivel scroll end plates and the first frame and the second frame close to each other to swivel. There is a method of making the inside of the bearing a high pressure space.
[0028]
As a method of reducing the gap between the lap tips of the swivel scroll and the fixed scroll to seal between the compression chambers, there is a means of attaching a tip seal to the lap tip, and the swivel scroll end plate. There is a method in which a high pressure or an intermediate enemy pressure between low pressure and high pressure is applied to the back side to press each swivel scroll to the fixed scroll side.
[0029]
The functions based on the technical means of the above invention are as follows.
[0030]
The compressed gas can be easily discharged by the gas passage provided by using the thick portion for fixing the frame inside or around the partition plate that separates the compression chamber of the fixed scale with both teeth. Further, by shifting the phase of the timing that flows into the first and second compression mechanism units and is compressed and discharged by 180 °, the gas flow velocity is averaged, the pressure pulsation is reduced, and the pressure loss is also reduced.
0031
Since the two swivel shafts provided on the shaft face each other by 180 °, the gas compression load generated from the two sets of compression mechanisms acting on the swivel shafts and the centrifugal force mainly composed of the swivel scroll are opposite to each other. Will be offset.
[0032]
However, since the moments due to these loads remain, a small load that receives the moments due to the gas load acts on the main bearing and the auxiliary bearing, and the moments due to the centrifugal force are located near the main bearing and the auxiliary bearing. It can be solved with one small balancer.
0033
The fixed scroll with both teeth may be integrated, but by installing a control valve such as a discharge bypass valve in the space provided on the surface where the partition plate that divides the compression chamber is divided into two parts parallel to the bottom surface of the spiral groove. , The characteristics of the compressor can be improved.
0034
Rolling bearings are used for swivel bearings and spindles, and a pin crank mechanism using rolling bearings is applied as a rotation prevention mechanism. At the same time, the shaft shaft is located adjacent to the swivel lap tip side of the swivel bearing in the center boss of the swivel scroll. By mounting two bearings to separate the high and low pressure spaces, an oil free mechanism in which the shaft excluding the portion exposed to the discharge space is placed in the low pressure space can be easily achieved.
0035.
Alternatively, a slide bearing is used for the swivel bearing and spindle, and an oldham mechanism with a reciprocating sliding surface is applied as a rotation prevention mechanism, and at the same time, a ring seal mechanism is installed between the back surface of the swivel scroll end plate and the frame. By mounting and separating the high and low pressure spaces, an oil-lubricated structure in which the entire shaft is placed in the high pressure space can be easily obtained.
0036
Another invention for expanding the capacity by further adding a plurality of two sets of compression mechanism portions using the double-toothed fixed scroll can be easily considered.
0037
As another invention, the volume of the minimum enclosed space formed between the fixed scroll of the first compression mechanism and the spiral groove of the swirling scroll and the maximum formed between the spiral grooves of the second compression mechanism. The two-stage compression mechanism is easily configured by providing a passage connecting the minimum closed space and the maximum closed space after configuring the closed spaces to have the same volume.
[0038]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 19.
[0039]
FIG. 1 is a cross-sectional view of a multi-connection type scroll compressor when applied to an oil free mechanism showing an embodiment of the present invention. In the portion shown in the cross section, two adjacent sets of compression mechanism portions provided so as to be sandwiched between the first frame 11 and the second frame 12 arranged at the left end are shown, and the first frame 11 is shown. A motor directly connected to a shaft 6 penetrating two sets of compression mechanism portions is housed in an invisible portion hidden in a case 16 fixed to.
0040
Further, as shown in FIG. 2, a partition plate 3a for centrally partitioning two spiral fixing grooves 3b and 3d provided inside from both end faces of the cylinder toward the center with the same width and depth. A circular shaft through hole 3f is provided in the center of the fixed scroll 3 with both teeth.
[0041]
In the first fixing groove 3b on the right side of the fixing scroll 3, a spherical bearing boss 4c in which the outline of the outer wall is formed by a spiral curve at the center of one side of the circular end plate 4a is swirled outward with a constant width. A first swirl scroll having a shaft through hole 4d formed by a shape-like protrusion and having a uniform height swirl lap 4b standing upright and penetrating an end plate 4a formed in the center of the bearing boss 4c. The first compression chamber 1 is formed by engaging the swirl lap 4b of the wheel 4, and in addition to these, between the swirl scroll end plate 4a and the first frame as shown in FIG. The first compression mechanism portion is composed of a first rotation prevention mechanism 13 composed of three crankshafts 15 provided in the above, and a shaft 6 having an eccentric swirl shaft substantially penetrating the center of the drawing.
[0042]
Further, as shown in FIG. 3, the second swivel scroll 5, which is a mirror image of the first swivel scroll 4, is swiveled in the second fixing groove 3d provided on the left side of the double-toothed fixed scale 3. A second compression chamber 2 is formed by engaging the wraps 5b, and in addition to these, a third crankshaft 15 provided between the swivel scroll end plate 5a and the second frame is formed. (Ii) The second compression mechanism portion is composed of the rotation prevention mechanism 14 and the shaft 6 having an eccentric swivel shaft that laterally penetrates the center of the drawing.
[0043]
The spiral forming the first compression chamber 1 and the second compression chamber 2 is formed in an asymmetric wrap shape, but a symmetric wrap shape may be used, and the winding direction thereof is the second frame as can be seen from FIGS. 2 and 3. When viewed from the 12 side, both are formed in the same counterclockwise direction, and when viewed from the side where the spiral groove opens, the winding directions are reversed and they are in a mirror image relationship with each other.
[0044]
Therefore, when the spiral centers are aligned from one direction, the spiral winding start position and winding end position of the first compression chamber 1 and the second compression chamber 2 are formed so as to be the same and overlap with each other, and the suction position of the working gas. The discharge position of the compressed gas is the same. A communication passage 3i that communicates the first compression chamber 1 and the second compression chamber 2 is provided at the suction position of the fixed scroll partition plate 3a, and a shaft through hole 3g is provided at the discharge position at the center of the partition plate 3a. Is provided to form a discharge space 30.
0045
A communication passage 3i that communicates the suction side of the first compression chamber 1 and the second compression chamber 2 is provided outside the winding end of the fixing groove of the fixed scroll 3, and an end plate is provided as a passage for discharging the compressed gas. A discharge hole 3g and a discharge passage 3h connected to the discharge hole 3g opened in the discharge space 30 provided in the central portion were provided, and the discharge passage 12c provided in the second frame was discharged to the high pressure chamber 31 provided at the left end of FIG. It is discharged to the outside from the rear discharge pipe 18.
[0046]
The detailed shape of the bulb-shaped bearing boss 4c of the swivel scroll will be described with reference to FIG. 13, which is an enlarged view of the central portion of FIG.
[0047]
The contours of the swivel lap 4b and the bearing boss 4c are formed from the in-volume curve, and the point ▲ P ▼ on the outer wall of the bearing boss represents the start position of the in-volume curve.
0048
The semicircular arc-shaped wall surface formed to the left of the point ▲ P ▼ is shown as an envelope with respect to the tip wall surface at the beginning of winding the first fixed wrap 3c, and the tip wall surface has a semi-circular arc shape having the lap tooth thickness as the diameter. If so, the diameter of the semicircular arc starting from the point ▲ P ▼ on the swivel scroll side is set equal to the value obtained by adding the lap tooth thickness to twice the swivel radius.
[0049]
In the figure, Oa representing the center point of the + mark represents the center of the base circle of the inverse curve, and Ob represents the center point of the shaft through hole 4d and the swivel bearing 4e.
0050
The relative coordinates of Ob with respect to Oa are the midpoint between the point ▲ P ▼ and the point ▲ Q ▼ that goes out of the pi radian halfway from this point, or the first chip seal 22 is near the point ▲ Q ▼. If it is provided up to, it is set as an intermediate point between the point closest to the point ▲ Q ▼ and the point ▲ P ▼ on the extension of the first chip seal.
0051
A rolling bearing is used for the swivel bearing 4e shown in FIG. 7, and the contact length with the swivel shaft surface, that is, the bearing width Lb is the center of gravity of the swivel scroll and the center position in the height direction of the swivel lap. It is preferable that the Lb is about 10% to 20% longer than this distance, and the swivel bearing 5e of the second swivel scroll is similarly configured.
[0052]
When these swivel bearings are composed of a plurality of ball bearings, the Lb corresponds to the distance between the centers of the ball bearings arranged at both ends.
[0053]
Further, the shaft seal 7 that separates the space on the front end side of the first swivel lap communicating with the discharge space 30 of the shaft through hole 4d and the space on the back side of the end plate 3a communicating with the low pressure space is the first swivel of the first swivel bearing 4e. It is provided on the tip side of the wrap. Similarly, a shaft seal for partitioning the high and low pressure space is provided in the shaft through hole 5d of the second swivel scroll on the discharge space side of the second swivel bearing 5e.
0054
Oa representing the center point of the + mark shown in FIG. 14 of the enlarged view of the central portion of FIG. 12 which is a plan view of the fixed scroll represents the center of the base circle of the inverse curve, and Ob represents the center of the shaft through hole 3f. ing. The position of Ob approximately coincides with the line connecting the center of rotation of the shaft, that is, the center of rotation of the main bearing 11a and the center of the auxiliary bearing 12a, and the diameter of the shaft through hole is the diameter of the swivel shaft plus twice the swivel radius. It is set to be equal to or slightly larger than the value.
0055
The first swivel shaft 6a and the second swivel shaft 6b provided on the shaft 6 of FIG. 15 are both eccentric by the turning radius with respect to the axes of the main shaft 6c and the sub-shaft 6d, and at the same time, they are arranged at positions facing each other by 180 °. Has been done.
0056
These swivel shafts are inserted into the swivel bearing 4e mounted in the shaft through hole 4d of the first swivel scroll and the swivel bearing 5e mounted in the shaft through hole 5d of the second swivel scroll, respectively.
[0057]
Further, a connecting portion A6e is provided between the first swivel shaft 6a and the second swivel shaft 6b, and a connecting portion B6f is provided between the second swivel shaft 6b and the sub-shaft 6d. The shape of the two locations is determined from the method of incorporating the first swivel scroll 4 and the second swivel scroll 5 to a predetermined position in order to secure the strength required to support the load applied to the shaft.
0058.
The lengths L1 and L2 of the connecting portion A in the figure are both approximately equal to the length obtained by adding the width of the shaft seal 7 to the swivel bearing 4e of the first swivel scroll, and the length L3 of the second swivel shaft 6b. Is approximately equal to the length of the swivel bearing 5e plus the width of the shaft seal 7. Then, the length L4 of the connecting portion B is adjusted to the longer of L1 and L3.
[0059]
As shown in FIG. 19, which models the shaft system on which the inertial force of FIG. 1 acts, the centrifugal force W2 and the second swivel of the first swivel scroll 4 and the first swivel shaft 6a acting on the first swivel shaft of the shaft. The centrifugal force W1 of the second swivel scroll 5 and the second swivel shaft 6b acting on the shafts are opposite to each other and have approximately the same magnitude, so the forces are balanced and offset, but the remaining rotational moments are eliminated. Balancers having small centrifugal forces W3 and W4 as shown in the figure are arranged before and after the main bearing 11a and the sub bearing 12a, respectively. Then, the magnitudes of W3 and W4 need to be smaller as they are farther from W1 and W2, respectively.
[0060]
Further, as can be roughly discriminated from the external view of the shaft 6 shown in FIG. 15, the diameters of the first swivel shaft 6a, the second swivel shaft 6b, the main shaft 6c and the sub-shaft 6d are all made equal, and are approximately twice as large as the connecting portion B6f. It is also possible to provide a long connecting portion A6e to form the structure.
[0061]
The function of the multiple connection type scroll compressor configured as described above will be described below.
[0062]
When the shaft 6 directly connected to the motor rotates, power is transmitted from the first swivel shaft 6a to drive the first swivel scroll 4, but a rotation prevention mechanism consisting of three crankshafts 15 As a result, the first swirl scroll revolves on a circular orbit, that is, swivels, and after sucking gas from the outer circumference into the first compression chamber 1 formed between the first swivel scroll and the fixed scroll 3, the first swirl scroll is compressed and is in the center. It flows out to the discharge space 30.
[0063]
The second swivel scroll 5, in which power is transmitted from the second swivel shaft 6b, also works in the same manner as the first swivel scroll, but the swivel motion and compression stroke are 180 ° out of phase with the first swivel scroll. Therefore, the inflow of gas into the compression chamber and the outflow of gas into the discharge space are alternately performed from the first compression chamber 1 and the second compression chamber 2, and the fluctuation of the gas velocity between the suction side and the discharge side is small. The pressure pulsation also decreases.
[0064]
The gas flowing out into the discharge space flows into the high pressure chamber 31 from the discharge hole and the discharge passage provided in the fixed scroll through the discharge passage in the second frame, and flows out from the discharge pipe to the outside.
[0065]
Then, by independently forming the first swivel scroll 4 and the second swivel scroll 5, the gas compression load accompanying the gas compression and the centrifugal force of the swivel scroll are dispersed to the swivel bearing. Since the load is significantly reduced and the swirling motions of the first compression chamber and the second compression chamber are 180 ° out of phase with each other, the gas compression load and the centrifugal force of the swirling scroll due to gas compression are offset. , The load on the main bearing 11a and the auxiliary bearing 12a can be significantly reduced.
[0066]
In addition, the first and second swivel bearings, the main bearing and the sub-bearing, and each of the three bearings of the pin crank mechanism are composed of rolling bearings, and at the same time, the two swivel bearings are located adjacent to each other on the discharge space side. The oil free mechanism is easily constructed by partitioning the high and low pressure space by the shaft seal provided in the above.
[0067]
Next, in the invention of FIG. 1, the fixed scroll was integrally formed, but the gas passage and the valve mechanism were formed on the end plate surface in which the center of the end plate shown in FIG. 9 was vertically divided into two parts. It can be easily inferred that they are combined and configured as a unit after mounting.
[0068]
It is also easy to infer that the spiral shape of the first compression chamber and the second compression chamber and the phase of the compression stroke are changed. In this case, the eccentricity of the second swivel shaft is the first swivel shaft due to the incorporation of the first swivel scroll. It is necessary to make it smaller than the amount of eccentricity of.
[0069]
The invention of FIG. 1 is shown in a configuration premised on an oil free mechanism, but a configuration in which lubricating oil is sealed in a case and oil is supplied to each sliding portion composed of a slide bearing to lubricate the case. Although not shown, the ring seal, which is a known technique, moves the partition position of the high and low pressure space between the end plate and the frame of the swivel scroll by eliminating the shaft seal in FIG. This can be easily achieved by mounting the wheel and using an oldham mechanism as a rotation prevention mechanism to press the swivel scroll by the high pressure acting on the inside thereof.
[0070]
Further, as another invention that can be easily inferred from the invention of FIG. 1, the volume of the minimum closed space formed immediately before the discharge of the first compression chamber and the volume of the maximum closed space immediately before the start of the compression stroke of the second compression chamber are made the same. A two-stage compression mechanism is easily achieved by forming and providing a passage communicating the minimum closed space and the maximum closed space.
[0071]
【Effect of the invention】
In the multiple connection type scroll compressor configured as described above, the size of the end plate of the swirl scroll is increased by installing the rotation prevention mechanism in the space provided on the back surface of the end plates of the first and second swirl scrolls. Since it is determined from the spiral shape excluding the rotation prevention mechanism, it has the effect of reducing the size and weight of the compressor.
[0072]
By making the two swivel scrolls independent and at the same time giving them 180 ° opposed movements, the centrifugal force and gas compression load acting on the two swivel bearings, the main bearing and the sub bearing, and the rotation prevention mechanism can be applied. The durability of the bearing is improved because it can be dispersed and significantly reduced. Further, the gas compression loads generated in the first compression chamber and the second compression chamber cancel each other out, and the torque fluctuation is reduced, which has the effect of reducing the vibration.
[0073]
In addition, the load acting on the main bearing and sub-bearing can be significantly reduced, the seal gap between the compression chambers of each of the two independently configured swivel scrolls can be optimized, and the fixed scroll with high rigidity. By using both teeth on the side, the processing accuracy of the spiral is improved and the efficiency can be improved.
[0074]
Furthermore, the sub-shaft of the shaft is further extended to connect four or more sets of compression mechanism parts to increase the capacity, and the central discharge space of the fixed scroll with both teeth is divided into two to achieve a two-stage compression mechanism. Has the effect of being easily configured.
[Simple explanation of drawings]
1 is a cross-sectional view of the scroll compressor of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1. FIG. 3 is a cross-sectional view taken along the line BB of FIG. 5 is a cross-sectional view taken along the line DD of FIG. 1. FIG. 6 is a plan view of the first swivel scroll. FIG. 7 is a cross-sectional view taken along the line AA of FIG. Side view FIG. 9 is a cross-sectional view taken along the line AA of FIG. 8 FIG. 10 is a cross-sectional view taken along the line BB of FIG. Side view of the fixed scroll FIG. 13 is a central enlarged view of FIG. 6 FIG. 14 is a central enlarged view of FIG. 8 FIG. 15 is a front view of the shaft. FIG. BB sectional view of FIG. 18 CC sectional view of FIG. 15 FIG. 19 is a model diagram of a centrifugal force acting on a shaft.
1 1st compression chamber 2 2nd compression chamber 3 Fixed scroll 3a Partition plate 3b 1st fixed groove 3c 1st fixed wrap 3d 2nd fixed groove 3e 2nd fixed wrap 3f Shaft through hole
3g Discharge hole 4 First swivel scroll 4a End plate 4b Swivel wrap
4c bearing boss 4d shaft through hole
4e swivel bearing
5 Second swivel scroll 5a End plate 5b Swing wrap 5c Swing boss 5d Shaft through hole
5e swivel bearing 6 shaft 6a first swivel shaft
6b Second swivel shaft
6c spindle
6d Layshaft 6e Connecting part A
6f Connecting part B
7 1st shaft seal 8 2nd shaft seal 9 1st balancer 10 2nd balancer 11 1st frame 11a Main bearing 12 2nd frame 12a Sub-bearing 13 1st rotation prevention mechanism 14 2nd rotation Prevention mechanism 15 Crankshaft 30 Discharge space 31 High pressure chamber

JP2000315876A 2000-09-09 2000-09-09 Multiple connection type scroll compressor Pending JP2001221169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315876A JP2001221169A (en) 2000-09-09 2000-09-09 Multiple connection type scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315876A JP2001221169A (en) 2000-09-09 2000-09-09 Multiple connection type scroll compressor

Publications (2)

Publication Number Publication Date
JP2001221169A JP2001221169A (en) 2001-08-17
JP2001221169A5 true JP2001221169A5 (en) 2005-08-04

Family

ID=18794908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315876A Pending JP2001221169A (en) 2000-09-09 2000-09-09 Multiple connection type scroll compressor

Country Status (1)

Country Link
JP (1) JP2001221169A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693041B2 (en) * 2002-06-17 2005-09-07 ダイキン工業株式会社 Scroll compressor
JP2010196663A (en) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd Compressor
JP2011132829A (en) * 2009-12-22 2011-07-07 Mitsubishi Electric Corp Scroll compressor
JP5423538B2 (en) * 2010-03-31 2014-02-19 ダイキン工業株式会社 Rotary compressor
JP5835299B2 (en) * 2013-10-07 2015-12-24 ダイキン工業株式会社 Refrigeration equipment
WO2021020858A1 (en) 2019-07-30 2021-02-04 Samsung Electronics Co., Ltd. Scroll compressor

Similar Documents

Publication Publication Date Title
JP5265705B2 (en) Rotary compressor
US5295808A (en) Synchronous rotating type scroll fluid machine
JPH04121478A (en) Scroll type compressor
EP1122438A2 (en) Oldham coupling for scroll machine
JPH0610601A (en) Scroll type fluid device
JP2001221169A5 (en)
JPH0697037B2 (en) Scroll compressor
JP2001221169A (en) Multiple connection type scroll compressor
JP3924834B2 (en) Positive displacement fluid machinery
JP3584533B2 (en) Scroll compressor
EP1947292B1 (en) Fluid machine with crankshaft
JP6739660B1 (en) Scroll compressor
JPH08165993A (en) Scroll type fluid device
JP2000310191A (en) Rolling piston type rotary compressor
JP7233935B2 (en) scroll type fluid machinery
JP3641760B2 (en) Fluid machine with trochoidal tooth profile
CN113309699A (en) Scroll compressor and air conditioner
JPH10205463A (en) Scroll type fluid machine
JPH07103151A (en) Scroll type hydraulic machine
JP6541708B2 (en) Rolling cylinder positive displacement compressor
JP2000329079A (en) Scroll member shape of scroll compressor
JP2972464B2 (en) Scroll type fluid machine
JP2541335B2 (en) Scroll type fluid device
JPH1137065A (en) Displacement type fluid machine
JPH01187388A (en) Scroll compressor