JP2001219461A - Method for manufacturing biaxially-stretched thermoplastic resin pipe - Google Patents
Method for manufacturing biaxially-stretched thermoplastic resin pipeInfo
- Publication number
- JP2001219461A JP2001219461A JP2000035249A JP2000035249A JP2001219461A JP 2001219461 A JP2001219461 A JP 2001219461A JP 2000035249 A JP2000035249 A JP 2000035249A JP 2000035249 A JP2000035249 A JP 2000035249A JP 2001219461 A JP2001219461 A JP 2001219461A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- resin pipe
- stretching
- tube
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二軸延伸熱可塑性
樹脂管の製造方法に関する。The present invention relates to a method for producing a biaxially stretched thermoplastic resin tube.
【0002】[0002]
【従来の技術】一般に、熱可塑性樹脂管を延伸すると、
延伸された方向の強度が増大する。しかし、従来行われ
てきた延伸は、熱可塑性樹脂管の軸方向(長手方向)が
主体で、軸方向の強度は増大するものの、円周方向の強
度、即ち内圧、外圧に対する強度が不足することがあっ
た。2. Description of the Related Art Generally, when a thermoplastic resin pipe is stretched,
The strength in the stretched direction increases. However, conventional stretching is mainly performed in the axial direction (longitudinal direction) of the thermoplastic resin tube, and although the strength in the axial direction increases, the strength in the circumferential direction, that is, the strength against internal pressure and external pressure is insufficient. was there.
【0003】そこで、熱可塑性樹脂管の軸方向のみなら
ず円周方向の強度を増大させる試みが従来より行われて
いる。Therefore, attempts have been made to increase the strength of the thermoplastic resin tube not only in the axial direction but also in the circumferential direction.
【0004】例えば、 1)延伸可能な熱可塑性ポリマー含有中空加工物(熱可
塑性樹脂管)を金型の入り口から供給し、固相でダイ及
び加工物の初期内部横断面積よりも大きな横断面積を有
し、上記中空加工物内部に配設されたフォーマーに通し
て引張応力を加えて延伸させ、延伸変形された中空加工
物をダイの出口側から回収する方法(特公平4−553
79号公報)、For example, 1) A hollow work piece (thermoplastic resin tube) containing a stretchable thermoplastic polymer is supplied from an inlet of a mold, and a cross-sectional area larger than an initial internal cross-sectional area of a die and a work piece in a solid phase is supplied. A method of applying a tensile stress through a former disposed inside the hollow workpiece and stretching the hollow workpiece, and collecting the stretched hollow workpiece from the exit side of the die (Japanese Patent Publication No. 4-553).
No. 79),
【0005】2)押出機の金型から引取機により引き出
し長手方向に延伸しながら延伸用原形パイプを成形し、
この原形パイプを再加熱し、押出金型に連結する大径の
金型を延伸用原形パイプ内に挿入保持しこれを引取機に
より引き出して周方向に延伸成形する方法(特開昭49
−59163号公報)、[0005] 2) Withdrawing from the mold of the extruder by a take-off machine, forming an original drawing pipe while stretching in the longitudinal direction,
A method of reheating this prototype pipe, inserting and holding a large-diameter mold connected to the extrusion die in the prototype pipe for drawing, pulling it out with a take-off machine, and forming it in the circumferential direction (Japanese Patent Laid-Open Publication No.
-59163),
【0006】3)中空の延伸可能な熱可塑性樹脂からな
る加工物品内部に、液体潤滑剤なしに膨張成形機を通過
させ、加工物品の軸方向に対し垂直な方向にいかなる外
部からの力も作用しない状態で管状部材を成形する二軸
延伸された管状部材の製造方法(特開平2−25832
3号公報)、などの方法が、提案されている。[0006] 3) An expansion molding machine is passed through a hollow article made of stretchable thermoplastic resin without a liquid lubricant, so that no external force acts in a direction perpendicular to the axial direction of the article. A method for producing a biaxially stretched tubular member in which a tubular member is molded in a state (Japanese Patent Laid-Open No. 2-25832)
No. 3) has been proposed.
【0007】[0007]
【発明が解決しようとする課題】しかし、これらの方法
には、以下の問題がある。1)の方法では、上記ダイ
(外型)とフォーマー(内型)で熱可塑性樹脂を圧縮し
ながら、ダイから引き抜くので、軸方向に大きな引張力
がかかり、その結果、軸方向の延伸倍率が大きくなる。However, these methods have the following problems. In the method 1), the thermoplastic resin is pulled out from the die while compressing the thermoplastic resin with the die (outer die) and the former (inner die), so that a large tensile force is applied in the axial direction. As a result, the stretching ratio in the axial direction is reduced. growing.
【0008】パイプの肉厚が薄くなる。そうすると、
外圧に対する強度が不足し、埋設管に適さなくなる。 を解消するため、延伸前の加工物の肉厚をあらかじ
め厚いものにすると、(1) 延伸前の厚肉加工物の寸法精
度が悪化する、(2) 肉厚内の温度制御に時間がかかり、
生産性が悪化する、(3) 延伸時により大きな引張力が必
要となり、より軸方向延伸が大きくなる、等の問題が発
生する。The thickness of the pipe is reduced. Then,
Lack of strength against external pressure makes it unsuitable for buried pipes. If the thickness of the workpiece before stretching is increased beforehand to solve the problem, (1) the dimensional accuracy of the thick workpiece before stretching will deteriorate, and (2) it will take time to control the temperature within the thickness. ,
Problems such as a decrease in productivity and (3) a greater tensile force is required at the time of stretching, resulting in a larger axial stretching.
【0009】また、2)の方法では、引取機を二台使用
し、二台の引取機の速度制御並びに、延伸温度への再加
熱を必要とする。従って、 製造ラインの長さが長くなる、 成形設備の制御方法が複雑になる、 等の問題点が発生する。In the method 2), two take-up machines are used, and speed control of the two take-up machines and reheating to the stretching temperature are required. Therefore, problems such as an increase in the length of the production line and a complicated control method of the molding equipment occur.
【0010】さらに、3)の方法では、液体潤滑剤を使
用しないため、樹脂−金型間の摩擦が大きくなり、軸方
向の延伸倍率を低倍率に制御するのが困難である。ま
た、空気を用いて潤滑する場合、空気は圧縮可能な流体
であるので、延伸時の樹脂の収縮力がかかった場合、空
気圧が低すぎると空気が流れず、高すぎると樹脂を膨ら
ませ過ぎたり、樹脂の弱い部分のみを選択的に空気が抜
け、均一に空気の膜を張るのが困難である。従って、延
伸させたパイプの肉厚を均一に制御するのが困難とな
る。Furthermore, in the method 3), since no liquid lubricant is used, friction between the resin and the mold is increased, and it is difficult to control the stretching ratio in the axial direction to a low ratio. Also, when lubricating with air, since air is a compressible fluid, if the resin contracts during stretching, air will not flow if the air pressure is too low, and the resin will expand too much if the air pressure is too high. In addition, it is difficult to form an air film evenly by selectively bleeding air only through a weak portion of the resin. Therefore, it is difficult to uniformly control the thickness of the drawn pipe.
【0011】本発明は上記の課題を解決し、熱可塑性樹
脂管を二軸延伸するにあたり、軸方向の延伸倍率を一台
の引取機で潤滑剤を一切使用することなく制御でき、熱
可塑性樹脂管の再加熱が不要で、成形設備が大幅に省略
でき、延伸倍率および寸法精度に優れた二軸延伸熱可塑
性樹脂管の製造方法を提供することを目的とする。[0011] The present invention solves the above-mentioned problems. In biaxially stretching a thermoplastic resin tube, the stretching ratio in the axial direction can be controlled by a single take-off machine without using any lubricant. An object of the present invention is to provide a method for producing a biaxially stretched thermoplastic resin tube which does not require reheating of the tube, can largely omit molding equipment, and has excellent stretch ratio and dimensional accuracy.
【0012】[0012]
【課題を解決するための手段】本発明の二軸延伸熱可塑
性樹脂管の製造方法は、押出機の金型から押出された熱
可塑性樹脂管を、管表面を急冷した後、管全体を所定の
延伸温度に調整するとともに、上記金型に連結され、上
記熱可塑性樹脂管の進行方向に向かって徐々に外径が拡
大し、最大外径が、成形すべき延伸された熱可塑性樹脂
管の内径に略等しくされた大径金型を、上記熱可塑性樹
脂管内に挿入しつつ熱可塑性樹脂管を拡径し、拡径され
た熱可塑性樹脂管を、引取機により引き取りつつ、延伸
成形を行うものである。According to the method of the present invention for producing a biaxially stretched thermoplastic resin tube, a thermoplastic resin tube extruded from a die of an extruder is quenched on the surface of the tube, and then the entire tube is subjected to a predetermined process. Along with adjusting the stretching temperature, the outer diameter is gradually increased in the direction in which the thermoplastic resin pipe advances in the direction in which the thermoplastic resin pipe advances, and the maximum outer diameter of the stretched thermoplastic resin pipe to be molded is increased. A large-diameter mold approximately equal to the inner diameter is expanded into the thermoplastic resin pipe while being inserted into the thermoplastic resin pipe, and the expanded thermoplastic resin pipe is stretched while being taken up by a take-up machine. Things.
【0013】本発明に使用される熱可塑性樹脂として
は、例えば、塩化ビニル系樹脂;ポリエチレン、ポリプ
ロピレン等のオレフィン系樹脂;ポリオキシメチレン、
ポリフッ化ビニリデン、ポリエステル、ポリアミド、ポ
リアセタール等が用いられる。The thermoplastic resin used in the present invention includes, for example, vinyl chloride resins; olefin resins such as polyethylene and polypropylene; polyoxymethylene;
Polyvinylidene fluoride, polyester, polyamide, polyacetal and the like are used.
【0014】本発明における熱可塑性樹脂管の延伸倍率
は、軸方向には、3倍以下が好ましく、本発明において
は、通常は1.05倍以上、周方向には、1.3〜4倍
が好ましく、より好ましくは、軸方向が1.1倍〜2
倍、周方向が1.5〜2倍である。The stretching ratio of the thermoplastic resin tube in the present invention is preferably 3 times or less in the axial direction, usually 1.05 times or more in the present invention, and 1.3 to 4 times in the circumferential direction. It is more preferable that the axial direction is 1.1 times to 2 times.
Double and the circumferential direction is 1.5 to 2 times.
【0015】上記延伸倍率が大きすぎると、熱可塑性樹
脂管の、延伸前の肉厚に対する延伸後の肉厚が小さくな
る。上記熱可塑性樹脂管を例えば埋設管に使用する場
合、土圧に耐えるための肉厚が必要である。それを満足
するには延伸前の肉厚が厚くなりすぎるため、温度制
御、ひいては、均一な延伸成形が困難になる。従って、
延伸倍率が大きくなりすぎるのを抑制する必要がある。
一方、上記延伸倍率が小さすぎると、延伸による高強度
化が図れない。さらに、本発明によれば、軸方向の延伸
倍率は、概ね1.05倍以上となる。If the stretching ratio is too large, the thickness of the thermoplastic resin tube after stretching becomes smaller than the thickness before stretching. When the above-mentioned thermoplastic resin pipe is used, for example, as a buried pipe, it is necessary to have a wall thickness to withstand the earth pressure. To satisfy this, the thickness before stretching becomes too large, so that it is difficult to control the temperature, and furthermore, to perform uniform stretching. Therefore,
It is necessary to suppress the stretching ratio from becoming too large.
On the other hand, if the stretching ratio is too small, it is not possible to increase the strength by stretching. Further, according to the present invention, the stretching ratio in the axial direction is approximately 1.05 times or more.
【0016】本発明によれば、周方向の延伸倍率は押出
金型に連結する大径の金型の外径によって制御され、軸
方向の延伸倍率は、大径金型の均一温度制御のために循
環させる温度調整用流体の温度及び引取速度によって制
御される。According to the present invention, the stretching ratio in the circumferential direction is controlled by the outer diameter of the large-diameter die connected to the extrusion die, and the stretching ratio in the axial direction is controlled for uniform temperature control of the large-diameter die. The temperature is controlled by the temperature of the temperature adjusting fluid circulated through the air and the take-off speed.
【0017】本発明においてはまず、押出機の金型から
押出された熱可塑性樹脂管の管表面を急冷する。上記急
冷の方法は特に限定されるものではなく、例えば、上記
熱可塑性樹脂管を形成する樹脂のガラス転移温度(以
下、「Tg」という)又は融点より、遙に低い温度に設
定された冷媒が蓄えられた冷却槽中に、上記熱可塑性樹
脂管を通過させる方法などが挙げられる。上記冷媒とし
ては特に限定されないが、熱容量及びコストの点で水が
好ましい。In the present invention, first, the surface of the thermoplastic resin tube extruded from the mold of the extruder is rapidly cooled. The quenching method is not particularly limited. For example, a refrigerant set at a temperature much lower than the glass transition temperature (hereinafter, referred to as “Tg”) or the melting point of the resin forming the thermoplastic resin tube is used. A method of passing the above-mentioned thermoplastic resin tube through the stored cooling tank is exemplified. The coolant is not particularly limited, but water is preferred in terms of heat capacity and cost.
【0018】上記冷媒の温度は、上述のように、熱可塑
性樹脂管を形成する樹脂のTg、又は融点より、遙に低
い温度であれば特に限定されず、例えば、熱可塑性樹脂
として、塩化ビニル系樹脂(Tg:約80℃)を使用す
る場合は30℃以下が好ましい。冷媒の温度が高すぎる
と、熱可塑性樹脂管(延伸前)の寸法精度が悪く、均一
な延伸成形が困難になる。As described above, the temperature of the refrigerant is not particularly limited as long as it is much lower than the Tg or melting point of the resin forming the thermoplastic resin tube. When using a system resin (Tg: about 80 ° C.), the temperature is preferably 30 ° C. or less. If the temperature of the refrigerant is too high, the dimensional accuracy of the thermoplastic resin tube (before stretching) is poor, and uniform stretching is difficult.
【0019】本発明においては次いで、管表面が急冷さ
れた熱可塑性樹脂管全体を所定の延伸温度に調整する。
上記所定の延伸温度に調整する方法も特に限定されるも
のではなく、急冷の際に上述したように、延伸に適した
温度に設定された冷媒が蓄えられた冷却槽中に、上記熱
可塑性樹脂管を通過させる方法であってもよいし、空冷
でもよい。上記冷媒も特に限定されるものではないが、
周方向の温度をより均一にできる点で液体の冷媒が好ま
しく、さらに、熱容量及びコストの点で水が好ましい
が、設定温度が高い場合、ポリエチレングリコール等の
冷媒が使用されうる。上記冷媒の温度も、上記熱可塑性
樹脂管を形成する樹脂の種類、押出量、冷媒の種類及び
量、冷却槽の長さ等により異なるが、低すぎると、樹脂
が固化し、延伸成形中に大径金型上で管破壊を起こす。
また高すぎると、樹脂が軟化しすぎ、大径金型上での軸
方向伸びが大きく、管破壊を起こすので、使用する熱可
塑性樹脂のTg〜Tg+30℃が好ましい。Next, in the present invention, the entire thermoplastic resin tube whose surface has been quenched is adjusted to a predetermined stretching temperature.
The method for adjusting to the predetermined stretching temperature is also not particularly limited, and as described above during quenching, the thermoplastic resin is stored in a cooling tank in which a refrigerant set at a temperature suitable for stretching is stored. A method of passing through a tube may be used, or air cooling may be used. Although the above-mentioned refrigerant is not particularly limited,
A liquid refrigerant is preferable in that the temperature in the circumferential direction can be made more uniform, and water is preferable in terms of heat capacity and cost. However, when the set temperature is high, a refrigerant such as polyethylene glycol can be used. The temperature of the refrigerant also depends on the type of resin forming the thermoplastic resin tube, the amount of extrusion, the type and amount of the refrigerant, the length of the cooling tank, etc., but if it is too low, the resin solidifies and during the stretch molding. Pipe breakage occurs on large diameter mold.
On the other hand, if it is too high, the resin becomes too soft, the axial elongation on the large-diameter mold is large, and the tube is broken.
【0020】本発明で使用される大径金型の表面は、硬
質クロムメッキ等の表面処理を行い、できるだけ平坦に
したものを用いるのが好ましい。延伸された熱可塑性樹
脂管は、収縮を防止するために、冷却するのが好まし
い。冷却方法は特に限定されないが、設備の簡素化を考
慮すると、外部から冷媒を噴霧するだけで十分である。
また、延伸された熱可塑性樹脂管の温度分布に起因する
残留応力を少なくするためには、延伸された熱可塑性樹
脂管の内面及び外面の双方から冷却を行うことが好まし
い。The surface of the large-diameter mold used in the present invention is preferably subjected to a surface treatment such as hard chromium plating to make it as flat as possible. The drawn thermoplastic resin tube is preferably cooled to prevent shrinkage. Although the cooling method is not particularly limited, it is sufficient to spray the refrigerant from the outside in consideration of simplification of the equipment.
In order to reduce the residual stress due to the temperature distribution of the stretched thermoplastic resin tube, it is preferable to perform cooling from both the inner surface and the outer surface of the stretched thermoplastic resin tube.
【0021】(作用)本発明の二軸延伸熱可塑性樹脂管
の製造方法は、上述の如き構成となされているので、ま
ず、押出機の金型から押出された熱可塑性樹脂管の管表
面を急冷することにより、延伸前の管の寸法精度が高く
なるので、均一な延伸成形が可能となる。そして、管の
軸方向の延伸倍率は、延伸前の管の温度に大きく依存す
るため、管表面が急冷された熱可塑性樹脂管全体を所定
の延伸温度に調整することで、延伸前の管の温度ばらつ
きが少なくなり、軸方向の延伸倍率の精度が高くなる。
よって、軸方向の延伸倍率の制御に、延伸前に引取機を
用いなくて済むため、延伸可能温度に対する過剰な冷
却、再加熱が不要となり、成形設備が従来の二軸延伸熱
可塑性樹脂管の成形よりも大幅に省略でき、それに伴
い、制御する項目も少なくなったうえに、延伸倍率およ
び寸法精度に優れた二軸延伸パイプの成形が可能であ
る。(Function) Since the method for producing a biaxially stretched thermoplastic resin tube of the present invention is configured as described above, first, the surface of the thermoplastic resin tube extruded from the die of the extruder is cleaned. The rapid cooling increases the dimensional accuracy of the tube before stretching, so that uniform stretching can be performed. And, since the stretching ratio in the axial direction of the tube greatly depends on the temperature of the tube before stretching, the entire surface of the thermoplastic resin tube whose tube surface has been quenched is adjusted to a predetermined stretching temperature, so that the stretching ratio of the tube before stretching is reduced. Temperature variation is reduced, and the accuracy of the stretching ratio in the axial direction is increased.
Therefore, since it is not necessary to use a take-off machine before stretching to control the stretching ratio in the axial direction, excessive cooling and reheating with respect to the stretchable temperature are not required, and the molding equipment is a conventional biaxially stretched thermoplastic resin pipe. It can be largely omitted compared to molding, and accordingly, the items to be controlled are reduced, and a biaxially stretched pipe excellent in stretch ratio and dimensional accuracy can be formed.
【0022】[0022]
【発明の実施の形態】以下、本発明の実施の形態を、図
面を用いて説明する。図1は、本発明に使用される二軸
延伸装置の一例を示す模式図である。図1、2におい
て、1は押出機、2は(押出機の)金型、4は管表面急
冷用水槽、5は管全体温度調整用水槽、6は大径金型、
8は引取機、9は熱可塑性樹脂管、91は二軸延伸熱可
塑性樹脂管である。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a biaxial stretching device used in the present invention. 1 and 2, 1 is an extruder, 2 is a mold (of the extruder), 4 is a water tank for quenching the pipe surface, 5 is a water tank for adjusting the temperature of the entire pipe, 6 is a large-diameter mold,
8 is a take-off machine, 9 is a thermoplastic resin tube, and 91 is a biaxially stretched thermoplastic resin tube.
【0023】図1に示したように、本発明に使用される
二軸延伸装置は、押出機1、管表面急冷水槽4、管全体
温度調整用水槽5、大径金型6、及び引取機9とからな
る。押出機1には所定の径の熱可塑性樹脂管を成形する
金型2が設けられ、上記金型2と大径金型6との間は、
接続管3により連結されている。As shown in FIG. 1, the biaxial stretching apparatus used in the present invention comprises an extruder 1, a pipe surface quenching water tank 4, a water tank 5 for adjusting the temperature of the entire pipe, a large-diameter mold 6, and a take-off machine. 9 The extruder 1 is provided with a mold 2 for molding a thermoplastic resin tube having a predetermined diameter, and between the mold 2 and the large-diameter mold 6,
They are connected by a connection pipe 3.
【0024】本発明の二軸延伸熱可塑性樹脂管の製造方
法は、まず上記二軸延伸装置の押出機1に熱可塑性樹脂
を供給し、押出機1の金型2により、管状に押出して熱
可塑性樹脂管9を成形する。In the method for producing a biaxially stretched thermoplastic resin tube according to the present invention, first, a thermoplastic resin is supplied to an extruder 1 of the above-described biaxially stretching apparatus, and extruded into a tube by a mold 2 of the extruder 1 to form a tube. The plastic resin tube 9 is formed.
【0025】次いで、得られた熱可塑性樹脂管9を、接
続管3を内挿しつつ、管表面急冷水槽4により冷却し、
所定の延伸温度に調整する。次いで、急冷された熱可塑
性樹脂管9を、管全体温度調整用水槽5により冷却す
る。そして、冷却された熱可塑性樹脂管9内に、大径金
型6を挿入する。なお、大径金型6は、熱可塑性樹脂管
9の進行方向に向かって徐々に外径が拡大し、最大外径
が、成形すべき延伸された熱可塑性樹脂管91の内径に
略等しくされている。このようにして熱可塑性樹脂管9
を拡径し、周方向に延伸する。そして、周方向に延伸さ
れた熱可塑性樹脂管を、引取機7により引き取りつつ、
延伸成形すると、軸方向にも延伸された二軸延伸熱可塑
性樹脂管91を得ることができる。なお、大径金型6は
管全体温度調整用水槽5直後の下流側に設けられている
ので、大径金型6上での延伸工程における樹脂表面温度
管理ができるという効果が奏される。Next, the obtained thermoplastic resin pipe 9 is cooled by the pipe surface quenching water tank 4 while the connecting pipe 3 is inserted.
It is adjusted to a predetermined stretching temperature. Next, the quenched thermoplastic resin pipe 9 is cooled by the water tank 5 for temperature control of the entire pipe. Then, the large-diameter mold 6 is inserted into the cooled thermoplastic resin tube 9. Note that the large-diameter mold 6 gradually increases in outer diameter in the traveling direction of the thermoplastic resin pipe 9, and has a maximum outer diameter substantially equal to the inner diameter of the stretched thermoplastic resin pipe 91 to be molded. ing. Thus, the thermoplastic resin pipe 9
And stretch in the circumferential direction. Then, while taking up the thermoplastic resin pipe stretched in the circumferential direction by the take-up machine 7,
When stretch-molded, a biaxially stretched thermoplastic resin tube 91 stretched in the axial direction can be obtained. Since the large-diameter mold 6 is provided on the downstream side immediately after the entire-tube temperature-adjusting water tank 5, there is an effect that the resin surface temperature can be controlled in the stretching step on the large-diameter mold 6.
【0026】図2は、本発明に使用される二軸延伸装置
の別の例を示す模式図である。本実施の形態において
は、大径金型6の上流側が、管全体温度調整用水槽5内
に設けられていること以外は、図1と同様であり、図1
と同様の符号を記して説明を省略する。このように、大
径金型6の上流側を管全体温度調整用水槽5内に設ける
ことにより、延伸工程が終了するまでより均一な温度調
整ができるという効果が奏される。FIG. 2 is a schematic view showing another example of the biaxial stretching apparatus used in the present invention. This embodiment is the same as FIG. 1 except that the upstream side of the large-diameter mold 6 is provided in the entire-tube temperature adjusting water tank 5.
The same reference numerals are used and the description is omitted. By providing the upstream side of the large-diameter mold 6 in the entire-tube temperature-adjusting water tank 5 in this manner, there is an effect that the temperature can be adjusted more uniformly until the stretching step is completed.
【0027】[0027]
【実施例】以下、本発明を実施例に基づきさらに詳しく
説明する。 (実施例1〜5、比較例1〜3)図1に示した二軸延伸
装置を用い、塩化ビニル系樹脂(徳山積水社製、品番
「TS1000R」、重合度1050)100重量部、
ジオクチル錫系安定剤(三共有機合成社製、品番「ON
Z142F)1重量部、ステアリン酸(日本油化社製)
0.5重量部、ポリエチレンワックス(三井化学社製、
商品名「Hiwax220MP」)0.5重量部をスー
パーミキサー(カワタ製作所社製)で混合した塩化ビニ
ル系樹脂組成物(ガラス転移温度80℃)を、押出機1
(積水工機社製、60mm二軸押出機、型式「SLM6
0」)のホッパーに供給し、押出温度185℃、押出量
30kg/hで成形して、外径38mm、肉厚3.5m
mの熱可塑性樹脂樹脂管9を得た。The present invention will be described below in more detail with reference to examples. (Examples 1 to 5, Comparative Examples 1 to 3) 100 parts by weight of a vinyl chloride resin (manufactured by Tokuyama Sekisui Co., product number "TS1000R", degree of polymerization 1050) using the biaxial stretching apparatus shown in FIG.
Dioctyltin-based stabilizer (manufactured by Sankyoki Gosei Co., Ltd., product number "ON
Z142F) 1 part by weight, stearic acid (Nippon Yuka Co., Ltd.)
0.5 parts by weight, polyethylene wax (manufactured by Mitsui Chemicals, Inc.
A vinyl chloride-based resin composition (glass transition temperature: 80 ° C.) obtained by mixing 0.5 parts by weight of a trade name “Hiwax220MP”) with a super mixer (manufactured by Kawata Seisakusho Co., Ltd.)
(Sekisui Koki Co., Ltd., 60 mm twin screw extruder, model "SLM6
0 "), and formed at an extrusion temperature of 185 ° C. and an extrusion rate of 30 kg / h, an outer diameter of 38 mm and a wall thickness of 3.5 m.
m of the thermoplastic resin tube 9 was obtained.
【0028】次いで、得られた熱可塑性樹脂樹脂管9
を、20℃の水が張られた長さ20cmの管表面急冷水
槽4を通過させて急冷し、さらに、表1に示した種類、
温度の冷媒が張られた長さ60cmの管全体温度調整用
水槽5を通過させて徐冷し、さらに、管内に、大径金型
6を挿入しつつ熱可塑性樹脂管を拡径し、拡径された熱
可塑性樹脂管を、水槽7で冷却しながら、引取機により
引き取りつつ延伸成形し、外径60mmの二軸延伸熱可
塑性樹脂管91を得た。Next, the obtained thermoplastic resin pipe 9
Was quenched by passing it through a 20 cm long tube surface quenching water bath 4 covered with water at 20 ° C.
After passing through a 60 cm long water tank 5 for adjusting the temperature of the entire pipe, which is filled with a refrigerant having a high temperature, the pipe is gradually cooled. Further, a large-diameter mold 6 is inserted into the pipe while expanding the thermoplastic resin pipe. The drawn thermoplastic resin tube was stretched and formed while being taken up by a take-off machine while being cooled in the water tank 7 to obtain a biaxially stretched thermoplastic resin tube 91 having an outer diameter of 60 mm.
【0029】評価 実施例1〜5、比較例1〜3で得られた二軸延伸熱可塑
性樹脂管91を以下の評価に供し、その結果を表1に纏
めて記した。Evaluation The biaxially stretched thermoplastic resin tubes 91 obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were subjected to the following evaluations, and the results are summarized in Table 1.
【0030】(延伸倍率)得られた二軸延伸熱可塑性樹
脂管91を200mmの長さに切断し、外径をノギスで
測定した後、150℃で3分加熱し、収縮した管の長さ
と外径をノギスで測定し、(切断長さ/収縮後の管の長
さ)を軸方向延伸倍率とし、(収縮前の外径/収縮後の
管の外径)を周方向延伸倍率とした。(Stretching Magnification) The obtained biaxially stretched thermoplastic resin tube 91 was cut into a length of 200 mm, and the outer diameter was measured with a caliper. The outer diameter was measured with a vernier caliper, and (cut length / tube length after shrinkage) was taken as the axial stretching ratio, and (outer diameter before shrinkage / outer diameter of the tube after shrinkage) was taken as the circumferential stretching ratio. .
【0031】(外観)得られた二軸延伸熱可塑性樹脂管
91の内面を目視で観察した。(Appearance) The inner surface of the obtained biaxially stretched thermoplastic resin tube 91 was visually observed.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【発明の効果】本発明の二軸延伸熱可塑性樹脂管の製造
方法は、上述の如き構成となされているので、熱可塑性
樹脂管を二軸延伸するにあたり、延伸前の管の寸法安定
性がすぐれるため、軸方向の延伸倍率を一台の引取機で
潤滑剤を一切使用することなく制御でき、低倍率の延伸
も容易となり、さらに、熱可塑性樹脂管の再加熱が不要
で、成形設備が大幅に省略でき、延伸倍率および寸法精
度に優れた二軸延伸熱可塑性樹脂管を得ることができ
る。According to the method for producing a biaxially stretched thermoplastic resin tube of the present invention as described above, when the thermoplastic resin tube is biaxially stretched, the dimensional stability of the tube before stretching is reduced. Because it is excellent, the stretching ratio in the axial direction can be controlled with a single take-off machine without using any lubricant, low-magnification stretching becomes easy, and reheating of the thermoplastic resin tube is not required, and molding equipment is not required. Can be largely omitted, and a biaxially stretched thermoplastic resin tube excellent in stretch ratio and dimensional accuracy can be obtained.
【図1】本発明に使用される二軸延伸装置の一例を示す
模式図である。FIG. 1 is a schematic diagram showing an example of a biaxial stretching device used in the present invention.
【図2】本発明に使用される二軸延伸装置の別の例を示
す模式図である。FIG. 2 is a schematic diagram showing another example of a biaxial stretching device used in the present invention.
1 押出機 2 (押出機の)金型 4 管表面急冷水槽 5 管全体温度調整用水槽 6 大径金型 7 引取機 9 熱可塑性樹脂管(延伸前) 91 二軸延伸熱可塑性樹脂管(延伸後) DESCRIPTION OF SYMBOLS 1 Extruder 2 Die (of an extruder) 4 Pipe surface quenching water tank 5 Water tank for temperature control of the whole pipe 6 Large-diameter mold 7 Take-off machine 9 Thermoplastic resin pipe (before stretching) 91 Biaxially stretched thermoplastic resin pipe (stretching) rear)
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F207 AA15 AB06 AG08 AK02 AR06 KA01 KA17 KK13 KK54 KK76 KW41 4F210 AA15 AB06 AG08 AK02 AR06 QA09 QC05 QD46 QG02 QT03 QW33 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F207 AA15 AB06 AG08 AK02 AR06 KA01 KA17 KK13 KK54 KK76 KW41 4F210 AA15 AB06 AG08 AK02 AR06 QA09 QC05 QD46 QG02 QT03 QW33
Claims (1)
脂管を、管表面を急冷した後、管全体を所定の延伸温度
に調整するとともに、上記金型に連結され、上記熱可塑
性樹脂管の進行方向に向かって徐々に外径が拡大し、最
大外径が、成形すべき延伸された熱可塑性樹脂管の内径
に略等しくされた大径金型を、上記熱可塑性樹脂管内に
挿入しつつ熱可塑性樹脂管を拡径し、拡径された熱可塑
性樹脂管を、引取機により引き取りつつ、延伸成形を行
うことを特徴とする二軸延伸熱可塑性樹脂管の製造方
法。1. A thermoplastic resin tube extruded from a mold of an extruder, after quenching the surface of the tube, adjusting the entire tube to a predetermined stretching temperature, and connecting the thermoplastic resin tube to the mold, Insert a large-diameter mold in which the outer diameter gradually increases in the traveling direction of the pipe and the maximum outer diameter is substantially equal to the inner diameter of the stretched thermoplastic resin pipe to be molded, into the thermoplastic resin pipe. A method for producing a biaxially stretched thermoplastic resin tube, characterized in that the thermoplastic resin tube is expanded while the stretched thermoplastic resin tube is drawn by a take-off machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000035249A JP2001219461A (en) | 2000-02-14 | 2000-02-14 | Method for manufacturing biaxially-stretched thermoplastic resin pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000035249A JP2001219461A (en) | 2000-02-14 | 2000-02-14 | Method for manufacturing biaxially-stretched thermoplastic resin pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001219461A true JP2001219461A (en) | 2001-08-14 |
Family
ID=18559479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000035249A Pending JP2001219461A (en) | 2000-02-14 | 2000-02-14 | Method for manufacturing biaxially-stretched thermoplastic resin pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001219461A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015041352A1 (en) * | 2013-09-20 | 2017-03-02 | 出光興産株式会社 | Amine compound and organic electroluminescence device |
CN107443716A (en) * | 2017-08-14 | 2017-12-08 | 孙建凯 | Produce PVC O, BOPVC, biaxial tension PVC dilatation mold, production line and method |
-
2000
- 2000-02-14 JP JP2000035249A patent/JP2001219461A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015041352A1 (en) * | 2013-09-20 | 2017-03-02 | 出光興産株式会社 | Amine compound and organic electroluminescence device |
CN107443716A (en) * | 2017-08-14 | 2017-12-08 | 孙建凯 | Produce PVC O, BOPVC, biaxial tension PVC dilatation mold, production line and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3812230A (en) | Method for continuously making a hollow board article of thermoplastic resin | |
JP4065319B2 (en) | Method for forming PTFE tube | |
EP1644067B1 (en) | Tubing having regions with different molecular orientation | |
JP2001219461A (en) | Method for manufacturing biaxially-stretched thermoplastic resin pipe | |
WO2008054061A1 (en) | Method for preparation of microcellular foam with uniform foaming ratio and extruding and foaming system for the same | |
US4229407A (en) | Tear path products, method and apparatus | |
JP2001219465A (en) | Method for manufacturing biaxially-stretched thermoplastic resin pipe | |
JP2003117995A (en) | Method for manufacturing biaxially oriented thermoplastic resin pipe | |
JP4256536B2 (en) | Method for producing hollow foam blow molded article | |
CN213839871U (en) | Core layer foaming pipe and production equipment thereof | |
JPS6226298B2 (en) | ||
JP2002096386A (en) | Method for manufacturing polyethylene tube | |
DE69413599T2 (en) | Bio-oriented polyethylene pipe | |
JPH0289619A (en) | Manufacture of film | |
JPH06297566A (en) | Method and device for manufacturing biaxially oriented film and shrink film | |
JP2003127224A (en) | Method for manufacturing biaxially stretched thermoplastic resin pipe | |
JP2000296545A (en) | Method for continuously manufacturing oriented tubular material | |
JPH0994867A (en) | Preparation of hollow molded article | |
JPS5947645B2 (en) | Method and device for forming oriented tubular body | |
JP2003127223A (en) | Method for manufacturing stretched thermoplastic resin pipe | |
JP3436579B2 (en) | Polyethylene resin for blown film molding and method for producing film | |
JP3027753B1 (en) | Manufacturing method of synthetic resin hollow molded article | |
JPH03128225A (en) | Production of biaxially oriented nylon 66 film | |
JP4498578B2 (en) | Manufacturing method of polyethylene pipe | |
JP2000141478A (en) | Production of stretched pipe made of synthetic resin |