JP2000296545A - Method for continuously manufacturing oriented tubular material - Google Patents

Method for continuously manufacturing oriented tubular material

Info

Publication number
JP2000296545A
JP2000296545A JP11106652A JP10665299A JP2000296545A JP 2000296545 A JP2000296545 A JP 2000296545A JP 11106652 A JP11106652 A JP 11106652A JP 10665299 A JP10665299 A JP 10665299A JP 2000296545 A JP2000296545 A JP 2000296545A
Authority
JP
Japan
Prior art keywords
resin
diameter
die
molding
die body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11106652A
Other languages
Japanese (ja)
Inventor
Keisuke Shimazaki
圭介 島崎
Kotaro Tsuboi
康太郎 坪井
Takehisa Sugaya
武久 菅谷
Koichiro Iwasa
航一郎 岩佐
Naoki Ueda
直樹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11106652A priority Critical patent/JP2000296545A/en
Publication of JP2000296545A publication Critical patent/JP2000296545A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuously manufacturing a thermoplastic resin molding by which it is possible to perform orientation control, molding of a thick walled product and rapid molding process and mold a high-viscosity resin continuously under a low extrusion pressure and further orient the resin at a high magnification. SOLUTION: A diameter expanding core part 34 is provided on a mandrel 3 which is inserted into a die body 2 and forms a tubular molding passage between the mandrel 3 and the die body 2. At the same time, a raw material resin supplied into the molding passage is crosslinked in the die 1 and the obtained crosslinked resin tubular material is processed in a molten state using the diameter expanding core 34 so that the material diameter is expanded and the material is thin-walled to be set by cooling. In this continuous manufacturing method, the diameter expanding part 34 is of a circular truncated cone shape having an angle formed by a generant on the side face of a circular truncated cone and the rotary center axis thereof being 10-30 deg. or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配向管状体の連続
製造方法に関する。
The present invention relates to a method for continuously producing an oriented tubular body.

【0002】[0002]

【従来の技術】高強度化を狙いとして成形中に樹脂を延
伸させるようにした熱可塑性樹脂成形品の製造方法が、
既に特公平4−55379号公報、特表平5−5019
93号公報、特公平2−58093号公報等で開示され
ている。しかしながら、上記公報に開示された製造方法
には、それぞれつぎのような問題があった。
2. Description of the Related Art A method for producing a thermoplastic resin molded article in which a resin is stretched during molding for the purpose of increasing strength has been proposed.
JP-B-4-55379, JP-T-5-5019
No. 93, Japanese Patent Publication No. 2-58093 and the like. However, the manufacturing methods disclosed in the above publications have the following problems.

【0003】〔特公平4−55379号公報の製造方
法〕特公平4−55379号公報の製造方法では、ダイ
の下流側から引抜くことによって延伸を行うようになっ
ており、マンドレルの拡径コア部で原料管を拡径するこ
とで付与した周方向への配向が軸方向への引抜き力によ
り緩和されるため、軸方向への優先配向となり、配向制
御の任意性に劣る。
[0003] In the manufacturing method of Japanese Patent Publication No. 4-55379, stretching is performed by pulling out from the downstream side of the die, and the diameter of the expanded core of the mandrel is increased. Since the orientation in the circumferential direction imparted by expanding the diameter of the raw material tube in the portion is alleviated by the drawing force in the axial direction, the orientation is preferentially oriented in the axial direction, and the arbitrariness of the orientation control is poor.

【0004】〔特表平5−501993号公報の製造方
法〕成形品の配向状態は、周方向のみへの配向付与であ
り、配向制御の任意性が不可能な上、バッチ式の生産形
態であり生産性が低い。
[Production method of Japanese Patent Publication No. 5-501993] The orientation state of a molded article is an orientation imparted only in the circumferential direction. There is low productivity.

【0005】〔特公平2−58093号公報の製造方
法〕押出圧力により拡径部へ押し込む方式であり、引抜
き力が不要であるため、配向制御の任意性が高く、しか
も制御の容易性や生産性に優れたものである。しかしな
がら、この製造方法の場合、ガラス転移温度以上融点以
下の温度で延伸させるようになっていて、特に結晶性熱
可塑性樹脂ではこの温度領域での弾性率変化が急激であ
る。
[Production method disclosed in Japanese Patent Publication No. 2-58093] This is a method in which the material is pushed into the enlarged-diameter portion by the extrusion pressure, and since there is no need for a drawing force, the orientation control is arbitrarily high, and the control is easy and the production is easy. It has excellent properties. However, in the case of this production method, the film is stretched at a temperature equal to or higher than the glass transition temperature and equal to or lower than the melting point. In particular, in the case of a crystalline thermoplastic resin, a change in elastic modulus in this temperature region is sharp.

【0006】したがって、均一な延伸を達成しようとす
れば、樹脂温度分布を均一化させる必要であるが、厚肉
品や高速成形では温度の均一化を達成できない。すなわ
ち、厚肉品の成形や高速成形時の成形性に問題がある。
また、この温度領域では弾性率も高いレベルにあるため
に、必要な押出圧力が高く、高粘度な樹脂や高倍率な延
伸を押出機で連続的に達成するのも不可能である。
Therefore, in order to achieve uniform stretching, it is necessary to make the resin temperature distribution uniform, but it is not possible to achieve uniform temperature in thick products or high-speed molding. That is, there is a problem in the moldability of thick-walled products and high-speed molding.
In addition, since the elastic modulus is also at a high level in this temperature range, the necessary extrusion pressure is high, and it is impossible to continuously achieve high-viscosity resin or high-magnification stretching with an extruder.

【0007】そこで、本発明の発明者らは、押出機内で
原料樹脂と熱架橋剤とを混練し、この混練物を押出機か
ら熱架橋ゾーン、延伸ゾーン、冷却ゾーンを有するダイ
へ供給し、熱架橋ゾーンで押出機から押し出された混練
物中の原料樹脂を熱架橋させる架橋工程と、架橋工程で
得られた架橋樹脂を延伸ゾーンにおいて、樹脂の融点以
上で少なくとも1軸以上の配向方向に配向させながら、
成形品形状に賦形する延伸工程と、延伸ゾーンで賦形し
た賦形物を冷却ゾーンで配向緩和温度以下に冷却する冷
却工程とを備えている樹脂成形品の連続製造方法を先に
提案している。
Therefore, the inventors of the present invention knead the raw resin and the thermal crosslinking agent in an extruder, and supply the kneaded product from the extruder to a die having a thermal crosslinking zone, a stretching zone, and a cooling zone. A cross-linking step of thermally cross-linking the raw resin in the kneaded product extruded from the extruder in the heat cross-linking zone; While orienting,
A method for continuously manufacturing a resin molded article comprising a stretching step of shaping the molded article into a shape and a cooling step of cooling the shaped article shaped in the stretching zone to a temperature equal to or lower than the orientation relaxation temperature in a cooling zone has been proposed. ing.

【0008】すなわち、この製造方法によれば、溶融状
態で延伸を行うようにしたので、樹脂変形力が大幅に低
減できる。しかも、熱可塑性樹脂を架橋させてまず分子
鎖間に編目構造を作るようにしたので、溶融時でも延伸
によって分子配向が確保できる。したがって、配向制
御、および、厚肉品の成形や高速成形が可能であるとと
もに、連続的に高粘度な樹脂を用いた成形や高倍率な延
伸を行うことができる。
That is, according to this manufacturing method, since the stretching is performed in the molten state, the resin deformation force can be greatly reduced. Moreover, since the thermoplastic resin is cross-linked to form a stitch structure between the molecular chains, the molecular orientation can be ensured by stretching even during melting. Therefore, it is possible to perform orientation control, and to mold a thick product or high-speed molding, and to continuously perform molding using a high-viscosity resin or stretching at a high magnification.

【0009】ところが、この連続製造方法を用いて配向
管状体を製造しようとした場合、ダイの形状によって
は、押出圧力が高くなりすぎてうまく配向管状体を製造
できない場合がある。
However, when an oriented tubular body is to be produced using this continuous production method, the extrusion pressure may be too high depending on the shape of the die, and the oriented tubular body may not be produced properly.

【0010】[0010]

【発明が解決しようとする課題】本発明は、このような
事情に鑑みて、配向制御、および、厚肉品の成形や高速
成形が可能であるとともに、低い押出圧力で連続的に高
粘度な樹脂を用いた成形や高倍率な延伸を行うことがで
きる熱可塑性樹脂成形品の連続製造方法を提供すること
を目的としている。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention is capable of controlling orientation, forming a thick-walled product and high-speed forming, and having a high extrusion viscosity at a low extrusion pressure. It is an object of the present invention to provide a method for continuously producing a thermoplastic resin molded article capable of performing molding using a resin or stretching at a high magnification.

【0011】[0011]

【課題を解決するための手段】このような目的を達成す
るために、本発明の請求項1に記載の発明にかかる配向
管状体の連続製造方法(以下、「請求項1の製造方法」
と記す)は、ダイ本体と、このダイ本体内に挿入され、
ダイ本体との間に管状の成形用通路を形成するマンドレ
ルとを備え、ダイ本体が成形用通路の出口側に向かって
拡径する拡径筒部を有し、前記マンドレルがダイ本体の
拡径筒部に対応する部分に円錐台形状の拡径コア部を有
し、成形用通路が前記拡径筒部と拡径コア部によって形
成され入口側から出口側に向かって徐々に拡径する延伸
ゾーンを備えているダイ内に、前記成形用通路の入口か
ら原料樹脂を連続的に供給し、ダイ内で原料樹脂を架橋
させたのち、架橋樹脂を前記延伸ゾーンで拡径しつつ肉
厚を減少させながら延伸する工程を備えた配向管状体の
連続製造方法であって、前記拡径コア部は、円錐台の側
面の母線とその回転中心軸とのなす角度が10°以上3
0°以下である構成とした。
In order to achieve such an object, a method for continuously producing an oriented tubular body according to the first aspect of the present invention (hereinafter referred to as the "method for producing the first aspect").
Is inserted into the die body and the die body,
A mandrel that forms a tubular molding passage between the die body and the die body, the die body having a diameter-enlarging tube portion that expands in diameter toward the outlet side of the molding passage, and the mandrel is enlarged in diameter of the die body. A portion having a truncated cone-shaped enlarged core portion at a portion corresponding to the cylindrical portion, and a forming passage is formed by the enlarged cylindrical portion and the enlarged core portion, and the diameter gradually increases from an inlet side to an outlet side. In the die having a zone, the raw material resin is continuously supplied from the inlet of the molding passage, and after the raw material resin is cross-linked in the die, the cross-linked resin is expanded in the stretching zone while the wall thickness is increased. A method for continuously producing an oriented tubular body comprising a step of stretching while reducing the diameter, wherein the diameter-enlarged core portion has an angle formed by a generatrix on a side surface of a truncated cone and a rotation center axis thereof at least 10 °.
It was configured to be 0 ° or less.

【0012】本発明の請求項2に記載の発明にかかる配
向管状体の連続製造方法(以下、「請求項2の製造方
法」と記す)は、請求項1の製造方法において、成形用
通路の延伸ゾーン後方に冷却ゾーンを設け、押出機内で
原料樹脂と熱架橋剤とを混練し、この混練状態で原料樹
脂を押出機から成形用通路内に押し出す供給し、延伸ゾ
ーンの手前で原料樹脂を熱架橋させたのち、延伸ゾーン
で、樹脂の融点以上で少なくとも1軸以上の配向方向に
配向させながら、成形品形状に延伸賦形し、冷却ゾーン
で、延伸賦形された賦形物を配向緩和温度以下に冷却す
るようにした。
According to a second aspect of the present invention, there is provided a continuous production method of an oriented tubular body (hereinafter referred to as “a second production method”). A cooling zone is provided behind the stretching zone, the raw resin and the thermal crosslinking agent are kneaded in the extruder, and in this kneaded state, the raw resin is extruded from the extruder into the molding passage, and the raw resin is fed before the stretching zone. After being thermally crosslinked, in the stretching zone, the resin is stretched and shaped into a molded product while being oriented in at least one axis or more at a temperature equal to or higher than the melting point of the resin, and the stretched shaped article is oriented in the cooling zone. It was cooled below the relaxation temperature.

【0013】本発明の請求項3に記載の発明にかかる配
向管状体の連続製造方法(以下、「請求項3の製造方
法」と記す)は、請求項1または請求項2の製造方法に
おいて、成形用通路の壁面と樹脂との間に潤滑剤を介在
させるようにした。
According to a third aspect of the present invention, there is provided a method for continuously producing an oriented tubular body according to the third aspect of the present invention. A lubricant is interposed between the wall surface of the molding passage and the resin.

【0014】本発明において、拡径コア部の円錐台の側
面の母線とその回転中心軸とのなす角度(以下、「半頂
角」と記す)が10°以上30°以下に限定されるが、
好ましくは15°以上20°以下である。
In the present invention, the angle (hereinafter, referred to as "half apex angle") between the generatrix of the side surface of the truncated cone of the enlarged diameter core portion and the rotation center axis is limited to 10 ° or more and 30 ° or less. ,
Preferably it is 15 ° or more and 20 ° or less.

【0015】半頂角が上記のように限定される理由は、
以下のとおりである。すなわち、半頂角が10°を下回
ると、延伸ゾーンが長くなるため、マンドレル自体の重
量がどうしても大きくなってマンドレルに撓みが発生
し、得られる配向管状体の寸法精度が悪くなる。しか
も、成形用通路も長くなって樹脂にかかる抵抗も増え、
押出圧力も高くなる。一方。半頂角が30°を越えると
押出圧力が高くなり過ぎて巧く延伸できなくなる。ま
た、半頂角が15°以上20°以下の範囲がマンドレル
の撓みからくる寸法精度と、押出圧力の低減の最もよい
バランスとなる。
The reason why the half apex angle is limited as described above is as follows.
It is as follows. That is, when the half apex angle is less than 10 °, the stretching zone becomes long, so that the weight of the mandrel itself is inevitably increased and the mandrel is bent, resulting in poor dimensional accuracy of the obtained oriented tubular body. In addition, the length of the molding passage is increased and the resistance applied to the resin increases,
Extrusion pressure also increases. on the other hand. When the half apex angle exceeds 30 °, the extrusion pressure becomes too high, so that the drawing cannot be performed properly. Further, the range where the half apex angle is 15 ° or more and 20 ° or less is the best balance between the dimensional accuracy resulting from the bending of the mandrel and the reduction of the extrusion pressure.

【0016】本発明において用いられる原料樹脂として
は、特に限定されないが、たとえば、ポリオレフィン、
ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレ
ート、ポリカーボネート、ポリエステルが挙げられ、こ
れらが単独であるいは混合して用いられるが、特に、結
晶性熱可塑性樹脂を用いることが好ましい。結晶性熱可
塑性樹脂としては、L−LDPE(直鎖状低密度ポリエ
チレン)、LDPE(低密度ポリエチレン)、MDPE
(中密度ポリエチレン)、HDPE(高密度ポリエチレ
ン)等のポリエチレン、ランダムPP(ポリプロピレ
ン)、ホモPP(ポリプロビレン)、ブロックPP(ポ
リプロビレン)等のポリプロピレン等が挙げられる。
The raw material resin used in the present invention is not particularly limited.
Examples thereof include polystyrene, polyvinyl chloride, polymethyl methacrylate, polycarbonate, and polyester. These may be used alone or in combination, and it is particularly preferable to use a crystalline thermoplastic resin. As crystalline thermoplastic resins, L-LDPE (linear low density polyethylene), LDPE (low density polyethylene), MDPE
Examples include polyethylene such as (medium density polyethylene) and HDPE (high density polyethylene), and polypropylene such as random PP (polypropylene), homo PP (polypropylene), and block PP (polypropylene).

【0017】本発明の連続製造方法において、原料樹脂
の架橋方法は、特に限定されないが、たとえば、電子
線、紫外線、熱水架橋、熱架橋等の汎用の手段を利用す
ればよい。ただし、厚肉品の場合には電子線や紫外線の
場合、線源の透過能力が低いこと、熱水架橋の場合も熱
水の浸透速度が遅いこと、から請求項2の製造方法のよ
うに熱架橋が最も効果的である。熱架橋に使用する熱架
橋剤としては、特に限定されないが、有機過酸化物の使
用が可能であり、使用する熱可塑性樹脂の成形温度や相
溶性の観点から適宜選択することができ、具体的には、
ジクミルパーオキサイド、ジ−t−ブチルパーオキサイ
ド、メチルエチルケトンパーオキサイド等が挙げられ
る。
In the continuous production method of the present invention, the method of cross-linking the raw material resin is not particularly limited. For example, general-purpose means such as electron beam, ultraviolet ray, hot water cross-linking and heat cross-linking may be used. However, in the case of thick-walled products, in the case of electron beams or ultraviolet rays, the transmission capability of the radiation source is low, and in the case of hot water crosslinking, the penetration rate of hot water is low. Thermal crosslinking is most effective. The thermal crosslinking agent used for thermal crosslinking is not particularly limited, but an organic peroxide can be used, and can be appropriately selected from the viewpoint of the molding temperature and compatibility of the thermoplastic resin to be used. In
Dicumyl peroxide, di-t-butyl peroxide, methyl ethyl ketone peroxide and the like can be mentioned.

【0018】また、架橋樹脂の架橋度は、5%以上50
%以下が好ましい。すなわち、架橋度が5%未満の場
合、融点以上での延伸で分子鎖のすり抜けが起こり、5
0%を越えると、樹脂の伸度が低下するため、高倍率延
伸ができなくなる恐れがある。なお、本発明で架橋度
は、以下の式で示されるゲル分率(%)で表すことがで
きる。
The degree of crosslinking of the crosslinked resin is 5% or more and 50% or more.
% Or less is preferable. That is, when the degree of cross-linking is less than 5%, the molecular chains slip through by stretching at a temperature higher than the melting point, and the
If it exceeds 0%, the elongation of the resin is reduced, so that high-magnification stretching may not be performed. In the present invention, the degree of crosslinking can be represented by a gel fraction (%) represented by the following formula.

【0019】[0019]

【数1】 (Equation 1)

【0020】なお、上記式において、溶剤抽出後の試料
重量とは、選択した未架橋状態の熱可塑性樹脂を溶解可
能な溶剤を用いて試料中に残った未架橋状態の樹脂分を
溶解させて、残った不溶分のみの重量である。
In the above formula, the weight of the sample after the solvent extraction means that the uncrosslinked resin remaining in the sample is dissolved using a solvent capable of dissolving the selected uncrosslinked thermoplastic resin. , The weight of only the remaining insoluble matter.

【0021】ダイ内へ樹脂を供給する方法としては、連
続的に熱を樹脂へ付与できる圧力ポンプを用いて圧送す
る方法が挙げられる。このような圧力ポンプとしては、
請求項2の製造方法のように、押出機を用いる方法が最
も効率的で好ましい。
As a method of supplying the resin into the die, there is a method of supplying the resin by pressure using a pressure pump capable of continuously applying heat to the resin. As such a pressure pump,
A method using an extruder as in the production method of claim 2 is the most efficient and preferable.

【0022】押出機としては、単軸押出機、2軸押出
機、多軸押出機等が可能であるが、請求項2の製造方法
のように押出機中で熱可塑性樹脂と熱架橋剤とを混練す
る場合には、これらの中でも熱可塑性樹脂を溶融させ、
熱架橋剤との混合能力に優れる2軸同方向回転押出機が
好ましい。
As the extruder, a single-screw extruder, a twin-screw extruder, a multi-screw extruder, and the like can be used. When kneading, melt the thermoplastic resin among these,
A twin-screw co-rotating extruder excellent in mixing ability with a thermal crosslinking agent is preferable.

【0023】請求項2の製造方法において、配向緩和温
度以下とは、非晶性熱可塑性樹脂の場合、ガラス転移温
度以下を意味し、結晶性熱可塑性樹脂の場合、結晶化開
始温度以下を意味する。すなわち、冷却は、延伸された
賦形物を冷却して配向を凍結させるために行われる。
In the production method of the present invention, the term "below the orientation relaxation temperature" means, in the case of an amorphous thermoplastic resin, a temperature below the glass transition temperature, and in the case of a crystalline thermoplastic resin, it means a temperature below the crystallization start temperature. I do. That is, the cooling is performed to cool the stretched shaped article and freeze the orientation.

【0024】また、本発明の製造方法においては、より
スムーズに延伸が可能なように、成形用通路の壁面、す
なわち、ダイの樹脂接触面が潤滑性を備えていることが
好ましい。成形用通路の壁面に潤滑性を付与する方法と
しては、特に限定されないが、請求項3の製造方法のよ
うに、成形用通路の壁面と樹脂との間に潤滑剤を介在さ
せることが好ましい。
In the production method of the present invention, it is preferable that the wall surface of the molding passage, that is, the resin contact surface of the die has lubricity so that the drawing can be performed more smoothly. The method of imparting lubricity to the wall surface of the molding passage is not particularly limited, but it is preferable to interpose a lubricant between the wall surface of the molding passage and the resin as in the manufacturing method of claim 3.

【0025】潤滑剤を介在させる方法としては、特に限
定されないが、たとえば、(1)熱可塑性樹脂中へ低分
子量の潤滑剤を予め混合しておく方法、(2)ダイの樹
脂接触面に潤滑剤を供給する方法が挙げられるが、
(2)の方法が潤滑効果の安定性や成形品の長期性能の
観点からより好ましい。
The method of interposing the lubricant is not particularly limited, and includes, for example, (1) a method in which a low-molecular-weight lubricant is previously mixed into a thermoplastic resin, and (2) a method in which a lubricant is applied to the resin contact surface of the die. There is a method of supplying the agent,
The method (2) is more preferable from the viewpoint of the stability of the lubricating effect and the long-term performance of the molded article.

【0026】(1)の方法に用いられる潤滑剤として
は、ワックス、オリゴマー等が挙げられる。(2)の方
法に用いられる潤滑剤としては、エチレンオリゴマー、
シリコーンオイル、ステアリン酸、ポリエチレングリコ
ール、流動パラフィン、低融点ポリマー等が挙げられ、
潤滑膜形成の安定性や潤滑剤の耐熱性からポリエチレン
グリコールがより好ましい。
Examples of the lubricant used in the method (1) include waxes and oligomers. As the lubricant used in the method (2), ethylene oligomer,
Silicone oil, stearic acid, polyethylene glycol, liquid paraffin, low melting point polymer and the like,
Polyethylene glycol is more preferred from the viewpoint of the stability of forming a lubricating film and the heat resistance of the lubricant.

【0027】潤滑剤を成形用通路壁面に供給する方法と
しては、ダイの成形用通路の壁となる部分を少なくとも
多孔質材料で形成し、潤滑剤に圧力をかけて多孔質材料
の背面側から成形用通路の壁の表面側に向かって滲み出
させる方法、マニホールドで潤滑剤を展開し成形品形状
に供給する方法等が挙げられる。潤滑剤を供給する装置
としては、ダイ内の圧力に抗して潤滑剤を供給できれば
特に限定されないが、たとえば、プランジャーポンプや
ダイヤフラムポンプが挙げられる。
As a method of supplying the lubricant to the wall of the molding passage, at least a portion to be a wall of the molding passage of the die is formed of a porous material, and pressure is applied to the lubricant from the back side of the porous material. A method of oozing out toward the surface side of the wall of the molding passage, a method of developing a lubricant with a manifold and supplying the lubricant to the shape of a molded product are exemplified. The device for supplying the lubricant is not particularly limited as long as the lubricant can be supplied against the pressure in the die, and examples thereof include a plunger pump and a diaphragm pump.

【0028】また、本発明の製造方法において、延伸
は、内径を拡大し厚みを減少させることでどちらかひと
つ以上の作用により1軸以上の延伸が達成できる。これ
らの作用の大小により延伸倍率は任意に制御可能であ
り、延伸効果の発現する面積減少率で5倍以上50倍以
下の範囲で選択される。
In the production method of the present invention, uniaxial stretching can be achieved by one or more actions by expanding the inner diameter and reducing the thickness. The stretching ratio can be arbitrarily controlled depending on the magnitude of these actions, and is selected from the range of 5 times or more and 50 times or less in the area reduction rate at which the stretching effect is exhibited.

【0029】本発明の原料樹脂には、酸化防止剤、耐光
剤、紫外線吸収剤、滑剤等、難燃剤、帯電防止剤等の添
加剤を所望の物性を得るために適宜添加するようにして
も構わない。また、結晶核剤となりうるものを少量添加
して、結晶を微細化して、物性を均一化する補助とする
ことも可能である。また、フィラー、顔料を物性の低下
をきたさない範囲で用いることが可能である。例えば、
ガラス繊維、カーボン繊維、アスベスト等の繊維状フィ
ラーや、クルク、マイカ、モンモリナイト、酸化アルミ
ニウム、等が例示される。
Additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, a lubricant, a flame retardant, an antistatic agent and the like may be appropriately added to the raw material resin of the present invention in order to obtain desired physical properties. I do not care. It is also possible to add a small amount of a substance that can serve as a crystal nucleating agent to make the crystals finer and to help uniform the physical properties. In addition, fillers and pigments can be used in a range that does not cause deterioration in physical properties. For example,
Examples thereof include fibrous fillers such as glass fiber, carbon fiber, and asbestos, curk, mica, montmorillonite, and aluminum oxide.

【0030】[0030]

【発明の実施の形態】以下に、本発明の実施の形態を、
図面を参照しつつ詳しく説明する。図1は本発明の配向
管状体の連続製造方法に使用する本発明のダイをあらわ
している
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described in detail with reference to the drawings. FIG. 1 shows a die of the present invention used in the method for continuously producing an oriented tubular body of the present invention.

【0031】図1に示すように、このダイ1は、ダイ本
体2と、マンドレル3とを備えている。ダイ本体2は、
押出機(図示せず)から押し出される溶融樹脂を供給す
る樹脂供給口21と、潤滑剤供給口22とを備え、樹脂
供給口21側の端部から中央部に向かって小径筒部23
が設けられ、ダイ本体2の出口側から中央部に向かって
大径筒部24が設けられているとともに、小径筒部23
と大径筒部24との間に小径筒部23から大径筒部24
に向かって徐々に拡径する拡径筒部25が設けられてい
る。
As shown in FIG. 1, the die 1 includes a die body 2 and a mandrel 3. The die body 2
A resin supply port 21 for supplying a molten resin extruded from an extruder (not shown) and a lubricant supply port 22 are provided. The small-diameter cylindrical portion 23 extends from the end on the resin supply port 21 side toward the center.
And a large-diameter cylindrical portion 24 is provided from the exit side of the die main body 2 toward the center, and a small-diameter cylindrical portion 23 is provided.
Between the small-diameter cylindrical portion 23 and the large-diameter cylindrical portion 24
There is provided a diameter-enlarging tubular portion 25 that gradually increases in diameter toward.

【0032】マンドレル3は、ダイ本体2の小径筒部2
3の端部から小径筒部23の略中央部に掛けて、小径筒
部23に水密に嵌合し、ダイ本体2とマンドレル3とを
一体化した状態にする嵌合部31と、小径筒部23の残
部との間に小径厚肉の管状をした熱架橋ゾーン4を形成
する小径コア部32と、ダイ本体2の大径筒部24との
間にほぼ成形しようとする管の断面形2と同じ断面形状
をした冷却ゾーン5を形成する大径コア部33と、小径
コア部32から大径コア部33に向かって徐々に拡径
し、拡径筒部25との間に延伸ゾーンを形成する拡径コ
ア部34とを備えている。
The mandrel 3 is a small-diameter cylindrical portion 2 of the die body 2.
A small-diameter cylinder; a fitting part 31 which is fitted over the substantially central part of the small-diameter cylindrical part 23 from an end of the small-diameter cylindrical part 23 to fit tightly into the small-diameter cylindrical part 23 to make the die body 2 and the mandrel 3 integrated. The cross-sectional shape of the tube to be substantially formed between the small-diameter core portion 32 forming the small-diameter thick-walled tubular thermal crosslinking zone 4 with the rest of the portion 23 and the large-diameter cylindrical portion 24 of the die body 2 2, a large-diameter core portion 33 forming a cooling zone 5 having the same cross-sectional shape as that of the large-diameter core portion 33, and a stretching zone between the small-diameter core portion 32 and the large-diameter core portion 33. And an enlarged core portion 34 that forms

【0033】拡径コア部34は、円錐台形状をしてい
て、半頂角αが10°以上30°以下に形成されてい
る。嵌合部31は、樹脂供給口21に臨む部分から小径
コア部32との境界に到る部分の外周面に、樹脂供給口
21から供給される樹脂を熱架橋ゾーン4へ導く螺旋溝
31aが穿設されている。
The enlarged diameter core portion 34 has a truncated conical shape, and is formed with a half apex angle α of 10 ° or more and 30 ° or less. The fitting portion 31 has a spiral groove 31 a that guides the resin supplied from the resin supply port 21 to the thermal cross-linking zone 4 on the outer peripheral surface of the portion from the part facing the resin supply port 21 to the boundary with the small-diameter core part 32. Has been drilled.

【0034】また、マンドレル3は、嵌合部31から小
径コア部32に向かって潤滑剤供給路37が穿設されて
いて、この潤滑剤供給路35が小径コア部32の外周面
および拡径コア部34の外周面にかけて螺旋状に設けら
れた潤滑剤供給溝36に連通している。
The mandrel 3 is provided with a lubricant supply passage 37 extending from the fitting portion 31 toward the small-diameter core portion 32. It communicates with a lubricant supply groove 36 provided spirally over the outer peripheral surface of the core portion 34.

【0035】すなわち、加圧ポンプ等で潤滑剤供給路3
5に供給された潤滑剤が潤滑剤供給溝36を介して樹脂
接触面である小径コア部32および拡径コア部35の外
周面に供給されるようになっている。なお、図1中、L
は母線、Cは回転中心軸である。
That is, the lubricant supply passage 3 is formed by a pressurizing pump or the like.
The lubricant supplied to 5 is supplied to the outer peripheral surfaces of the small-diameter core portion 32 and the large-diameter core portion 35 which are resin contact surfaces via the lubricant supply groove 36. In FIG. 1, L
Is a generating line, and C is a rotation center axis.

【0036】そして、このダイ1を用いた本発明の配向
管状体の連続製造方法は、工程順に説明すると以下のよ
うになる。 押出機(図示せず)で原料樹脂と熱架橋剤とを混合
混練し、得られた混合物を押出機の先端から樹脂供給口
21に連続的に供給する。
The continuous production method of the oriented tubular body of the present invention using the die 1 will be described below in the order of steps. The raw material resin and the thermal crosslinking agent are mixed and kneaded by an extruder (not shown), and the obtained mixture is continuously supplied to the resin supply port 21 from the tip of the extruder.

【0037】 樹脂供給口21に供給された混合物を
螺旋溝31aを介して熱架橋ゾーン4に送り、厚肉筒状
に展開するとともに、混合物中の原料樹脂を熱架橋剤に
よって5%以上50%以下の架橋度となるように熱架橋
させる。 熱架橋させた管状の架橋樹脂を延伸ゾーン6に送り
拡径コア部34のテーパによって拡径するとともに、厚
みを減少させて1軸以上の延伸を達成する。
The mixture supplied to the resin supply port 21 is sent to the thermal crosslinking zone 4 via the spiral groove 31a and is developed into a thick-walled cylinder, and the raw resin in the mixture is reduced by 5% to 50% by the thermal crosslinking agent. Thermal crosslinking is performed so as to have the following degree of crosslinking. The thermally cross-linked tubular cross-linked resin is sent to the drawing zone 6 and expanded by the taper of the diameter-enlarged core portion 34, and the thickness is reduced to achieve uniaxial or more drawing.

【0038】 延伸ゾーン6での延伸によって大径コ
ア部33と大径筒部24との隙間形状に賦形されたた管
状賦形物を冷却ゾーン5で、配向緩和温度以下、すなわ
ち、結晶化開始温度以下まで形状を保持したままで冷却
し、配向管状体を連続的に得る。 なお、上記のようにして配向管状体を製造するにあた
り、常に潤滑剤供給口22および潤滑剤供給路37を介
して樹脂接触面であるダイ本体2内周面およびマンドレ
ル3外周面に滲み出させて、架橋樹脂および延伸樹脂
と、樹脂接触面であるダイ本体2内周面およびマンドレ
ル3外周面との間に介在させて摩擦抵抗が小さくなるよ
うにしている。
The tubular shaped material shaped into a gap between the large-diameter core portion 33 and the large-diameter cylindrical portion 24 by stretching in the stretching zone 6 is cooled in the cooling zone 5 to an orientation relaxation temperature or lower, that is, crystallization. While maintaining the shape below the starting temperature, cooling is performed to continuously obtain an oriented tubular body. In manufacturing the oriented tubular body as described above, the resin is always exuded through the lubricant supply port 22 and the lubricant supply path 37 to the inner peripheral surface of the die body 2 and the outer peripheral surface of the mandrel 3 which are the resin contact surfaces. Thus, the frictional resistance is reduced by interposing the crosslinked resin and the stretched resin between the inner peripheral surface of the die body 2 and the outer peripheral surface of the mandrel 3 which are the resin contact surfaces.

【0039】この連続製造方法によれば、原料樹脂をま
ず架橋させて分子鎖間に編目構造を作るようにするとと
もに、溶融状態で延伸を行うようにしたので、溶融時で
も延伸によって分子配向が確保できるようになり、樹脂
変形力が大幅に低減できる。
According to this continuous production method, the raw resin is first cross-linked to form a stitch structure between molecular chains, and the film is stretched in a molten state. As a result, the resin deformation force can be greatly reduced.

【0040】さらに、5%以上50%以下の架橋度とな
るように熱架橋させるようにしたので、分子鎖のすり抜
けが起こらず、配向性に優れている。しかも、ダイ1
は、そのマンドレル3の拡径コア部34の半頂角αが1
0°以上30°以下になっているので、押出圧力を低く
抑えることができる。すなわち、押出機等へかかる負荷
が低減でき、製造コストを下げることができる。
Furthermore, since thermal crosslinking is performed so as to have a degree of crosslinking of 5% or more and 50% or less, slippage of molecular chains does not occur and the orientation is excellent. Moreover, die 1
Indicates that the half apex angle α of the expanded core portion 34 of the mandrel 3 is 1
Since the angle is between 0 ° and 30 °, the extrusion pressure can be kept low. That is, the load on the extruder or the like can be reduced, and the manufacturing cost can be reduced.

【0041】[0041]

【実施例】以下に、本発明の実施例をより詳しく説明す
る。
Embodiments of the present invention will be described below in more detail.

【0042】(実施例1)各部の寸法が以下のようにな
っている図1に示すような樹脂接触面がクロムめっき処
理されたダイと、押出機を用意した。 〔ダイ寸法〕 ・小径コア部32の外径:20mm ・小径筒部23の内径:70mm ・大径コア部33の外径:123mm ・大径筒部24の内径:132mm ・半頂角α:15°
(Example 1) A die having a chrome-plated resin contact surface and an extruder as shown in FIG. 1 were prepared. [Die size]-Outer diameter of small-diameter core part 32: 20 mm-Inner diameter of small-diameter cylinder part 23: 70 mm-Outer diameter of large-diameter core part 33: 123 mm-Inner diameter of large-diameter cylinder part 24: 132 mm-Half vertex angle α: 15 °

【0043】〔押出機〕 ・日本製鋼所社製TEX30α、L/D=51、口径3
2mm
[Extruder] TEX30α manufactured by Japan Steel Works, L / D = 51, caliber 3
2mm

【0044】そして、原料樹脂としての高密度ポリエチ
レン(密度0.953、メルトフローレート(MFR)
0.03、重量平均分子量268000、融点132
℃)を押出機に投入するとともに、L/D=35の位置
から熱架橋剤としての2,5−ジメチル−2,5−ジ
(t−ブチルペルオキシ)ヘキシン−3(日本油脂社製
パーヘキシン25B、194℃半減期時間60秒)を押
出機に高密度ポリエチレン100重量部に対して0.1
5重量部の割合で添加し、押出機内で170℃の樹脂温
度で高密度ポリエチレンと2,5−ジメチル−2,5−
ジ(t−ブチルペルオキシ)ヘキシン−3とを混合混練
したのち、得られた混合物を、ダイ本体2の樹脂供給口
21から熱架橋ゾーン4が220℃、延伸ゾーン6が1
50℃、冷却ゾーン5が80℃に設定されたダイ1内に
連続的に供給し、外径132mm、内径123mmの配向ポ
リエチレン管を連続的に得た。このとき、高密度ポリエ
チレンの押出圧力は、50kgf/cm2 であった。
Then, high density polyethylene (density 0.953, melt flow rate (MFR))
0.03, weight average molecular weight 268,000, melting point 132
° C) into an extruder, and from the position of L / D = 35, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 (Perhexin 25B manufactured by NOF Corporation) as a thermal crosslinking agent , 194 ° C, half-life time of 60 seconds).
5 parts by weight, and the high-density polyethylene and 2,5-dimethyl-2,5-
After mixing and kneading with di (t-butylperoxy) hexyne-3, the obtained mixture is fed from the resin supply port 21 of the die body 2 to 220 ° C. in the thermal crosslinking zone 4 and 1 ° in the stretching zone 6.
It was continuously fed into the die 1 set at 50 ° C. and the cooling zone 5 at 80 ° C. to continuously obtain an oriented polyethylene tube having an outer diameter of 132 mm and an inner diameter of 123 mm. At this time, the extrusion pressure of the high-density polyethylene was 50 kgf / cm 2 .

【0045】(実施例2)半頂角が25°のマンドレル
を用いた以外は、実施例1と同様にして配向ポリエチレ
ン管を連続的に得た。このとき、高密度ポリエチレンの
押出圧力は、52kgf/cm2 であった。
Example 2 An oriented polyethylene pipe was continuously obtained in the same manner as in Example 1 except that a mandrel having a half apex angle of 25 ° was used. At this time, the extrusion pressure of the high-density polyethylene was 52 kgf / cm 2 .

【0046】(比較例1)半頂角が5°のマンドレルを
用いた以外は、実施例1と同様にして配向ポリエチレン
管を連続的に得た。このとき、高密度ポリエチレンの押
出圧力は、150kgf/cm2 であった。
Comparative Example 1 An oriented polyethylene tube was continuously obtained in the same manner as in Example 1 except that a mandrel having a half apex angle of 5 ° was used. At this time, the extrusion pressure of the high-density polyethylene was 150 kgf / cm 2 .

【0047】(比較例2)半頂角が35°のマンドレル
を用いた以外は、実施例1と同様の条件で押し出した。
このとき、高密度ポリエチレンの押出圧力は、高すぎて
押出不能であった。
(Comparative Example 2) Extrusion was performed under the same conditions as in Example 1 except that a mandrel having a half apex angle of 35 ° was used.
At this time, the extrusion pressure of the high-density polyethylene was too high to be extrudable.

【0048】上記実施例1,2および比較例1,2か
ら、半頂角を10°以上30°以下の範囲内に収めれ
ば、押出圧力を低く抑えられることがわかる。
From Examples 1 and 2 and Comparative Examples 1 and 2, it can be seen that if the half apex angle is within the range of 10 ° to 30 °, the extrusion pressure can be kept low.

【0049】[0049]

【発明の効果】本発明にかかる配向管状体の連続製造方
法は、以上のように構成されているので、配向制御、お
よび、厚肉品の成形や高速成形が可能であるとともに、
連続的に高粘度な樹脂を用いた成形や高倍率な延伸を均
一に行うことができる。すなわち、連続的に任意に配向
を制御して高強度な成形品を安定して製造することがで
きる。しかも、本発明のダイは、拡径コア部の半頂角α
を10°以上30°以下にしたので、押出圧力を低く抑
えることができる。すなわち、より精度よく、配向管状
体を連続的に製造できるとともに、押出機等へかかる負
荷が低減でき、押出機の小型化など整備コストや製造コ
ストを下げることができる。
As described above, the method for continuously producing an oriented tubular body according to the present invention is capable of controlling the orientation, forming a thick-walled product and performing high-speed molding.
Continuous molding using a high-viscosity resin and stretching at a high magnification can be performed uniformly. That is, a high-strength molded product can be stably manufactured by continuously controlling the orientation arbitrarily. Moreover, the die of the present invention has a half apex angle α of the expanded core portion.
Is set to 10 ° or more and 30 ° or less, the extrusion pressure can be kept low. That is, the oriented tubular body can be continuously manufactured with higher accuracy, the load applied to the extruder and the like can be reduced, and the maintenance cost and manufacturing cost such as miniaturization of the extruder can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる熱可塑性樹脂成形品の連続製造
方法に用いるダイの1例をあらわす断面図である。
FIG. 1 is a cross-sectional view illustrating an example of a die used in a method for continuously manufacturing a thermoplastic resin molded product according to the present invention.

【符号の説明】[Explanation of symbols]

1 ダイ 2 ダイ本体 25 拡径筒部 3 マンドレル 34 拡径コア部 4 熱架橋ゾーン 5 延伸ゾーン 6 冷却ゾーン DESCRIPTION OF SYMBOLS 1 Die 2 Die main body 25 Large diameter cylinder part 3 Mandrel 34 Large diameter core part 4 Thermal bridge zone 5 Stretching zone 6 Cooling zone

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 23:00 (72)発明者 岩佐 航一郎 京都市南区上鳥羽上調子町2−2 積水化 学工業株式会社内 (72)発明者 植田 直樹 京都市南区上鳥羽上調子町2−2 積水化 学工業株式会社内 Fターム(参考) 4F207 AA05 AB03 AG08 KA01 KA17 KF02 KK01 KK45 KK52 KL57 KL74 KL83 KL88 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) B29L 23:00 (72) Inventor Koichiro Iwasa 2-2 Sekisui Chemicals (72) Inventor Naoki Ueda 2-2 Sekisui Chemical Co., Ltd. F-term (reference) 4F207 AA05 AB03 AG08 KA01 KA17 KF02 KK01 KK45 KK52 KL57 KL74 KL83 KL88

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ダイ本体と、このダイ本体内に挿入され、
ダイ本体との間に管状の成形用通路を形成するマンドレ
ルとを備え、ダイ本体が成形用通路の出口側に向かって
拡径する拡径筒部を有し、前記マンドレルがダイ本体の
拡径筒部に対応する部分に円錐台形状の拡径コア部を有
し、成形用通路が前記拡径筒部と拡径コア部によって形
成され入口側から出口側に向かって徐々に拡径する延伸
ゾーンを備えているダイ内に、前記成形用通路の入口か
ら原料樹脂を連続的に供給し、ダイ内で原料樹脂を架橋
させたのち、架橋樹脂を前記延伸ゾーンで拡径しつつ肉
厚を減少させながら延伸する工程を備えた配向管状体の
連続製造方法であって、前記拡径コア部は、円錐台の側
面の母線とその回転中心軸とのなす角度が10°以上3
0°以下であることを特徴とする配向管状体の連続製造
方法。
1. A die body, inserted into the die body,
A mandrel that forms a tubular molding passage between the die body and the die body, the die body having a diameter-enlarging tube portion that expands in diameter toward the outlet side of the molding passage, and the mandrel is enlarged in diameter of the die body. A portion having a truncated cone-shaped enlarged core portion at a portion corresponding to the cylindrical portion, and a forming passage is formed by the enlarged cylindrical portion and the enlarged core portion, and the diameter gradually increases from an inlet side to an outlet side. In the die having a zone, the raw material resin is continuously supplied from the inlet of the molding passage, and after the raw material resin is cross-linked in the die, the cross-linked resin is expanded in the stretching zone while the wall thickness is increased. A method for continuously producing an oriented tubular body comprising a step of stretching while reducing the diameter, wherein the diameter-enlarged core portion has an angle formed by a generatrix on a side surface of a truncated cone and a rotation center axis thereof at least 10 °.
A method for continuously producing an oriented tubular body, which is at most 0 °.
【請求項2】成形用通路の延伸ゾーン後方に冷却ゾーン
を設け、押出機内で原料樹脂と熱架橋剤とを混練し、こ
の混練状態で原料樹脂を押出機から成形用通路内に連続
的に供給し、延伸ゾーンの手前で原料樹脂を熱架橋させ
たのち、延伸ゾーンで、樹脂の融点以上で少なくとも1
軸以上の配向方向に配向させながら、成形品形状に延伸
賦形し、冷却ゾーンで、延伸賦形された賦形物を配向緩
和温度以下に冷却する請求項1に記載の配向管状体の連
続製造方法。
2. A cooling zone is provided behind the stretching zone of the molding passage, and the raw resin and the thermal crosslinking agent are kneaded in the extruder. In this kneaded state, the raw resin is continuously fed from the extruder into the molding passage. The raw material resin is supplied and thermally crosslinked before the stretching zone.
2. The oriented tubular body according to claim 1, wherein the oriented tubular body is stretched into a shape of a molded article while being oriented in an orientation direction equal to or more than the axis, and the stretched shaped article is cooled to an orientation relaxation temperature or lower in a cooling zone. Production method.
【請求項3】成形用通路の壁面と樹脂との間に潤滑剤を
介在させる請求項1または請求項2に記載の配向管状体
の連続製造方法。
3. The continuous production method of an oriented tubular body according to claim 1, wherein a lubricant is interposed between the wall surface of the molding passage and the resin.
JP11106652A 1999-04-14 1999-04-14 Method for continuously manufacturing oriented tubular material Pending JP2000296545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11106652A JP2000296545A (en) 1999-04-14 1999-04-14 Method for continuously manufacturing oriented tubular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11106652A JP2000296545A (en) 1999-04-14 1999-04-14 Method for continuously manufacturing oriented tubular material

Publications (1)

Publication Number Publication Date
JP2000296545A true JP2000296545A (en) 2000-10-24

Family

ID=14439054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11106652A Pending JP2000296545A (en) 1999-04-14 1999-04-14 Method for continuously manufacturing oriented tubular material

Country Status (1)

Country Link
JP (1) JP2000296545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112743795A (en) * 2020-12-22 2021-05-04 中国兵器装备集团自动化研究所 Prevent remaining extruder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112743795A (en) * 2020-12-22 2021-05-04 中国兵器装备集团自动化研究所 Prevent remaining extruder

Similar Documents

Publication Publication Date Title
EP0851805B1 (en) Method and apparatus for manufacturing of oriented polymeric products
US5863480A (en) Process for making a filler reinforced thermoplastic composites having biaxially oriented components
SE521725C2 (en) Hollow product of thermoplastic material and methods for extrusion thereof
EP0489534B1 (en) Extrusion method and extruder for obtaining phenolic resin pipe
JP2001287258A (en) Apparatus for manufacturing extrusion molded article and method for continuously manufacturing extrusion molded article
JP2000296545A (en) Method for continuously manufacturing oriented tubular material
JP2001129869A (en) Continuous manufacturing method for resin orientated article
JP2002113766A (en) Method for producing polyethylene pipe and mold used in the method
JP2001179803A (en) Continuous method for producing oriented article and die for the process
JP2002096386A (en) Method for manufacturing polyethylene tube
JP2002067147A (en) Method and mold for continuously manufacturing oriented product
JPH08260232A (en) Production of high-strength yarn from ultrahigh-molecular weight polyolefin film
JP2002052606A (en) Method and mold for continuously manufacturing oriented product
JP2020143208A (en) Resin for foam blow molding, and method for producing foam blow molding
JP2002052607A (en) Method and mold for continuously manufacturing oriented product
JP2002307528A (en) Mold for manufacturing crosslinked resin pipe and method for manufacturing the same
JP4498578B2 (en) Manufacturing method of polyethylene pipe
JP2001079922A (en) Continuous production of resin oriented article
JP2001079925A (en) Continuous production of resin oriented article
JPH06297566A (en) Method and device for manufacturing biaxially oriented film and shrink film
JP2002254491A (en) Crosslinked resin pipe manufacturing method and manufacturing mold
JP2001219465A (en) Method for manufacturing biaxially-stretched thermoplastic resin pipe
JPH0467494B2 (en)
JP2001219461A (en) Method for manufacturing biaxially-stretched thermoplastic resin pipe
JP2001071373A (en) Production of oriented article