JP2001217124A - R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF - Google Patents

R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF

Info

Publication number
JP2001217124A
JP2001217124A JP2000026385A JP2000026385A JP2001217124A JP 2001217124 A JP2001217124 A JP 2001217124A JP 2000026385 A JP2000026385 A JP 2000026385A JP 2000026385 A JP2000026385 A JP 2000026385A JP 2001217124 A JP2001217124 A JP 2001217124A
Authority
JP
Japan
Prior art keywords
film
room temperature
heat
thin film
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000026385A
Other languages
Japanese (ja)
Inventor
Takashi Okuda
高士 奥田
Akio Nakanishi
昭男 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000026385A priority Critical patent/JP2001217124A/en
Publication of JP2001217124A publication Critical patent/JP2001217124A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an R-Fe-B vertical magnetic anisotropy thin-film magnet, which can be sharply improve both of its coercive force and its residual magnetic flux density by a film-forming method using a sputtering method, and to provide a manufacturing method of the magnet. SOLUTION: A substrate is subjected to sputtering at normal temperatures, without heating the substrate on a composite board consisting of a heat-resistant metallic material of thermal conductivity higher than 50 W.m-1.K-1 at normal temperatures and a low-heat conduction material of a thermal conductivity lower than 1.1 W.m-1.K-1 at normal temperatures and after an R-Fe-B alloy thin film is formed, heat treatment is conducted on the alloy thin film or after a protective film is formed on the formed alloy thin film, heat treatment is conducted on the protective film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マイクロモー
タ、マイクロアクチュエータ、マイクロ磁気センサなど
に用いられる薄膜磁石、特に、高保磁力及び高残留磁束
密度を有し、膜面に対して垂直な磁気異方性を有するR
‐Fe‐B系垂直磁気異方性薄膜磁石とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnet used for a micromotor, a microactuator, a micromagnetic sensor, etc., and more particularly to a magnetic anisotropic material having a high coercive force and a high residual magnetic flux density and perpendicular to the film surface. R
The present invention relates to a -Fe-B perpendicular magnetic anisotropic thin film magnet and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型・高性能化に伴
い、モータやアタチュエータなどに使用される磁石の薄
型化が要求されている。
2. Description of the Related Art In recent years, as electronic devices have become smaller and more sophisticated, there has been a demand for thinner magnets used in motors and actuators.

【0003】現在、それら用途に高保磁力、高残留磁束密度
を有するR‐Fe‐B系永久磁石が多用されている。R‐Fe-
B系磁石は、その優れた磁気特性から、薄型化には最適
な材料ではあるが、焼結磁石、ボンド磁石共に数百μm
程度の厚みが限界である。
At present, R-Fe-B permanent magnets having a high coercive force and a high residual magnetic flux density are frequently used for these applications. R-Fe-
B-based magnets are the best material for thinning due to their excellent magnetic properties, but both sintered magnets and bonded magnets are several hundred μm
The degree of thickness is the limit.

【0004】そこで、最近、R-Fe‐B系磁石の薄膜化の研究
がなされおり、例えば、Cadieuらは、1987年に、RFスパ
ッタ法により保磁力が8〜14kOe(637〜1114kA/m)の薄膜
を得たことを報告している(Vac. Sci. Technol., A6,16
88(1988))。
[0004] Therefore, recently, research into thinning of R-Fe-B-based magnets has been conducted. For example, Cadieu et al., In 1987, reported that the coercive force was 8 to 14 kOe (637 to 1114 kA / m) by RF sputtering. (Vac. Sci. Technol., A6, 16).
88 (1988)).

【0005】また、山崎らは、1990年に、DCマグネトロンス
パッタ法により、保磁力が3〜7kOe(239〜557kA/m)の薄
膜を得たことを報告している。さらに、1991年には、山
下らが、DCマグネトロンスパッタリング法により、Nd
13〜17Fe65.5〜77B10〜17. 5組成で、最高値で、保磁力7
kOe(557kA/m)、残留磁化9.6kG(0.96T)の薄膜を得ている
(日本応用磁気学会誌15,241-244(1991))。
In addition, Yamazaki et al. Reported in 1990 that a thin film having a coercive force of 3 to 7 kOe (239 to 557 kA / m) was obtained by DC magnetron sputtering. Furthermore, in 1991, Yamashita et al.
13~17 Fe 65.5~77 B 10~17. 5 the composition, the highest value, the coercive force 7
A thin film with kOe (557 kA / m) and residual magnetization of 9.6 kG (0.96 T) has been obtained.
(Journal of the Japan Society of Applied Magnetics 15, 241-244 (1991)).

【0006】[0006]

【発明が解決しようとする課題】上記の方法は、いずれ
も加熱した基板上に膜を堆積しながら結晶化することに
より、膜面に対して垂直な方向に結晶のc軸を配向成長
させて垂直磁化膜を得ようとするものである。
In each of the above methods, the film is crystallized while depositing a film on a heated substrate, whereby the c-axis of the crystal is oriented and grown in a direction perpendicular to the film surface. This is to obtain a perpendicular magnetization film.

【0007】上記の方法は、薄膜磁石を得るには簡便な方法
ではあるが、基板を加熱することが必要であるため、基
板が変質したり変形するなどの問題、また、基板の温度
管理や配線など装置の構造が複雑になるという問題、さ
らに熱処理における基板の均熱性が悪いという問題など
がある。
Although the above method is a simple method for obtaining a thin film magnet, it requires heating of the substrate, which causes problems such as deterioration and deformation of the substrate, and temperature control of the substrate. There is a problem that the structure of the device such as wiring becomes complicated, and furthermore, there is a problem that the heat uniformity of the substrate in the heat treatment is poor.

【0008】また、得られた薄膜の保磁力がいまだ実用的で
はない。現在分かっているものの中での最高が14kOe(11
14kA/m)である。R‐Fe‐B系薄膜磁石を実用化する際
は、磁石動作点が極度に低いため、耐熱性などを考慮す
ると、保磁力は14kOe(1114kA/m)では足りず、より高い
ことが望ましい。
Further, the coercive force of the obtained thin film is not yet practical. The best known at present is 14 kOe (11
14 kA / m). When an R-Fe-B thin film magnet is put into practical use, the magnet operating point is extremely low. Therefore, considering heat resistance and the like, the coercive force is not enough at 14 kOe (1114 kA / m), and it is desirable that the coercive force be higher.

【0009】発明者らは、先に、高保磁力を有したR‐Fe‐B
系薄膜磁石として、基板上に、基板を加熱することなく
スパッタリングにて成膜されかつ成膜後に熱処理された
高保磁力R‐Fe‐B系薄膜磁石とその製造方法を提案した
(特開平11‐288812号)。
[0009] The inventors have previously proposed R-Fe-B having a high coercive force.
We proposed a high coercive force R-Fe-B thin film magnet that was formed on a substrate by sputtering without heating the substrate and that was heat-treated after the film formation, and a method of manufacturing the same.
(JP-A-11-288812).

【0010】しかし、上記提案における薄膜磁石は、等方性
であることから、保能力には優れるものの、残留磁束密
度が小さいという問題があった。
[0010] However, since the thin-film magnet in the above proposal is isotropic, it has an excellent holding capacity, but has a problem that the residual magnetic flux density is small.

【0011】この発明は、高保磁力及び高残留磁束密度の両
方を満足するR‐Fe‐B系薄膜磁石の提供を目的とし、基
板を加熱することがない常温スパッタリングによる成膜
方法において、保磁力及び残留磁束密度を著しく向上さ
せた、膜面に対して垂直な磁気異方性を有するR‐Fe‐B
系垂直磁気異方性薄膜磁石とその製造方法の提供を目的
とする。
An object of the present invention is to provide an R—Fe—B based thin film magnet satisfying both a high coercive force and a high remanent magnetic flux density. R-Fe-B with magnetic anisotropy perpendicular to the film surface with significantly improved magnetic flux density and remanence
An object of the present invention is to provide a perpendicular magnetic anisotropic thin film magnet and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】発明者らは、上記の目的
を達成するため鋭意研究した結果、常温における熱伝導
率が50W・m-1・K-1以上の耐熱性金属材料と常温におけ
る熱伝導率が1.1W・m-1・K-1以下の低熱伝導材料とから
なる複合基板上に、基板を加熱せずにスパッタリングを
行い、R‐Fe‐B系合金薄膜を形成させた後、所要の結晶
化熱処理、すなわちスパッタリング後のアモルファス薄
膜から、単磁区粒子を析出させることができる最適な熱
処理条件で熱処理することにより、膜面に対して垂直な
磁気異方性を有し、高保能力及び高残留磁束密度を有す
る薄膜磁石が得られることを知見した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that a heat-resistant metal material having a thermal conductivity of 50 W · m −1 · K −1 or more at room temperature and a heat-resistant metal material at room temperature. After forming a R-Fe-B alloy thin film on a composite substrate made of a low thermal conductive material with a thermal conductivity of 1.1 Wm- 1 K- 1 or less without heating the substrate. By performing the required heat treatment for crystallization, that is, heat treatment under the optimum heat treatment condition capable of precipitating single magnetic domain particles from the amorphous thin film after sputtering, it has a magnetic anisotropy perpendicular to the film surface, It has been found that a thin film magnet having high performance and high residual magnetic flux density can be obtained.

【0013】さらに、発明者らは、R‐Fe‐B系薄膜成膜後の
熱処理時の酸化を防止するために、R‐Fe‐B系合金薄膜
上にさらに保護膜を成膜形成することにより、磁気特性
の劣化防止が可能であることを知見し、この発明を完成
した。
[0013] Further, the present inventors have proposed to further form a protective film on the R-Fe-B-based alloy thin film in order to prevent oxidation during heat treatment after forming the R-Fe-B-based thin film. As a result, the inventors have found that magnetic characteristics can be prevented from deteriorating, and have completed the present invention.

【0014】すなわち、この発明は、常温における熱伝導率
が50W・m-1・K-1以上の耐熱性金属材料と常温における
熱伝導率が1.1W・m-1・K-1以下の低熱伝導材料とからな
る複合基板上に、常温スパッタリングにて成膜されかつ
成膜後に熱処理されるか、あるいは常温スパッタリング
にてR-Fe‐B系合金膜と保護膜力潮順次成膜されかつ成
膜後に熱処理された、膜面に対して垂直な磁気異方性を
有するR‐Pe‐B系垂直磁気異方性薄膜磁石である。
[0014] Namely, the present invention is low heat and thermal conductivity at room temperature is 1.1W · m -1 · K -1 or less of thermal conductivity 50W · m -1 · K -1 or more refractory metal material at normal temperature On a composite substrate made of a conductive material, a film is formed by sputtering at room temperature and then heat-treated, or an R-Fe-B-based alloy film and a protective film are sequentially formed by sputtering at room temperature and formed. This is an R-Pe-B perpendicular magnetic anisotropic thin film magnet that has been subjected to heat treatment after film formation and has magnetic anisotropy perpendicular to the film surface.

【0015】また、この発明は、常温における熱伝導率が50
W・m-1・K-1以上の耐熱性金属材料と常温における熱伝
導率が1.1W・m-1・K-1以下の低熱伝導材料とからなる複
合基板上にR‐Fe‐B系合金を常温スパッタリングにて成
膜する工程、成膜したR‐Fe‐B系合金合金膜に熱処理を
施す工程とを含むR‐Fe‐B系垂直磁気異方性薄膜磁石の
製造方法、あるいはさらに、上記製造方法において、成
膜したR‐Fe‐B系合金膜上に保護膜を成膜する工程を含
むR‐Fe‐B系垂直磁気異方性薄膜磁石の製造方法であ
る。
[0015] Further, the present invention has a thermal conductivity of 50 at room temperature.
R-Fe-B system W · m -1 · K -1 or more refractory metal material and thermal conductivity at room temperature is made of a 1.1W · m -1 · K -1 or less of the low thermal conductive material composite substrate A method for producing an R-Fe-B-based perpendicular magnetic anisotropic thin film magnet including a step of forming an alloy by room temperature sputtering, a step of performing a heat treatment on the formed R-Fe-B-based alloy alloy film, or The present invention also provides a method for manufacturing an R-Fe-B perpendicular magnetic anisotropic thin-film magnet, which comprises a step of forming a protective film on the formed R-Fe-B alloy film.

【0016】[0016]

【発明の実施の形態】この発明において、スパッタリン
グには、通常用いられるDCマグネトロンスパッタリング
装置、RFスパッタリング装置等、公知のいずれの装置も
使用できる。但し、この発明においては、基板の加熱を
必要としないため、基板加熱装置などは必要としない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, any known apparatus such as a DC magnetron sputtering apparatus and an RF sputtering apparatus can be used for sputtering. However, in the present invention, since heating of the substrate is not required, a substrate heating device or the like is not required.

【0017】この発明において、スパッタリング用ターゲッ
ト材としては、後述する実施例に示す如く、予めRとFe
とBを溶解し合金化したもの、あるいは個々の金属を配
置したもの、例えば、Fe板上にNd及びBのチップを配置
したものなどを用いることができる。
In the present invention, as a sputtering target material, R and Fe
And B are melted and alloyed, or those in which individual metals are arranged, for example, those in which Nd and B chips are arranged on an Fe plate can be used.

【0018】R、Fe、Bとからなる個々の金属を配置してター
ゲットとする場合、得ようとする薄膜磁石の原子比に相
当するように、ターゲットにおける個々の金属が占める
面積を決定すればよい。例えば、Nd30Fe54B16なる組成
であれば、ターゲット全体の面積に対して、Ndが30%、F
eが54%、Bが16%の面積を占めるように各金属を配置す
る。
When an individual metal consisting of R, Fe, and B is arranged as a target, the area occupied by the individual metal in the target is determined so as to correspond to the atomic ratio of the thin film magnet to be obtained. Good. For example, if the Nd 30 Fe 54 B 16 having a composition, the area of the entire target, Nd is 30%, F
Each metal is arranged so that e occupies an area of 54% and B occupies an area of 16%.

【0019】また、ターゲットの組成並びに薄膜磁石の組成
としては、公知のR‐Fe‐B系合金組成のいずれをも採用
できる。高保磁力を目的とするには、Rを20at%〜30at
%、Bを10at%〜16at%を含有するものが好ましく、Rが20a
t%未満及びBが10at%未満では保協力が向上せず、Rが30a
t%、Bが16at%を超えると残留磁化が低下するため好まし
くない。
As the composition of the target and the composition of the thin film magnet, any of the known R—Fe—B alloy compositions can be used. For high coercivity, R should be 20at% ~ 30at
%, B preferably contains 10 at% to 16 at%, and R is 20a.
If the ratio is less than t% and B is less than 10at%, the co-operation will not improve and R will be 30a
If t% and B exceed 16 at%, the residual magnetization decreases, which is not preferable.

【0020】この発明は、R‐Fe‐B系合金薄膜を成膜する基
板として、常温における熱伝導率が50W・m-1・K-1以上
の耐熱性金属材料と、常温における熱伝導率が1.1W・m
-1・K-1以下の低熱伝導材料とからなる複合基板を用い
ることを特徴とする。すなわち、従来のように、基板を
加熱するのではなく、前記複合基板で常温スパッタリン
グによる熱をある程度基板に保温することによって、成
膜、熱処理されたR‐Fe-B系合金膜が膜面に対して垂直
な磁気異方性を有し、かつ高保能力、高残留磁束密度を
有するR‐Fe‐B系垂直磁気異方性薄膜磁石を得ることが
可能になる。
[0020] The present invention provides a heat-resistant metal material having a thermal conductivity of 50 W · m -1 · K -1 or more at room temperature as a substrate on which an R-Fe-B-based alloy thin film is formed; Is 1.1Wm
It is characterized by using a composite substrate made of a low heat conductive material of -1 · K -1 or less. That is, instead of heating the substrate as in the prior art, the R-Fe-B-based alloy film that has been formed and heat-treated is kept on the film surface by keeping the heat generated by room temperature sputtering on the substrate to some extent on the composite substrate. It is possible to obtain an R-Fe-B perpendicular magnetic anisotropic thin film magnet having magnetic anisotropy perpendicular to the magnet, high holding capacity and high residual magnetic flux density.

【0021】複合基板は、上記各材料の板材あるいはシート
を積層したもの、あるいは低熱伝導材料に耐熱性金属材
料をスパッタリング成膜したものなどが好ましい。ま
た、上記複合基板は、R-Fe‐B系合金膜が成膜される側
に耐熱性金属材料面を配置して用いる。また、基板の厚
みは1mm以下であることが望ましい。
[0021] The composite substrate is preferably formed by laminating a plate or sheet of each of the above materials, or formed by sputtering a heat-resistant metal material on a low heat conductive material. Further, the composite substrate uses a heat-resistant metal material surface on the side where the R-Fe-B-based alloy film is formed. The thickness of the substrate is desirably 1 mm or less.

【0022】耐熱性金属材料の常温における熱伝導率が50W
・m-1・K-1以上としたのは、値が50未満では、R‐Fe‐B
系合金膜のアモルファス化が不十分で、R‐Fe‐B系合金
膜の垂直磁気異方性並びに熱処理後に所望の磁気特性を
得ることができなくなるためである。また、耐熱性金属
材料に限定したのは、熱による基板の変質・変形を防止
し、かつ成膜後の熱処理においてもR‐Fe‐B系合金膜と
の反応を抑制するためである。耐熱性金属材料として
は、Mo、Ta、W、Feなどの金属あるいはそれらの合金な
どが好ましい。
The heat conductivity of the heat-resistant metal material at room temperature is 50 W
-The value of m- 1K - 1 or more is that if the value is less than 50, R-Fe-B
This is because the amorphous alloy of the system alloy film is insufficient, and the perpendicular magnetic anisotropy of the R—Fe—B system alloy film and desired magnetic properties cannot be obtained after the heat treatment. Further, the reason why the heat-resistant metal material is used is to prevent deterioration and deformation of the substrate due to heat and to suppress a reaction with the R-Fe-B-based alloy film even in a heat treatment after film formation. As the heat-resistant metal material, a metal such as Mo, Ta, W, Fe, or an alloy thereof is preferable.

【0023】また、低熱伝導材料の常温における熱伝導率が
1.1W・m-1・K-1以下としたのは、値が1.1を超えると、
上述した基板の保温効果が得られず、R‐Fe‐B系合金膜
の垂直磁気異方性並びに熱処理後に所望の磁気特性を得
ることができなくなるためである。低熱伝導材料として
は、ソーダガラス(0.75W・m-1・K-1)、鉛ガラス(0.6W・
m-1・K-1)、パイレックス(1.1W・m-1・K-1)などが好ま
しい。
The thermal conductivity of the low thermal conductive material at room temperature is
The reason why the value is 1.1 Wm- 1 K- 1 or less is that if the value exceeds 1.1,
This is because the above-described heat retaining effect of the substrate cannot be obtained, and the perpendicular magnetic anisotropy of the R-Fe-B-based alloy film and desired magnetic properties cannot be obtained after the heat treatment. As low thermal conductive materials, soda glass (0.75 Wm- 1 K- 1 ), lead glass (0.6 W
m -1 · K -1 ), Pyrex (1.1 W · m -1 · K -1 ) and the like are preferable.

【0024】この発明において、R‐Fe‐B系合金薄膜の酸化
防止を目的に、スパッタリングにより基板上に成膜した
R‐Fe‐B系合金薄膜上に、実施例に示すごとく、Ti膜等
の保護膜を形成することが好ましい。
In the present invention, a film was formed on a substrate by sputtering for the purpose of preventing oxidation of the R-Fe-B-based alloy thin film.
It is preferable to form a protective film such as a Ti film on the R-Fe-B-based alloy thin film as shown in Examples.

【0025】すなわち、スパッタリング後のR‐Fe‐B系合金
薄膜はアモルファス状態であるため、熱処理によって結
晶化するが、その結晶化熱処理の際に、熱処理雰囲気中
の酸素と薄膜中のR成分などが反応し、薄膜が酸化する
恐れがある。そのため、保護膜を設けることにより、薄
膜の酸化を防止し、保磁力の低下防止を図ることができ
る。
That is, since the R-Fe-B-based alloy thin film after sputtering is in an amorphous state, it is crystallized by a heat treatment. At the time of the crystallization heat treatment, oxygen in the heat treatment atmosphere and R component in the thin film, etc. Reacts and the thin film may be oxidized. Therefore, by providing the protective film, oxidation of the thin film can be prevented, and reduction of the coercive force can be prevented.

【0026】保護膜として、例えば実施例に示すTi膜は、ス
パッタリング法や蒸着法などの気相成膜法により形成す
ることができ、好ましい一例である。保護膜の厚みは、
数10Å〜数1000Å、好ましくは100〜1000Åである。
As a protective film, for example, the Ti film shown in the embodiment can be formed by a vapor phase film forming method such as a sputtering method or an evaporation method, and is a preferable example. The thickness of the protective film is
It is several tens to several thousand degrees, preferably 100 to 1,000 degrees.

【0027】この発明において、複合基板上に、常温スパッ
タリングにて成膜されたR‐Fe-B系合金膜あるいは成膜
後表面に保護膜が成膜されたR‐Fe‐B系合金膜はアモル
フアス状態にあり、結晶化のための熱処理を施すことに
より、アモルファス相から膜面に対して垂直な磁気異方
性を有するR2Fe14B強磁性相を析出させることができ
る。
In the present invention, an R-Fe-B-based alloy film formed on a composite substrate by normal temperature sputtering or an R-Fe-B-based alloy film having a protective film formed on the surface after the film formation is By performing a heat treatment for crystallization in the amorphous state, an R 2 Fe 14 B ferromagnetic phase having magnetic anisotropy perpendicular to the film surface can be precipitated from the amorphous phase.

【0028】熱処理は、R‐Fe‐B系合金膜の組成等に応じた
公知の再結晶化の熱処理条件が採用可能である。例え
ば、後述する実施例に示すごとく、酸化抑制のため、真
空中雰囲気で、温度550℃〜700℃、時間30分〜60分で行
なうことが好ましい。
For the heat treatment, known heat treatment conditions for recrystallization depending on the composition of the R—Fe—B alloy film and the like can be adopted. For example, as shown in Examples described later, it is preferable to perform the reaction in a vacuum atmosphere at a temperature of 550 ° C. to 700 ° C. for a time of 30 minutes to 60 minutes in order to suppress oxidation.

【0029】熱処理雰囲気は、不活性ガス中でも特に問題は
ないが、酸素を極力少なくするために、一旦真空状態に
した後、Ar置換する手法をとることが望ましい。また、
熱処理温度は、550℃未満では結晶化が十分でなく、ま
た700℃を超えると粒成長を起こし保磁力が低下するた
め好ましくない。熱処理時間は、処理する炉の種類や形
態、被熱処理物の量などによって左右されるが、通常30
分〜60分程度であればほとんど結晶化することができ
る。
There is no particular problem in the atmosphere of the heat treatment even in an inert gas. However, in order to reduce oxygen as much as possible, it is desirable to take a method of once evacuating and then replacing with Ar. Also,
If the heat treatment temperature is lower than 550 ° C., crystallization is not sufficient, and if it exceeds 700 ° C., grain growth occurs and coercive force decreases, which is not preferable. The heat treatment time depends on the type and form of the furnace to be treated, the amount of the object to be heat treated, and the like.
Crystallization can be almost carried out in about 60 minutes.

【0030】上述したこの発明により、従来では得ることが
できなかった、高保磁力及び高残留磁束密度を有するR
‐Fe‐B系垂直磁気異方性薄膜磁石を得ることが可能と
なる。具体的には、保磁力1393kA/m(17.5kOe)以上、残
留磁束密度0.8T(8.0kG)以上、最大エネルギー積127.3kJ
/m3(16MGOe)以上もの優れた磁気特性を有するR‐Fe‐B
系垂直磁気異方性薄膜磁石が得られる。
According to the present invention described above, R having a high coercive force and a high residual magnetic flux density, which could not be obtained conventionally,
-Fe-B perpendicular magnetic anisotropic thin film magnet can be obtained. More specifically, the coercive force is 1393 kA / m (17.5 kOe) or more, the residual magnetic flux density is 0.8 T (8.0 kG) or more, and the maximum energy product is 127.3 kJ.
R-Fe-B with excellent magnetic properties of more than / m 3 (16MGOe)
Perpendicular magnetic anisotropic thin film magnet is obtained.

【0031】[0031]

【実施例】ターゲットとして、組成比がNd20Fe64B16
らなる、鋳込成形した厚さ5mm、直径100mmの円板を準備
し、スパッタリング装置に固定した。また、基板とし
て、厚さ0.1mmのMoシートと厚さ0.5mmの耐熱ガラス(パ
イレックス)を準備し、スパッタリング装置内の水冷基
板ホルダに前記耐熱ガラス、Moシートの順で固定した複
合基板を用いた。ターゲットと複合基板間の距離を50mm
とし、到達真空度266×10-6Pa、Arガス圧665×10-3Pa、
高周波電力350Wの条件で、基板への加熱を行わずにRFス
パッタリングを行い、厚み約1μmからなるR‐Fe‐B系合
金膜を得た。
EXAMPLE As a target, a cast-formed disk having a composition ratio of Nd 20 Fe 64 B 16 and a thickness of 5 mm and a diameter of 100 mm was prepared and fixed to a sputtering apparatus. Further, as a substrate, a Mo sheet having a thickness of 0.1 mm and a heat-resistant glass (Pyrex) having a thickness of 0.5 mm were prepared, and a heat-resistant glass and a Mo substrate were fixed to a water-cooled substrate holder in a sputtering apparatus in this order. Was. 50mm distance between target and composite board
Ultimate vacuum degree 266 × 10 -6 Pa, Ar gas pressure 665 × 10 -3 Pa,
RF sputtering was performed under high-frequency power of 350 W without heating the substrate to obtain an R-Fe-B alloy film having a thickness of about 1 μm.

【0032】次に、ターゲットをTiに交換して、該R‐Fe‐B
系合金膜上に、300Å厚みのTi薄膜を成膜した後、イメ
ージ熱処理炉で、到達真空度399×10-6Pa(熱処理中の真
空度266×10-4Pa)で650℃、30分間の熱処理を施した。
Next, the target was replaced with Ti, and the R-Fe-B
After forming a 300-mm-thick Ti thin film on the base alloy film, in an image heat treatment furnace, the ultimate vacuum degree is 399 × 10 -6 Pa (vacuum degree during heat treatment 266 × 10 -4 Pa) at 650 ° C. for 30 minutes Heat treatment.

【0033】比較例 基板として、Moシートのみを用いる以外は実施例1と同
じ条件でスパッタリングを行い、厚み約1μmからなるR
‐Fe‐B系合金膜を得た。
Comparative Example The sputtering was performed under the same conditions as in Example 1 except that only the Mo sheet was used as the substrate.
-Fe-B alloy film was obtained.

【0034】得られた薄膜磁石のX線回折結果を図1に示す。
図1内の(a)線が実施例、(b)線が比較例の結果である。
図1から明らかなように、いずれの膜も完全に結晶化し
ており、Nd2Fe14B相が主相として析出しているが、図1
内の(a)に示すこの発明による薄膜磁石は、Nd2Fe14B相
は膜面に対して垂直な方向に強いc軸配向性を示してお
り、薄膜が膜面に対して垂直な磁気異方性を有すること
が分かる。それとは対称的に、図1内の(b)の薄膜磁石
は、無配向の多結晶状で存在していることが分かる。な
お、回折ピークには、Nd2Fe14B相以外の副次相も見られ
た。
FIG. 1 shows an X-ray diffraction result of the obtained thin film magnet.
The line (a) in FIG. 1 is the result of the example, and the line (b) is the result of the comparative example.
As is clear from FIG. 1, all films are completely crystallized, and the Nd 2 Fe 14 B phase is precipitated as the main phase.
In the thin film magnet according to the present invention shown in (a), the Nd 2 Fe 14 B phase shows a strong c-axis orientation in the direction perpendicular to the film surface, and the thin film is magnetized perpendicular to the film surface. It turns out that it has anisotropy. In contrast, it can be seen that the thin film magnet of (b) in FIG. 1 exists in a non-oriented polycrystalline state. Note that secondary phases other than the Nd 2 Fe 14 B phase were also observed in the diffraction peak.

【0035】また、得られた薄膜磁石を、室温で最大20kOe
まで磁場を印加して測定したヒステリシスループを図2
に示す。図2(a)が実施例、図2(b)が比較例の結果であ
る。また、図中の逆T字の記号は膜面に対して垂直な方
向の測定結果、図中の二重斜線は膜面に対して平行な方
向の測定結果を示す。図2から明らかなように、図2(a)
に示すこの発明による薄膜磁石は垂直磁気異方性を有す
ることが分かる。一方、図2(b)に示す薄膜磁石は、面内
磁気異方性であることが分かる。
Further, the obtained thin film magnet is subjected to a maximum of 20 kOe at room temperature.
Fig. 2 shows the hysteresis loop measured by applying a magnetic field up to
Shown in FIG. 2A shows the result of the example, and FIG. 2B shows the result of the comparative example. Also, the inverted T symbol in the figure indicates the measurement result in the direction perpendicular to the film surface, and the double oblique line in the diagram indicates the measurement result in the direction parallel to the film surface. As is clear from FIG. 2, FIG.
It can be seen that the thin film magnet according to the present invention shown in FIG. On the other hand, the thin film magnet shown in FIG. 2 (b) has in-plane magnetic anisotropy.

【0036】また、実施例にて得られたこの発明による薄膜
磁石を、SQUID磁化測定器により測定した結果を図3に示
す。磁場は膜面に対して垂直な方向に最大5Tまで印加し
た。なお、ヒステリシスループは反磁場を補正して示し
てある。実施例によるこの発明の垂直磁気異方性薄膜磁
石は、保磁力1393kA/m(17.5kOe)、残留磁束密度0.8T(8.
0kG)、最大エネルギー積127.3kJ/m3(16MGOe)であった。
FIG. 3 shows the results obtained by measuring the thin film magnet according to the present invention obtained in the examples using a SQUID magnetometer. The magnetic field was applied in a direction perpendicular to the film surface up to 5T. The hysteresis loop is shown with the demagnetizing field corrected. The perpendicular magnetic anisotropic thin film magnet of the present invention according to the embodiment has a coercive force of 1393 kA / m (17.5 kOe) and a residual magnetic flux density of 0.8 T (8.
0 kG) and the maximum energy product was 127.3 kJ / m 3 (16 MGOe).

【0037】以上の実施例に示すように、この発明による垂
直磁気異方性薄膜磁石は、これまでの薄膜磁石では得る
ことができなかった高保磁力、高残留磁束密度を有して
おり、十分実用化できる特性である。また、スパッタリ
ング条件などの変更によって、主相以外の副次相などの
体積比を低減することにより、さらなる向上が見込め
る。
As shown in the above embodiments, the perpendicular magnetic anisotropic thin-film magnet according to the present invention has a high coercive force and a high residual magnetic flux density which cannot be obtained by the conventional thin-film magnets. This is a characteristic that can be put to practical use. Further, further improvement can be expected by reducing the volume ratio of the secondary phase other than the main phase by changing the sputtering conditions and the like.

【0038】[0038]

【発明の効果】この発明によれば、薄膜磁石を酸化させ
たり、基板が変質・変形したり、装置の構造が複雑にな
ることなく、高保磁力及び高残留磁束密度を有するR‐F
e‐B系垂直磁気異方性薄膜磁石が得られ、さらに、R‐F
e‐B系合金膜上に、Tiなどの保護膜を成膜することによ
り、熱処理時の酸化を防止し、磁気特性の劣化を防止す
ることができる。
According to the present invention, an RF film having a high coercive force and a high residual magnetic flux density can be used without oxidizing a thin film magnet, altering or deforming a substrate, or complicating the structure of a device.
e-B perpendicular magnetic anisotropic thin-film magnet is obtained, and furthermore, R-F
By forming a protective film of Ti or the like on the eB-based alloy film, oxidation during heat treatment can be prevented, and deterioration of magnetic properties can be prevented.

【0039】以上のように、この発明によるR‐Fe-B系垂直
磁気異方性薄膜磁石は、マイクロモータ、マイクロアク
チュエータ、マイクロ磁気センサなど、極く薄型の永久
磁石が要求される用途に最適である。
As described above, the R-Fe-B perpendicular magnetic anisotropic thin film magnet according to the present invention is most suitable for applications requiring extremely thin permanent magnets, such as micromotors, microactuators, and micromagnetic sensors. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】薄膜磁石のX線回折結果を示すチャート図であ
り、図中の(a)線が実施例、(b)線が比較例の場合を示
す。
FIG. 1 is a chart showing the results of X-ray diffraction of a thin film magnet, wherein a line (a) in the figure shows an example and a line (b) shows a comparative example.

【図2】薄膜磁石の磁気特性を示すグラフであり、(a)が
実施例、(b)が比較例の場合を示す。
FIGS. 2A and 2B are graphs showing magnetic characteristics of a thin film magnet, wherein FIG. 2A shows a case of an example and FIG. 2B shows a case of a comparative example.

【図3】実施例の薄膜磁石の磁気特性を示すグラフであ
る。
FIG. 3 is a graph showing magnetic properties of the thin film magnet of the example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 38/00 303 C22C 38/00 303D Fターム(参考) 4K029 AA02 AA09 AA24 AA25 BA17 BA26 BB02 BC06 BD12 CA05 DC02 DC35 DC39 GA01 5E049 AA01 AA09 BA01 BA16 CC01 DB02 DB04 EB06 GC01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // C22C 38/00 303 C22C 38/00 303D F term (reference) 4K029 AA02 AA09 AA24 AA25 BA17 BA26 BB02 BC06 BD12 CA05 DC02 DC35 DC39 GA01 5E049 AA01 AA09 BA01 BA16 CC01 DB02 DB04 EB06 GC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 常温における熱伝導率が50W・m-1・K-1
上の耐熱性金属材料と常温における熱伝導率が1.1W・m
-1・K-1以下の低熱伝導材料とからなる複合基板上に、
常温スパッタリングにて成膜されかつ成膜後に熱処理さ
れた、膜面に対して垂直な磁気異方性を有するR‐Fe‐B
系垂直磁気異方性薄膜磁石。
1. A heat-resistant metal material having a thermal conductivity of 50 W · m −1 · K −1 or more at room temperature and a thermal conductivity of 1.1 W · m at room temperature.
-1 · K -1 or less on a composite substrate made of a low thermal conductive material,
R-Fe-B with magnetic anisotropy perpendicular to the film surface, formed by room temperature sputtering and heat-treated after film formation
Series perpendicular magnetic anisotropic thin film magnet.
【請求項2】 常温における熱伝導率が50W・m-1・K-1
上の耐熱性金属材料と常温における熱伝導率が1.1W・m
-1・K-1以下の低熱伝導材料とからなる複合基板上に、
常温スパッタリングにてR‐Fe‐B系合金膜と保護膜が順
次成膜されかつ成膜後に熱処理された、膜面に対して垂
直な磁気異方性を有するR‐Fe‐B系垂直磁気異方性薄膜
磁石。
2. A heat-resistant metal material having a thermal conductivity of 50 W · m −1 · K −1 or more at room temperature and a thermal conductivity of 1.1 W · m at room temperature.
-1 · K -1 or less on a composite substrate made of a low thermal conductive material,
R-Fe-B-based perpendicular magnetic anisotropy with magnetic anisotropy perpendicular to the film surface, in which R-Fe-B-based alloy film and protective film are sequentially formed by room temperature sputtering and heat-treated after film formation Anisotropic thin film magnet.
【請求項3】 常温における熱伝導率が50W・m-1・K-1
上の耐熱性金属材料と常温における熱伝導率が1.1W・m
-1・K-1以下の低熱伝導材料とからなる複合基板上にR‐
Fe‐B系合金を常温スパッタリングにて成膜する工程、
成膜したR‐Fe‐B系合金合金膜に熱処理を施す工程とを
含むR‐Fe‐B系垂直磁気異方性薄膜磁石の製造方法。
3. A heat-resistant metal material having a thermal conductivity of 50 W · m −1 · K −1 or more at room temperature and a thermal conductivity of 1.1 W · m at room temperature.
R- on a composite substrate made of low thermal conductive material of -1K - 1 or less
A process of forming a film of an Fe-B alloy by room temperature sputtering,
Subjecting the formed R-Fe-B-based alloy alloy film to a heat treatment.
【請求項4】 常温における熱伝導率が50W・m-1・K-1
上の耐熱性金属材料と常温における熱伝導率が1.1W・m
-1・K-1以下の低熱伝導材料とからなる複合基板上にR‐
Fe‐B系合金を常温スパッタリングにて成膜する工程、
成膜したR‐Fe‐B系合金膜上に保護膜を成膜する工程、
保護膜を有するR‐Fe‐B系合金合金膜に熱処理を施す工
程とを含むR‐Fe‐B系垂直磁気異方性薄膜磁石の製造方
法。
4. A heat-resistant metal material having a thermal conductivity of 50 W · m −1 · K −1 or more at room temperature and a thermal conductivity of 1.1 W · m at room temperature.
R- on a composite substrate made of low thermal conductive material of -1K - 1 or less
A process of forming a film of an Fe-B alloy by room temperature sputtering,
A step of forming a protective film on the formed R-Fe-B-based alloy film,
Subjecting the R-Fe-B-based alloy alloy film having a protective film to a heat treatment.
JP2000026385A 2000-02-03 2000-02-03 R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF Pending JP2001217124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026385A JP2001217124A (en) 2000-02-03 2000-02-03 R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026385A JP2001217124A (en) 2000-02-03 2000-02-03 R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
JP2001217124A true JP2001217124A (en) 2001-08-10

Family

ID=18552123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026385A Pending JP2001217124A (en) 2000-02-03 2000-02-03 R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2001217124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790300B2 (en) 2004-03-23 2010-09-07 Japan Science And Technology Agency R-Fe-B based thin film magnet and method for preparation thereof
JP2014225537A (en) * 2013-05-15 2014-12-04 株式会社豊田中央研究所 Permanent magnet and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790300B2 (en) 2004-03-23 2010-09-07 Japan Science And Technology Agency R-Fe-B based thin film magnet and method for preparation thereof
JP2014225537A (en) * 2013-05-15 2014-12-04 株式会社豊田中央研究所 Permanent magnet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4988713B2 (en) Thin film rare earth magnet and method for manufacturing the same
JP4698581B2 (en) R-Fe-B thin film magnet and method for producing the same
JP4337209B2 (en) Permanent magnet thin film and manufacturing method thereof
EP3683851B1 (en) Precursor structure of perpendicular magnetization film, perpendicular magnetization film structure and method for manufacturing same, perpendicular magnetization-type tunnel magnetoresistance junction film using those and method for manufacturing same, and perpendicular magnetization-type tunnel magnetoresistance junction element using those
JP3598171B2 (en) Exchange spring magnet and method of manufacturing the same
JP6353901B2 (en) Magnetic material
JP4803398B2 (en) Multilayer permanent magnet
JP3305790B2 (en) Manufacturing method of thin film permanent magnet
JP2001217124A (en) R-Fe-B VERTICAL MAGNETIC ANISOTROPY THIN-FILM MAGNET AND MANUFACTURING METHOD THEREOF
JP2000003808A (en) Hard magnetic material
Liu et al. Remanence enhancement and exchange coupling in PrCo/Co films
JPH11288812A (en) High coercive force r-irone-b thin-film magnet and manufacture thereof
JP5660566B2 (en) Magnetic particles and method for producing the same
JPH11214219A (en) Thin film magnet and its manufacture
JP3632869B2 (en) Replacement spring magnet
JP3106484B2 (en) Method of forming rare earth alloy thin film magnet
JPH09219313A (en) R-tm-b hard magnetic thin film and its manufacture
JP2004134416A (en) Permanent magnet thin film
JPH04219912A (en) Formation of rare-earth thin film magnet
JPH06151226A (en) Film magnet forming method
JP2001217109A (en) Magnet composition and bonded magnet using the same
JP2016207680A (en) Thin film magnet
Li et al. Grain boundary phase formation and magnetic properties of NdFeB/Nd multilayered films
Strzeszewski et al. Microstructure studies in Nd2 (Fe0. 9Co0. 1) 14B thin films
Kim et al. Magnetic properties of NdFeB thin film obtained by diffusion annealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090821