JP2001212680A - Laser beam processing method - Google Patents

Laser beam processing method

Info

Publication number
JP2001212680A
JP2001212680A JP2000025983A JP2000025983A JP2001212680A JP 2001212680 A JP2001212680 A JP 2001212680A JP 2000025983 A JP2000025983 A JP 2000025983A JP 2000025983 A JP2000025983 A JP 2000025983A JP 2001212680 A JP2001212680 A JP 2001212680A
Authority
JP
Japan
Prior art keywords
laser
processing
workpiece
laser beam
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000025983A
Other languages
Japanese (ja)
Other versions
JP3754857B2 (en
Inventor
Jun Koide
小出  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000025983A priority Critical patent/JP3754857B2/en
Priority to US09/770,463 priority patent/US6555783B2/en
Publication of JP2001212680A publication Critical patent/JP2001212680A/en
Application granted granted Critical
Publication of JP3754857B2 publication Critical patent/JP3754857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser beam processing method for materializing fine three-dimensional constructional objects in simplified processes. SOLUTION: By using a short pulse oscillating laser, a focused point of a projected image of a mask pattern is set on an external boundary surface, in which the external boundary surface is located in an opposite side of a place where laser irradiation toward processed works is conducted at a starting time of processing. A laser beam is also concentrated and irradiated onto the focused point so that an energy density of the laser beam becomes more than a threshold in which a predetermined ablation operation can be generated. Consequently, synchronizing with progress of the ablation processing by the irradiation of the laser beam, the ablation processing of the constructional objects onto the processed works is performed so that the processed works are gradually moved toward and taken into the direction of a place, in which the laser beam is irradiated, at a predetermined value or at a predetermined speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を用いて
被加工物に構造を形成するレーザ加工方法に関するもの
である。また、さらにはマイクロマシン、またはICお
よびダイオードデバイス等の材料の微細加工に好適なレ
ーザ加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing method for forming a structure on a workpiece using a laser beam. Further, the present invention relates to a laser processing method suitable for fine processing of materials such as a micromachine or an IC and a diode device.

【0002】[0002]

【従来の技術】従来、サブミクロンから10ミクロンオ
ーダーの微細な三次元構造体を加工する手段としては、
通常、リソグラフィープロセスが用いられる。これによ
ると、レジストコート、レジストパターニング露光、レ
ジスト現像、レジストパターンを利用したエッチング、
レジストアッシング等の一連のプロセスを踏んで構造体
を加工する方法が採られる。
2. Description of the Related Art Conventionally, as means for processing a fine three-dimensional structure on the order of submicron to 10 micron,
Usually, a lithography process is used. According to this, resist coating, resist patterning exposure, resist development, etching using a resist pattern,
A method of processing the structure by taking a series of processes such as resist ashing is employed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、サブミ
クロンから10ミクロンオーダーの微細な三次元構造体
を加工するに際して、上記したリソグラフィープロセス
による場合には、加工工程が複雑となることから、タク
トタイムに対してコスト的な問題点が生じ、また生産設
備投資が膨大になるといった問題点がある。またリソグ
ラフィープロセスでは高アスペクト比の構造体の形成は
非常に困難である。
However, when processing a fine three-dimensional structure on the order of submicrons to 10 microns, the above-described lithography process complicates the processing steps, so that the tact time is reduced. On the other hand, there is a problem of cost, and there is a problem that investment in production equipment becomes enormous. In a lithography process, it is very difficult to form a structure having a high aspect ratio.

【0004】そこで、本発明は、上記課題を解決し、リ
ソグラフィープロセスのような複雑な加工プロセスを用
いることなく、三次元の微細な構造体をシンプルで簡易
な加工工程で実現できるレーザ加工方法を提供すること
を目的とするものである。
Accordingly, the present invention solves the above-mentioned problems, and provides a laser processing method capable of realizing a three-dimensional fine structure with a simple and simple processing step without using a complicated processing process such as a lithography process. It is intended to provide.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、つぎの(1)〜(5)のように構成した
レーザ加工方法を提供するものである。 (1)1ピコ秒以下のパルス放射時間で空間的時間的な
エネルギー密度の大きい光パルスを連続放射するレーザ
発振器からのレーザ光によって、マスクのパターンを投
影レンズにより、前記レーザ光波長に対して略透明な被
加工物に投影して昇華加工するレーザ加工方法であっ
て、前記マスクパターンの投影像のフォーカスポイント
を、前記加工の開始時には前記被加工物の前記レーザ照
射と反対側の外形境界面に設定すると共に、該フォーカ
スポイント部分に前記レーザ光のエネルギー密度が所定
アブレーション作用が発生する閾値以上となるように集
光して照射し、該レーザ光の照射によるアブレーション
加工の進行と同期させて、前記被加工物をレーザが照射
する方向に徐々に所定量ずつまたは所定速度で移動さ
せ、前記レーザ照射と反対側の外形境界面側からレーザ
照射側に挿引する形で前記被加工物に構造体を形成する
ことを特徴とするレーザ加工方法。 (2)前記被加工物の昇華加工において、該被加工物の
内部に構造体を昇華加工するに際して、該加工での昇華
気化によって生じる産物質を外部に放出するための放出
口を予め形成した後に、前記構造体を加工することを特
徴とする上記(1)に記載のレーザ加工方法。 (3)前記構造体の加工に際して、前記放出口に接した
位置から構造体を加工することを特徴とする上記(2)
に記載のレーザ加工方法。 (4)前記レーザ発振器は、光伝播の空間圧縮装置を有
しているレーザ発振器であることを特徴とする上記
(1)〜(3)のいずれかに記載のレーザ加工方法。 (5)前記光伝播の空間圧縮装置は、チャープドパルス
を生成する手段と光波長分散特性を利用した縦モード同
期手段を有することを特徴とする 上記(4)に記載のレーザ加工方法。
SUMMARY OF THE INVENTION The present invention provides a laser processing method configured as described in the following (1) to (5) in order to solve the above-mentioned problems. (1) The pattern of the mask is projected by a projection lens using a laser beam from a laser oscillator that continuously emits a light pulse having a large spatial and temporal energy density with a pulse emission time of 1 picosecond or less with respect to the laser light wavelength. What is claimed is: 1. A laser processing method for performing sublimation processing by projecting onto a substantially transparent workpiece, wherein a focus point of a projected image of the mask pattern is set at the start of the processing at an outer boundary on the opposite side of the laser irradiation of the workpiece. The laser beam is focused and irradiated so that the energy density of the laser beam is equal to or higher than a threshold at which a predetermined ablation action occurs, and the focus point portion is synchronized with the progress of ablation processing by the laser beam irradiation. The workpiece is gradually moved by a predetermined amount or at a predetermined speed in a direction in which the laser is irradiated. Laser processing method characterized by forming a structure on the workpiece in a manner that swept the laser irradiation side from outer boundary surface of the contralateral. (2) In the sublimation processing of the workpiece, when sublimating the structure inside the workpiece, a discharge port for releasing a substance produced by sublimation vaporization in the processing to the outside is formed in advance. The laser processing method according to (1), wherein the structure is processed later. (3) When processing the structure, the structure is processed from a position in contact with the discharge port (2).
2. The laser processing method according to 1. above. (4) The laser processing method according to any one of (1) to (3), wherein the laser oscillator is a laser oscillator having a spatial compression device for light propagation. (5) The laser processing method according to (4), wherein the light propagation spatial compression apparatus includes a means for generating a chirped pulse and a longitudinal mode synchronization means using light wavelength dispersion characteristics.

【0006】[0006]

【発明の実施の形態】上記構成を適用した本発明の実施
の形態においては、1ピコ秒以下のパルス放射時間で空
間的時間的なエネルギー密度の大きい光パルスを連続放
射するレーザ発振器からのレーザ光を用いて、光アブレ
ーション加工を行うレーザ加工方法において、レーザを
被加工物に導光する光学系は、レーザ光にて照明された
マスクのパターンを投影レンズにて、レーザ光波長に対
して略透明な被加工物に投影してパターンレーザ照射す
るものであって、前記マスクパターンの投影像のフォー
カスポイントは、加工開始においては、前記被加工物の
前記レーザ照射と反対側の外形境界面に設定して、かつ
フォーカスポイント部分のエネルギー密度を所定アブレ
ーション作用が発生する閾値以上に集光して、レーザ照
射によるアブレーション加工の進行と同期させて、前記
被加工物をレーザが照射する方向に徐々に所定量ずつま
たは所定速度で移動させて、前記レーザ照射と反対側の
外形境界面側からレーザ照射側に挿引する形で、前記被
加工物に構造体を形成することができるようにしたもの
である。また、このレーザ加工方法を用いて、微細三次
元構造であるインクジェット記録ヘッドのインク通路構
造等の加工に応用することも可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention to which the above configuration is applied, a laser from a laser oscillator which continuously emits a light pulse having a large spatial and temporal energy density with a pulse emission time of 1 picosecond or less is provided. In a laser processing method of performing optical ablation processing using light, an optical system that guides a laser to a workpiece uses a mask pattern illuminated by the laser light with a projection lens to a laser beam wavelength. A pattern laser is projected onto a substantially transparent workpiece, and the focus point of the projected image of the mask pattern is, at the start of processing, an outer boundary surface on the opposite side of the laser irradiation of the workpiece. And the energy density at the focus point is focused above the threshold at which the predetermined ablation action occurs. In synchronization with the progress of the laser processing, the workpiece is gradually moved by a predetermined amount or at a predetermined speed in the direction of laser irradiation from the outer boundary surface side opposite to the laser irradiation to the laser irradiation side. A structure can be formed on the workpiece by being inserted and pulled. Further, the laser processing method can be applied to processing of an ink passage structure of an ink jet recording head having a fine three-dimensional structure.

【0007】なお、ここで用いられる上述したレーザ
は、「次世代光テクノロジー集成」(平成4年(株)オ
プトロニクス社発行、第1部要素技術;超短光パルスの
発生と圧縮、24頁〜31頁)等に記載されているいわ
ゆるフェムト秒レーザであり、このようなフェムト秒レ
ーザによると、時間的エネルギー密度がきわめて大き
く、またレーザ光の照射時間が非常に短いため、レーザ
光が熱エネルギーとして被加工物内を拡散する前に昇華
アブレーション加工プロセスを終了させることが可能と
なるため、加工形状は融解による変形が発生しないため
高精度に加工ができるといった特徴がある。例えば、汎
用的に市販されている極短パルスレーザ発振器には、パ
ルス放射時間が150フェムト秒以下、パルス当りの光
エネルギーが800マイクロジュールのものが存在す
る。即ち放射レーザ光のエネルギー密度は発振パルスに
おいて約5.3ギガワットのレベルとなる。
[0007] The above-mentioned laser used here is called "Next Generation Optical Technology" (published in 1992 by Optronics Co., Ltd., part 1 element technology; generation and compression of ultrashort light pulses, page 24 to). 31), and the like. According to such a femtosecond laser, the temporal energy density is extremely large, and the irradiation time of the laser light is very short. Since the sublimation ablation processing process can be completed before diffusing in the workpiece, the processing shape is not deformed by melting, so that processing can be performed with high accuracy. For example, some commercially available ultrashort pulse laser oscillators have a pulse emission time of 150 femtoseconds or less and a light energy of 800 microjoules per pulse. That is, the energy density of the emitted laser light is about 5.3 gigawatts in the oscillation pulse.

【0008】上述レーザの特性によって、被加工対象材
料においては、光吸収率の低い略透明な石英およびガラ
スまたは結晶においても、光エネルギー密度がギガワッ
トの域に達しYAGレーザと比べても100倍以上のエ
ネルギー密度となるため、エネルギーを時間的空間的に
集中させることにより、局所的な加工が可能であって、
略透明なガラスまたは石英および結晶であっても0.1
〜1%程度の吸収があれば加工が可能となる。ただし、
内部加工を行うにおいて、昇華気化した被加工物材料を
外部に放出するための気道を確保した上で行うものであ
る。気道を確保しない場合、被加工物内部での昇華気体
の圧が高くなり、被加工物が破裂またはクラックを発生
する問題を生ずるためである。
[0008] Due to the characteristics of the laser, the light energy density of the material to be processed reaches gigawatts even in the case of substantially transparent quartz and glass or crystal having a low light absorption rate, and is more than 100 times that of the YAG laser. Since the energy density becomes, local processing is possible by concentrating the energy temporally and spatially.
0.1 even for substantially transparent glass or quartz and crystals
Processing is possible if the absorption is about 1%. However,
In performing the internal processing, an airway for releasing the sublimated and vaporized workpiece material to the outside is secured. If the airway is not secured, the pressure of the sublimation gas inside the workpiece increases, causing a problem that the workpiece may burst or crack.

【0009】また、レーザ光の光波長において透明な被
加工物の内部にて被加工物のアブレーション加工閾値を
超えたエネルギー密度以上に集光してはじめて昇華加工
されるものであるが、現実的な加工閾値エネルギー密度
は非常に高く、加工を引き起こすためには、つぎの条件
(1)及び条件(2)の必要条件を満たしていなければ
ならない。 条件(1);被加工材料はレーザ光波長に対して透明で
あることによって被加工材料内部にレーザ光が侵入でき
ることと、完全透過性であっては、(現実に完全透過は
ありえないが)レーザ光の吸収が起こらないことにより
加工が起こらないため、レーザ光波長の光吸収率が0.
1%程度以上は必要となる。 条件(2);0.1%の光吸収率であっても昇華加工閾
値エネルギー密度に到達するまでのレーザ光のエネルギ
ー密度が必要である。例えば、被加工材料にポリサルフ
ォン樹脂を用いる場合、約15メガワット/cm2のエ
ネルギー密度の吸収がアブレーション加工閾値となって
おり、このエネルギー密度以上の領域で昇華加工が行わ
れるため、実際に加工を行うためには、ポリサルフォン
は可視光から近赤外線領域で無色透明で、レーザ光波長
が775nmの場合、光吸収率は約0.1%であるた
め、レーザ光の照射エネルギー密度は15ギガワット/
cm2のエネルギー密度を必要とすることとなる。即
ち、前述した極短パルス発振レーザにおいて、前記ポリ
サルフォンの内部加工のための15ギガワット/cm2
のエネルギー密度を得るためには、最大で6mm四方
(36mm2)の領域において同時加工が可能となる。
Further, sublimation processing is performed only when light is collected at an energy density not less than the ablation processing threshold value of the workpiece in the transparent workpiece at the light wavelength of the laser beam or more. The processing threshold energy density is extremely high, and the following conditions (1) and (2) must be satisfied in order to cause processing. Condition (1): If the material to be processed is transparent to the wavelength of the laser beam, the laser beam can enter the inside of the material to be processed, and if the material is completely transmissive, the laser cannot be completely transmitted. Since processing does not occur due to no absorption of light, the light absorptance of the laser light wavelength is 0.1%.
About 1% or more is required. Condition (2): Even if the light absorption rate is 0.1%, the energy density of the laser beam is required to reach the sublimation threshold energy density. For example, when a polysulfone resin is used as a material to be processed, absorption of an energy density of about 15 MW / cm 2 is an ablation processing threshold, and sublimation processing is performed in a region higher than this energy density. In order to perform the process, polysulfone is colorless and transparent in the visible light to near-infrared region, and when the laser light wavelength is 775 nm, the light absorption is about 0.1%. Therefore, the irradiation energy density of the laser light is 15 GW /
This would require an energy density of cm 2 . That is, in the above-mentioned ultrashort pulse oscillation laser, 15 GW / cm 2 for internal processing of the polysulfone is used.
In order to obtain the above energy density, simultaneous processing is possible in a maximum area of 6 mm square (36 mm 2 ).

【0010】[0010]

【実施例】以下、本発明の実施例を図面にもとずいて説
明する。以下に本発明の要部である本実施例にかかるレ
ーザ加工方法を詳細に説明する。図1は、本発明に係る
レーザ加工方法を説明するための概略光路図である。不
図示の短パルス発振レーザ本体から図1中の太線矢印方
向に放射されたレーザ光束101をズームビームコンプ
レッサ110に導き、所定光ビーム径に変換し、マスク
照明レンズ111に導き所定収束角のレーザビームを形
成し、マスク1のマスクパターン部分を照明する。次
に、マスクパターンを通過したレーザ光は投影レンズ1
13によってパターン像をレーザ光波長において略透明
な被加工物2にレーザが照射されてくる側と反対面に被
加工物2を透過した状態で、フォーカス投影照射されレ
ーザ発振によって、レーザの光エネルギー密度が所定ア
ブレーション作用が発生する閾値以上に集中したフォー
カス部分近傍においてアブレーション加工が開始され
る。このレーザ光の照射によるアブレーション加工の進
行と同期させて同時に、被加工物2は不図示の自動ステ
ージによる移動コントロールによって、図中細線矢印方
向に徐々に所定量ずつまたは所定速度で移動させて、挿
引する(引き込む)形で被加工物2はアブレーション加
工が進行する。所定形状がアブレーション加工された時
点で、レーザ101の照射が停止されることで、被加工
物2に所定形状の構造が形成される。
Embodiments of the present invention will be described below with reference to the drawings. Hereinafter, a laser processing method according to the present embodiment, which is a main part of the present invention, will be described in detail. FIG. 1 is a schematic optical path diagram for explaining a laser processing method according to the present invention. A laser beam 101 emitted from a short-pulse oscillation laser body (not shown) in the direction of a thick arrow in FIG. 1 is guided to a zoom beam compressor 110, converted into a predetermined light beam diameter, guided to a mask illumination lens 111, and a laser having a predetermined convergence angle. A beam is formed to illuminate the mask pattern portion of the mask 1. Next, the laser beam that has passed through the mask pattern is
The focus image is projected by the laser beam on the surface of the workpiece 2 which is opposite to the side on which the laser beam is irradiated on the workpiece 2 which is substantially transparent at the laser beam wavelength. Ablation processing is started in the vicinity of a focus portion where the density is higher than a threshold at which a predetermined ablation action occurs. Simultaneously with the progress of the ablation processing by the irradiation of the laser light, the workpiece 2 is gradually moved by a predetermined amount or at a predetermined speed in the direction of a thin line arrow in the figure by movement control by an automatic stage (not shown). The workpiece 2 is subjected to ablation processing in the form of being inserted (pulled in). When the predetermined shape is ablated, the irradiation of the laser 101 is stopped, so that the structure of the predetermined shape is formed on the workpiece 2.

【0011】一例として、図2を用いて、高アスペクト
比の円柱空洞形状の加工方法の概要を説明する。(a)
図にて極短パルス放射時間(1ピコ秒以下)でレーザ光
を放射する不図示のレーザ発振器から放射されたレーザ
光束において、マスク1の円形パターンを通過し、被加
工物2のレーザ照射側とは反対面(以後裏面と呼ぶ)に
被加工物2を透過した状態で、アブレーション閾値より
エネルギー密度の高い状態でマスクパターンを投影結像
させる状態でレーザ光束100を照射する。このことに
よって、被加工物2は、エネルギーが集中した裏面にお
いてのみアブレーション加工が開始され、このレーザ光
の照射によるアブレーション加工の進行と同期させて同
時に、被加工物2は不図示の自動ステージによる移動コ
ントロールによって、徐々に所定量ずつまたは所定速度
で移動され、最終的には(b)図に示すような状態まで
移動され、挿引する(引き込む)形で被加工物2はアブ
レーション加工されるため、フォーカスポイントのマス
クパタン投影像の移動軌跡である円柱空洞形状が加工形
成されることとなる。
As an example, an outline of a method for processing a cylindrical cavity having a high aspect ratio will be described with reference to FIG. (A)
In the figure, a laser beam emitted from a laser oscillator (not shown) that emits a laser beam with an extremely short pulse emission time (1 picosecond or less) passes through a circular pattern of a mask 1 and is irradiated on a laser irradiation side of a workpiece 2. The laser beam 100 is irradiated while the mask pattern is projected and imaged with the energy density higher than the ablation threshold in a state where the workpiece 2 is transmitted on the opposite surface (hereinafter referred to as the back surface). As a result, the workpiece 2 is subjected to the ablation process only on the back surface where the energy is concentrated, and in synchronization with the progress of the ablation process by the irradiation of the laser beam, the workpiece 2 is simultaneously moved by the automatic stage (not shown). By the movement control, the workpiece 2 is gradually moved by a predetermined amount or at a predetermined speed, and finally is moved to a state as shown in FIG. Therefore, a cylindrical cavity shape, which is the movement locus of the mask pattern projected image of the focus point, is processed and formed.

【0012】以上の説明から明らかなように、レーザ光
波長に対して略透明な被加工物は、挿引する(引き込
む)形でアブレーション加工できるため、フォーカスポ
イントの移動距離に対しては、原理的な制約は発生しな
い。このため、本実施例のレーザ加工方法によると、レ
ーザ光波長に対して略透明な被加工物に非常に高いアス
ペクト比の円柱空洞形状を加工形成することが可能であ
ることにまして、マスクのパターンを任意に設定するこ
とによって、様々な柱形状の加工が可能となる。
As is apparent from the above description, a workpiece substantially transparent to the wavelength of the laser beam can be ablated by inserting (pulling in). No restrictions are imposed. For this reason, according to the laser processing method of the present embodiment, it is possible to form a cylindrical cavity having a very high aspect ratio on a workpiece substantially transparent to the laser light wavelength. By setting the pattern arbitrarily, processing of various pillar shapes becomes possible.

【0013】[0013]

【発明の効果】以上に説明したように、本発明によれ
ば、短パルス発振レーザを用い、マスクパターンの投影
像のフォーカスポイントを、加工の開始時には前記被加
工物の前記レーザ照射と反対側の外形境界面に設定する
と共に、該フォーカスポイント部分にレーザ光のエネル
ギー密度が所定アブレーション作用が発生する閾値以上
となるように集光して照射し、該レーザ光の照射による
アブレーション加工の進行と同期させて、被加工物をレ
ーザが照射する方向に徐々に所定量ずつまたは所定速度
で移動させ、前記レーザ照射と反対側の外形境界面から
レーザ照射側の面方向に挿引する(引き込む)形で被加
工物に構造体をアブレーション加工するように構成され
ているから、フォーカスポイントの移動距離に対して、
原理的な制約が発生せず、レーザ光波長に対して略透明
な被加工物に非常に高いアスペクト比の円柱空洞形状等
を加工形成することが可能となるだけでなく、マスクの
パターンを任意に設定することによって、様々な柱形状
の加工が可能となる。したがって、本発明によれば、簡
単な極短パルスレーザ照射工程によって、構造体を形成
することができ、リソグラフィープロセスのような複雑
な加工プロセスを用いることなく、三次元形状の構造体
の微細加工が容易に可能となるレーザ加工方法を実現す
ることができる。
As described above, according to the present invention, a short-pulse oscillation laser is used, and the focus point of the projected image of the mask pattern is set at the start of processing on the side opposite to the laser irradiation of the workpiece. In addition to setting the outer boundary surface, the laser beam is focused and irradiated on the focus point portion so that the energy density of the laser beam is equal to or higher than a threshold value at which a predetermined ablation action occurs. In synchronization, the workpiece is gradually moved by a predetermined amount or at a predetermined speed in the direction of laser irradiation, and is inserted (pulled) in the direction of the laser irradiation side from the outer boundary surface opposite to the laser irradiation. Since the structure is configured to ablate the structure on the workpiece in the form, with respect to the moving distance of the focus point,
In principle, there is no restriction, and it is possible not only to process and form a cylindrical cavity with a very high aspect ratio on a workpiece that is almost transparent to the laser light wavelength, but also to set an arbitrary mask pattern. By setting to, various column shapes can be processed. Therefore, according to the present invention, a structure can be formed by a simple ultra-short pulse laser irradiation step, and fine processing of a three-dimensional structure can be performed without using a complicated processing process such as a lithography process. Can be realized a laser processing method that can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るレーザ加工方法を説明す
るための概略光路図。
FIG. 1 is a schematic optical path diagram for explaining a laser processing method according to an embodiment of the present invention.

【図2】本発明の実施例に係るレーザ加工例を説明する
図。
FIG. 2 is a diagram illustrating an example of laser processing according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:マスク 2:略透明な被加工物 100:レーザ光束 101:レーザ光束 110:ズームビームコンプレッサー 111:マスク照明レンズ 113:投影レンズ 1: mask 2: substantially transparent workpiece 100: laser beam 101: laser beam 110: zoom beam compressor 111: mask illumination lens 113: projection lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】1ピコ秒以下のパルス放射時間で空間的時
間的なエネルギー密度の大きい光パルスを連続放射する
レーザ発振器からのレーザ光によって、マスクのパター
ンを投影レンズにより、前記レーザ光波長に対して略透
明な被加工物に投影して昇華加工するレーザ加工方法で
あって、 前記マスクパターンの投影像のフォーカスポイントを、
前記加工の開始時には前記被加工物の前記レーザ照射と
反対側の外形境界面に設定すると共に、該フォーカスポ
イント部分に前記レーザ光のエネルギー密度が所定アブ
レーション作用が発生する閾値以上となるように集光し
て照射し、該レーザ光の照射によるアブレーション加工
の進行と同期させて、前記被加工物をレーザが照射する
方向に徐々に所定量ずつまたは所定速度で移動させ、前
記レーザ照射と反対側の外形境界面側からレーザ照射側
に挿引する形で前記被加工物に構造体を形成することを
特徴とするレーザ加工方法。
1. A laser beam emitted from a laser oscillator that continuously emits a light pulse having a large spatial and temporal energy density with a pulse emission time of 1 picosecond or less, and a mask pattern is projected onto the laser light wavelength by a projection lens. A laser processing method of sublimating by projecting a substantially transparent workpiece on the other hand, the focus point of the projected image of the mask pattern,
At the start of the processing, the workpiece is set on the outer boundary surface on the side opposite to the laser irradiation, and the laser beam is concentrated at the focus point portion so that the energy density of the laser beam is equal to or higher than a threshold value at which a predetermined ablation action occurs. The workpiece is gradually moved by a predetermined amount or at a predetermined speed in the direction of laser irradiation in synchronization with the progress of ablation processing by the laser light irradiation, and the opposite side of the laser irradiation. Forming a structure on the workpiece in such a manner that the structure is inserted from the outer boundary surface side to the laser irradiation side.
【請求項2】前記被加工物の昇華加工において、該被加
工物の内部に構造体を昇華加工するに際して、該加工で
の昇華気化によって生じる産物質を外部に放出するため
の放出口を予め形成した後に、前記構造体を加工するこ
とを特徴とする請求項1に記載のレーザ加工方法。
2. In the sublimation processing of the workpiece, when sublimating the structure inside the workpiece, a discharge port for releasing a substance generated by sublimation vaporization in the processing to the outside is provided in advance. The laser processing method according to claim 1, wherein the structure is processed after the formation.
【請求項3】前記構造体の加工に際して、前記放出口に
接した位置から構造体を加工することを特徴とする請求
項2に記載のレーザ加工方法。
3. The laser processing method according to claim 2, wherein, when processing the structure, the structure is processed from a position in contact with the emission port.
【請求項4】前記レーザ発振器は、光伝播の空間圧縮装
置を有しているレーザ発振器であることを特徴とする請
求項1〜3のいずれか1項に記載のレーザ加工方法。
4. The laser processing method according to claim 1, wherein said laser oscillator is a laser oscillator having a spatial compression device for light propagation.
【請求項5】前記光伝播の空間圧縮装置は、チャープド
パルスを生成する手段と光波長分散特性を利用した縦モ
ード同期手段を有することを特徴とする請求項4に記載
のレーザ加工方法。
5. The laser processing method according to claim 4, wherein said spatial compression device for light propagation has a means for generating a chirped pulse and a longitudinal mode synchronization means using a light wavelength dispersion characteristic.
JP2000025983A 2000-02-03 2000-02-03 Laser processing method Expired - Fee Related JP3754857B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000025983A JP3754857B2 (en) 2000-02-03 2000-02-03 Laser processing method
US09/770,463 US6555783B2 (en) 2000-02-03 2001-01-29 Laser processing method and laser processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000025983A JP3754857B2 (en) 2000-02-03 2000-02-03 Laser processing method

Publications (2)

Publication Number Publication Date
JP2001212680A true JP2001212680A (en) 2001-08-07
JP3754857B2 JP3754857B2 (en) 2006-03-15

Family

ID=18551769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025983A Expired - Fee Related JP3754857B2 (en) 2000-02-03 2000-02-03 Laser processing method

Country Status (1)

Country Link
JP (1) JP3754857B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084243A (en) * 2001-09-17 2003-03-19 Menicon Co Ltd Method of marking ocular lens
JP2005210102A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Laser irradiation method and method of forming crystalline semiconductor film
US7411151B2 (en) 2002-05-24 2008-08-12 Riken Method and device for processing inside of transparent material
KR100876945B1 (en) 2006-09-11 2009-01-07 후지쯔 가부시끼가이샤 Pattern forming method, pattern forming device, method for manufacturing recording medium, and method for manufacturing member
JP2011078984A (en) * 2009-10-02 2011-04-21 Disco Abrasive Syst Ltd Laser machining device
JP2012033943A (en) * 2003-12-26 2012-02-16 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084243A (en) * 2001-09-17 2003-03-19 Menicon Co Ltd Method of marking ocular lens
US7411151B2 (en) 2002-05-24 2008-08-12 Riken Method and device for processing inside of transparent material
JP2005210102A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Laser irradiation method and method of forming crystalline semiconductor film
JP2012033943A (en) * 2003-12-26 2012-02-16 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
KR100876945B1 (en) 2006-09-11 2009-01-07 후지쯔 가부시끼가이샤 Pattern forming method, pattern forming device, method for manufacturing recording medium, and method for manufacturing member
JP2011078984A (en) * 2009-10-02 2011-04-21 Disco Abrasive Syst Ltd Laser machining device

Also Published As

Publication number Publication date
JP3754857B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US6864459B2 (en) High precision, rapid laser hole drilling
US11482826B2 (en) Optical processing apparatus, optical processing method, and optically-processed product production method
JP2001071168A (en) Laser beam processing method, production of ink jet recording head using this laser beam processing method and ink jet recording head produced by this production
US6861364B1 (en) Laser etching method and apparatus therefor
US6555783B2 (en) Laser processing method and laser processing apparatus
JPH0679486A (en) Working method for ink jet head
JP3754857B2 (en) Laser processing method
TW201913791A (en) Laser processing method and laser processing apparatus
KR100340271B1 (en) Laser working method, method for producing ink jet recording head utilizing the same, and ink jet recording head produced by such method
US6938341B2 (en) Method for manufacturing an ink discharge port of an ink jet recording head
JPH11207478A (en) Method and device therefor laser beam machining
JP2001212798A (en) Laser machining method
JP2001232487A (en) Laser beam machining device and method, manufacturing method for ink jet recording head using the device or the method and ink jet recording head manufactured by the manufacturing method
JP2001212687A (en) A laser processing apparatus and laser processing method
JP2003053579A (en) Device and method for laser beam machining
JP2001219282A (en) Laser beam machining method, manufacturing method of ink jet recording head using laser beam machining method, ink jet recording head manufactured by manufacturing method
JP2003001470A (en) Laser beam machining device and laser beam machining method
JP2001062574A (en) Fine processing device
US6558882B2 (en) Laser working method
JPH0557469A (en) Laser beam processing
JP2019147166A (en) Optical processing apparatus and production method for optical work piece
JP2001212799A (en) Laser machining method
JPH06344172A (en) Laser beam machining method and device thereof
Jackson et al. Laser-based micro-and nanofabrication
Gu et al. Thermal effect study in excimer laser ablation of polyimide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees