JP2001212429A - Corrosion component removing method of waste treatment equipment - Google Patents

Corrosion component removing method of waste treatment equipment

Info

Publication number
JP2001212429A
JP2001212429A JP2000026310A JP2000026310A JP2001212429A JP 2001212429 A JP2001212429 A JP 2001212429A JP 2000026310 A JP2000026310 A JP 2000026310A JP 2000026310 A JP2000026310 A JP 2000026310A JP 2001212429 A JP2001212429 A JP 2001212429A
Authority
JP
Japan
Prior art keywords
fluidized
fluidized bed
corrosive
waste
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000026310A
Other languages
Japanese (ja)
Inventor
Tadashi Ito
正 伊藤
Hiroaki Kawabata
博昭 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000026310A priority Critical patent/JP2001212429A/en
Publication of JP2001212429A publication Critical patent/JP2001212429A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing corrosion components in a waste treatment equipment which is capable of easily and efficiency removing the corrosion components produced by waste combustion of chlorine-base plastics, or the like, at a low cost, thereby enabling the higher temperature and higher pressure of a waste heat boiler. SOLUTION: This method for removing the corrosion components in the waste treatment equipment for supplying wastes to a fluidized bed furnace 3, recovering the waste heat of the waste gases generated in this fluidized bed furnace 3 or a combustion melting furnace 4 behind the same with a heat recovering device and removing the corrosion components included in pyrolytic gas consists in removing the corrosion components from the pyrolytic gas by supplying granular CaO reacting with the corrosion components to a fluidized bed to effect the contact reaction of the corrosion components in the pyrolytic gas produced in the fluidized bed with a granular CaO surface layer by utilizing the swirling motion of the fluidized bed and discharging the reacted granular CaO together with fluidized sand out of the fluidized bed furnace 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ等の廃棄
物を燃焼処理する過程で発生する排ガス熱を熱回収装置
に導入して熱回収する廃棄物処理設備における腐食成分
除去方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing corrosive components in a waste treatment facility for introducing heat of exhaust gas generated in the process of burning waste such as municipal waste into a heat recovery device and recovering heat. is there.

【0002】[0002]

【従来の技術】従来、都市ごみ等の廃棄物を流動床炉で
焼却処理する設備には、省エネルギを図るため、燃焼に
よって発生する排ガス熱を回収する排熱回収装置が付属
されており、この熱回収装置としては空気予熱器、熱交
換器、ボイラ等が用意されている。
2. Description of the Related Art Conventionally, a facility for incinerating waste such as municipal waste in a fluidized bed furnace is provided with an exhaust heat recovery device for recovering exhaust gas heat generated by combustion in order to save energy. As the heat recovery device, an air preheater, a heat exchanger, a boiler and the like are prepared.

【0003】都市ごみには紙類やプラスチック類等の比
較的発熱量の高い成分が多く含まれており、排ガス中に
ダストが含まれていることから排熱回収としては通常、
ダストが堆積しにくい構造の廃熱ボイラが使用されてい
る。そしてこの廃熱ボイラによって生成された高圧蒸気
は、発電機の蒸気タービンを駆動させる駆動源として利
用される。
[0003] Municipal waste contains many components having a relatively high calorific value, such as paper and plastics, and dust is contained in exhaust gas.
A waste heat boiler with a structure in which dust hardly accumulates is used. The high-pressure steam generated by the waste heat boiler is used as a drive source for driving a steam turbine of a generator.

【0004】ところが、上記流動床炉でポリ塩化ビニル
等の塩素系プラスチック廃棄物やゴム類が焼却される
と、腐食性の強いHCl(塩化水素)やSOx(硫黄酸
化物)が発生する。これらのHCl,SOxを含む排ガ
スが廃熱ボイラに導入されると、特にHClは、廃熱ボ
イラの水管や伝熱面に対し高温状態で化学的に反応し、
腐食が激しく起こる。
However, when chlorine-based plastic waste such as polyvinyl chloride or rubber is incinerated in the fluidized-bed furnace, highly corrosive HCl (hydrogen chloride) or SO x (sulfur oxide) is generated. When the exhaust gas containing these HCl and SO x is introduced into the waste heat boiler, particularly, the HCl chemically reacts with the water pipe and the heat transfer surface of the waste heat boiler in a high temperature state,
Corrosion occurs severely.

【0005】この腐食は知られているように、温度依存
性が高く雰囲気の温度上昇につれて腐食の進行が速まる
ため、従来は高温腐食が進まないように廃熱ボイラの過
熱蒸気温度を約300℃以下に制限して運転が行われて
いる。従ってその廃熱ボイラで発生する過熱蒸気を駆動
源とする蒸気タービンでは効率化が図れず、結果として
発電機の発電効率を高めることはできなかった。
As is known, this corrosion has a high temperature dependency and the progress of the corrosion is accelerated as the temperature of the atmosphere increases. Therefore, conventionally, the temperature of the superheated steam of the waste heat boiler is set to about 300 ° C. so that the high temperature corrosion does not proceed. Operation is restricted to the following. Therefore, the efficiency of the steam turbine using the superheated steam generated by the waste heat boiler as a driving source cannot be improved, and as a result, the power generation efficiency of the generator cannot be increased.

【0006】そこで、例えば特開平11−309338号に記載
の塩化水素除去方法では、粒状の脱HCl反応剤を充填
した反応層内にHCl含有ガスを流通させ、脱HCl反
応剤表面層にHClを接触反応させて塩化化合物を生成
させ、生成された塩化化合物を反応済みの脱HCl反応
剤とともに系外に排出することによりHClを除去する
方法が提案されている。
Therefore, for example, in the method for removing hydrogen chloride described in Japanese Patent Application Laid-Open No. H11-309338, an HCl-containing gas is passed through a reaction layer filled with granular deHCl reactants, and HCl is passed through the deHCl reactant surface layer. A method has been proposed in which a chloride compound is produced by a contact reaction, and the produced chloride compound is discharged out of the system together with the reacted reagent for removing HCl to remove HCl.

【0007】[0007]

【発明が解決しようとする課題】上記塩化水素除去方法
は、脱HCl反応剤として粒子径が2〜10mmの粒状生
石灰等を反応器に充填し、その反応器に対してHClを
含む燃焼排ガスを導入して粒状生石灰と接触反応させ、
脱HCl反応剤表面に生成されたHCl反応物を脱HC
l反応剤とともに系外に除去するようにしている。とこ
ろが、反応の大部分は粒状体の表面から深さ0.5mm程
度の表層部においてのみ行われるために充填量が限られ
た反応器では除去効率が継続されず、従って反応済みの
脱HCl反応剤については反応器から取り出し、反応に
供せられるように再生する必要がある。そのため、HC
l除去装置を設けることに加え、再生された脱HCl反
応剤を反応器に循環させるための複雑な循環装置を必要
とし、コスト高が避けられなかった。
In the above-mentioned method for removing hydrogen chloride, granular quicklime having a particle diameter of 2 to 10 mm or the like is charged into a reactor as a dehydrochlorinating agent, and combustion exhaust gas containing HCl is supplied to the reactor. Introduce and contact reaction with granular quicklime,
The HCl reactant generated on the surface of the HCl removing reagent is removed from the HC.
l It is removed outside the system together with the reactant. However, most of the reaction is performed only in the surface layer at a depth of about 0.5 mm from the surface of the granular material, so that the removal efficiency is not continued in a reactor having a limited filling amount. The agent must be removed from the reactor and regenerated so that it can be used for the reaction. Therefore, HC
In addition to providing a 1-removing device, a complicated circulating device for circulating the regenerated HCl-removing agent to the reactor was required, and high cost was unavoidable.

【0008】本発明は以上のような廃棄物処理設備にお
ける脱塩方法における課題を考慮してなされたものであ
り、塩素系プラスチック等の廃棄物燃焼によって発生す
る腐食成分を、簡単且つ低コストで効率良く除去するこ
とができ、それにより廃熱ボイラの高温,高圧化を可能
にした廃棄物処理設備における腐食成分除去方法を提供
するものである。
The present invention has been made in consideration of the above-mentioned problems in the desalination method in a waste treatment facility, and can easily and inexpensively reduce corrosive components generated by combustion of waste such as chlorine-based plastics. It is an object of the present invention to provide a method for removing corrosive components in a waste treatment facility, which can efficiently remove the waste heat, thereby making it possible to increase the temperature and pressure of the waste heat boiler.

【0009】[0009]

【課題を解決するための手段】請求項1の本発明は、廃
棄物を流動床炉に供給し、その流動床炉またはその後段
の燃焼溶融炉で発生した排ガスの排熱を熱回収装置で回
収するとともに、流動床炉で発生した熱分解ガスから金
属を腐食させる成分である腐食成分を除去する廃棄物処
理設備における腐食成分除去方法において、腐食成分と
反応する反応剤を流動床炉の流動層に供給し、流動層で
発生した熱分解ガス中の腐食成分を、流動層の旋回運動
を利用して反応剤表面層と接触反応させ、反応済みの反
応剤を流動床炉から流動砂とともに排出することによ
り、熱分解ガスから腐食成分を除去する廃棄物処理設備
における腐食成分除去方法である。
According to a first aspect of the present invention, waste is supplied to a fluidized-bed furnace, and exhaust heat of exhaust gas generated in the fluidized-bed furnace or a subsequent combustion-melting furnace is recovered by a heat recovery device. In a method for removing corrosive components in waste treatment equipment, which collects and removes corrosive components that corrode metals from pyrolysis gas generated in a fluidized-bed furnace, a reactant reacting with the corrosive components flows through a fluidized-bed furnace. The fluidized bed is fed into the bed, and the corrosive components in the pyrolysis gas generated in the fluidized bed are contact-reacted with the reactant surface layer using the swirling motion of the fluidized bed. This is a method for removing corrosive components in a waste treatment facility for removing corrosive components from pyrolysis gas by discharging.

【0010】請求項2の本発明は、反応済みの反応剤か
ら腐食成分を除去した後、流動層に循環供給させる廃棄
物処理設備における腐食成分除去方法である。
A second aspect of the present invention is a method for removing corrosive components in a waste treatment facility in which corrosive components are removed from a reacted reactant and then circulated and supplied to a fluidized bed.

【0011】請求項3の本発明は、反応剤表面層を削り
落とすことにより腐食成分を除去し、その腐食成分が除
去されて再生された反応剤のうち所定粒径のものを、排
出した流動砂とともに流動層に循環供給させる廃棄物処
理設備における腐食成分除去方法である。
According to the present invention, the corrosive component is removed by scraping off the surface layer of the reactant, and the corrosive component is removed and the regenerated reactant having a predetermined particle size is discharged. This is a method for removing corrosive components in a waste treatment facility that circulates and supplies sand to a fluidized bed.

【0012】請求項4の本発明は、腐食成分を除去した
後、分級を行うことによって所定粒径のものを選別する
廃棄物処理設備における腐食成分除去方法である。
A fourth aspect of the present invention is a method for removing corrosive components in a waste treatment facility, in which a corrosive component is removed and then classified to have a predetermined particle size.

【0013】請求項5の本発明は、反応剤がカルシウム
化合物からなり、腐食成分が塩化水素及び硫黄酸化物を
含む廃棄物処理設備における腐食成分除去方法である。
A fifth aspect of the present invention is a method for removing corrosive components in a waste treatment facility in which the reactant is a calcium compound and the corrosive components include hydrogen chloride and sulfur oxides.

【0014】請求項1の本発明に従えば、例えばポリ塩
化ビニルなどの塩素系プラスチックが流動床炉で熱分解
され塩化水素等の腐食成分が多量に発生した場合、この
腐食成分は流動床炉に供給された粒状の反応剤における
表面層と反応してその表面に吸着される。そこで反応済
みの反応剤を流動床炉から排出すれば、反応剤に随伴さ
れて腐食成分を除去することができる。
According to the first aspect of the present invention, when a chlorine-based plastic such as polyvinyl chloride is thermally decomposed in a fluidized-bed furnace and a large amount of corrosive components such as hydrogen chloride are generated, the corrosive component is removed from the fluidized-bed furnace. Reacts with the surface layer of the granular reactant supplied to the substrate and is adsorbed on its surface. Therefore, if the reacted reactant is discharged from the fluidized-bed furnace, the corrosive components accompanying the reactant can be removed.

【0015】請求項2の本発明に従えば、未反応の反応
剤を流動層に循環させてリサイクル使用することができ
る。
According to the second aspect of the present invention, the unreacted reactant can be circulated through the fluidized bed and recycled.

【0016】請求項3の本発明に従えば、流動床炉から
排出した反応剤の表面層を削り落とすことにより、表面
に吸着されている腐食成分を反応剤から剥離することが
できる。腐食成分が剥離された反応剤は、所定の粒径を
満足する限り腐食成分との反応にリサイクル使用するこ
とができる。再生された反応剤を流動床炉に供給させる
にあたっては、流動床炉に流動砂を循環させる既設のコ
ンベアを利用することができる。
According to the third aspect of the present invention, the corrosive component adsorbed on the surface can be separated from the reactant by shaving off the surface layer of the reactant discharged from the fluidized-bed furnace. The reactant from which the corrosive component has been stripped can be recycled for reaction with the corrosive component as long as it satisfies a predetermined particle size. In supplying the regenerated reactant to the fluidized bed furnace, an existing conveyor for circulating fluidized sand in the fluidized bed furnace can be used.

【0017】請求項4の本発明に従えば、分級を行うこ
とによって上記所定の粒径を得ることができる。
According to the fourth aspect of the present invention, the predetermined particle size can be obtained by performing classification.

【0018】請求項5の本発明に従えば、反応剤をカル
シウム化合物で構成し、塩化水素及び硫黄酸化物等の腐
食成分を吸着させることができる。
According to the fifth aspect of the present invention, the reactant is composed of a calcium compound and can adsorb corrosive components such as hydrogen chloride and sulfur oxide.

【0019】[0019]

【発明の実施の形態】以下、図面に示した実施形態に基
づいて本発明を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

【0020】図1は、本発明に係る腐食成分除去方法が
適用される廃棄物処理設備の全体構成を示したものであ
る。なお、本実施形態における廃棄物処理設備は熱分解
ガス化溶融システムを利用するものである。
FIG. 1 shows the overall configuration of a waste treatment facility to which the method for removing corrosive components according to the present invention is applied. Note that the waste treatment facility in the present embodiment utilizes a pyrolysis gasification and melting system.

【0021】同図において、廃棄物としてのごみは一
旦、ごみピット1に貯留され、クレーン1aによってホ
ッパ1bに投入される。ホッパ1bから排出されたごみ
は、破砕機1cに導入されて細かく破砕され、次いで給
塵機2によって定容積で流動床炉3に投入される。
In FIG. 1, waste as waste is temporarily stored in a waste pit 1 and is put into a hopper 1b by a crane 1a. The refuse discharged from the hopper 1b is introduced into a crusher 1c to be crushed finely, and then charged into the fluidized bed furnace 3 at a constant volume by a duster 2.

【0022】流動床炉3では、空気比0.2〜0.4の条件で
部分燃焼が行われ、砂層温度を500〜600℃に維持した低
温熱分解が行われる。そして投入されたごみのうち炉床
下部より抜き出される不燃物以外はすべて流動床炉3に
直結(下流側に)された燃焼溶融炉4に導かれる。
In the fluidized-bed furnace 3, partial combustion is performed under the condition of an air ratio of 0.2 to 0.4, and low-temperature pyrolysis is performed while maintaining the sand layer temperature at 500 to 600 ° C. All of the input refuse other than incombustibles extracted from the lower part of the hearth are guided to the combustion melting furnace 4 directly connected (to the downstream side) with the fluidized bed furnace 3.

【0023】一方、炉床下部から抜き出された不燃物
は、スクリューコンベア5及び振動フィーダ6及び図示
しない磁選機、アルミ選別機を経て不燃物、非鉄金属、
鉄分、流動砂にそれぞれ分離され、流動砂は流動床炉3
の砂層に戻されて再利用される。
On the other hand, the incombustibles extracted from the lower part of the hearth pass through the screw conveyor 5 and the vibrating feeder 6 and a magnetic separator and an aluminum separator (not shown).
Iron and fluidized sand are separated from each other.
It is returned to the sand layer and reused.

【0024】流動床炉3で発生した灰分を含む熱分解ガ
スは流動床炉3の排ガスとして燃焼溶融炉4に導かれ、
トータル空気比1.3の条件下でさらに燃焼される。この
燃焼溶融炉4では約1200℃以上の高温燃焼が行われ、灰
分を溶融してスラグとして分離するとともにダイオキシ
ン等のガス中の有害物質が分解される。7はスラグ排出
装置であり、8はスラグを冷却固化するためのスラグ水
さい・搬送装置である。
The pyrolysis gas containing ash generated in the fluidized bed furnace 3 is led to the combustion and melting furnace 4 as exhaust gas of the fluidized bed furnace 3,
It is further combusted under the condition of a total air ratio of 1.3. In the combustion melting furnace 4, high-temperature combustion of about 1200 ° C. or more is performed, and ash is melted and separated as slag, and harmful substances in gas such as dioxin are decomposed. Reference numeral 7 denotes a slag discharge device, and reference numeral 8 denotes a slag water conveying device for cooling and solidifying the slag.

【0025】この燃焼溶融炉4から排出される溶融炉排
ガスは、廃熱ボイラ9で熱回収され、廃熱ボイラ9で生
成される高温,高圧蒸気は蒸気タービン10aに送ら
れ、発電機10bの駆動力となる。また、廃熱ボイラ9
から送り出される排ガスは、さらにガス冷却器11で温
度が下げられ、バグフィルタ12で除塵される。浄化さ
れた排ガスは次いで誘引ファン13を経て脱硝装置14
を通り、煙突15から排出される。
The melting furnace exhaust gas discharged from the combustion melting furnace 4 is heat-recovered by a waste heat boiler 9, and the high-temperature, high-pressure steam generated by the waste heat boiler 9 is sent to a steam turbine 10 a, and is supplied to a steam generator 10 b. It becomes the driving force. Also, waste heat boiler 9
The temperature of the exhaust gas sent from the gas cooler 11 is further reduced by the gas cooler 11, and the exhaust gas is removed by the bag filter 12. The purified exhaust gas then passes through an induction fan 13 and a denitration device 14
Through the chimney 15.

【0026】図2は、上記流動床炉3,燃焼溶融炉4及
び廃熱ボイラ9の構成を拡大して示したものである。
FIG. 2 is an enlarged view of the configurations of the fluidized bed furnace 3, the combustion melting furnace 4 and the waste heat boiler 9.

【0027】同図において、流動床炉3の底部には多数
の空気噴射口を備えた分散板3aが設けられ、その下方
に風箱3bが形成されている。この風箱3b内に押込送
風機3cによって流動化ガスを導入すると、分散板3a
の空気噴射口を通じて上向きに流動化空気が噴射され、
分散板3aの上方に砂粒子からなる流動層Bが形成され
る。この流動層Bの上方にはごみ投入口3d及び始動用
のメインバーナ(図示しない)が設けられ、その上方に
フリーボード3eが形成されている。
In the figure, a dispersion plate 3a having a number of air injection ports is provided at the bottom of the fluidized bed furnace 3, and a wind box 3b is formed below the dispersion plate 3a. When a fluidizing gas is introduced into the wind box 3b by the forced blower 3c, the dispersion plate 3a
Fluidized air is injected upward through the air injection port of
A fluidized bed B made of sand particles is formed above the dispersion plate 3a. Above the fluidized bed B, a dust inlet 3d and a main burner (not shown) for starting are provided, and a free board 3e is formed above the dust inlet 3d.

【0028】なお、炉頂部には熱分解ガス排出口3fが
設けられており、炉床下部には不燃物を抜き出すための
不燃物排出口3gが設けられている。そして炉床下部よ
り抜き出された不燃物のうち、流動砂についてはコンベ
ア3hを介して流動床炉3に戻される。
A pyrolysis gas discharge port 3f is provided at the furnace top, and a noncombustible substance discharge port 3g for extracting noncombustibles is provided at the lower part of the furnace floor. Of the incombustibles extracted from the lower part of the hearth, fluidized sand is returned to the fluidized bed furnace 3 via the conveyor 3h.

【0029】一方、燃焼溶融炉4においては、流動床炉
3で発生した熱分解ガスが一次燃焼領域4aへ接線方向
に流入し、旋回しながら燃焼され、溶融した灰分が壁面
に捕集されスラグ化される。次いで絞り4bを通過した
燃焼ガスはスラグ分離部底面4cに衝突し、微細な灰分
を捕集し溶融スラグする。そしてこれらのスラグは抜出
口4dから排出されるようになっている。なお、上記一
次燃焼領域4aには送風機4eから燃焼用空気が導入さ
れる。
On the other hand, in the combustion melting furnace 4, the pyrolysis gas generated in the fluidized bed furnace 3 flows tangentially into the primary combustion area 4a, is burned while swirling, and the molten ash is collected on the wall and slag is collected. Be transformed into Next, the combustion gas that has passed through the throttle 4b collides with the slag separation portion bottom surface 4c, and collects fine ash to form molten slag. These slags are discharged from the outlet 4d. Note that combustion air is introduced into the primary combustion region 4a from a blower 4e.

【0030】廃熱ボイラ9に導入された溶融炉排ガス
は、メンブレンウォールからなる輻射伝熱面9aを通過
する際に、上下方向に多数本配設されている伝熱管内を
流れる水との間で熱交換が行われる。また、廃熱ボイラ
9には、飽和蒸気を適当な温度まで過熱する過熱器9
d,9c、燃焼ガス余熱を利用して廃熱ボイラ9の給水
を余熱するエコノマイザ9b等を構成する多数の配管が
備えられている。なお、9eは気水分離器である。
When the exhaust gas from the melting furnace introduced into the waste heat boiler 9 passes through the radiant heat transfer surface 9a composed of a membrane wall, the waste gas flows between the water flowing through a plurality of heat transfer tubes arranged vertically. The heat exchange takes place. The waste heat boiler 9 has a superheater 9 for heating the saturated steam to an appropriate temperature.
d, 9c, and a large number of pipes constituting an economizer 9b and the like for preheating the feed water of the waste heat boiler 9 using the residual heat of the combustion gas. In addition, 9e is a steam separator.

【0031】上記構成において、流動床炉3で発生した
熱分解ガスは上記燃焼溶融炉4を通過し、溶融炉排ガス
となって廃熱ボイラ9に流れる。廃熱ボイラ9は、もと
もとダストや腐食性ガスが含有されることを前提として
いるため、ダストを堆積しにくい構造にし、ガス流速を
下げて伝熱面の摩耗を避ける等の工夫が施され、水管に
ついては腐食に強い材質で構成されている。
In the above configuration, the pyrolysis gas generated in the fluidized-bed furnace 3 passes through the combustion-melting furnace 4, becomes the melting furnace exhaust gas, and flows to the waste heat boiler 9. Since the waste heat boiler 9 is originally assumed to contain dust and corrosive gas, it is made to have a structure in which dust is not easily deposited, and a device such as lowering the gas flow velocity to avoid abrasion of the heat transfer surface is provided. The water pipe is made of a material resistant to corrosion.

【0032】しかしながら廃棄物処理設備では、流動床
炉3に投入される廃棄物の質の変動が避けられず、塩素
系プラスチックが大量に投入されるとHCl等の腐食成
分を含む腐食性ガスが多量に発生し、廃熱ボイラ9まで
流れてしまうことになる。そして廃熱ボイラ9に到達し
た多量の腐食性ガスは、水管、伝熱面を激しく腐食させ
る。
However, in the waste treatment facility, the quality of the waste introduced into the fluidized bed furnace 3 is inevitably fluctuated. When a large amount of chlorine-based plastic is introduced, corrosive gas containing corrosive components such as HCl is generated. A large amount is generated and flows to the waste heat boiler 9. Then, the large amount of corrosive gas that has reached the waste heat boiler 9 severely corrodes the water pipe and the heat transfer surface.

【0033】この問題に対し、従来の熱分解ガス化溶融
システムでは廃熱ボイラ9の過熱蒸気温度を抑制しなが
ら運転を行い、腐食の進行速度を進めないようにすると
いう消極的な腐食対策が採られていた。
In order to solve this problem, the conventional pyrolysis gasification and melting system has a passive corrosion countermeasure that operates while suppressing the superheated steam temperature of the waste heat boiler 9 so as not to accelerate the progress of corrosion. Had been taken.

【0034】これに対し、本発明では、流動床炉3で発
生した腐食成分、具体的には流動層中での熱分解によっ
て発生したHCl,SOx等の腐食成分を含むガスを、
流動層中に供給した反応剤としての粒状CaO(生石
灰)と積極的に接触反応させて取り除くようにしてい
る。
[0034] In contrast, in the present invention, corrosion components generated in the fluidized bed furnace 3, HCl specifically generated by pyrolysis in a fluidized layer, a gas containing corrosive components such as SO x,
The particles are positively contact-reacted with granular CaO (quick lime) as a reactant supplied into the fluidized bed to remove them.

【0035】すなわち、流動層では流動化空気の噴射に
よって旋回運動が活発に行われており、その流動層に供
給された粒状CaOはその旋回運動によって流動層中に
分散されながら流動砂ととともに旋回運動する。なお、
粒状CaOを供給する方法としては単に流動層の上部に
塊状で投入するだけでよい。
That is, in the fluidized bed, the swirling motion is actively performed by the injection of fluidized air, and the granular CaO supplied to the fluidized bed is swirled with the fluidized sand while being dispersed in the fluidized bed by the swirling motion. Exercise. In addition,
As a method of supplying granular CaO, it is sufficient to simply supply the CaO in a lump to the upper part of the fluidized bed.

【0036】一方、流動層に投入された廃棄物、例えば
塩素系プラスチック廃棄物は、流動層の旋回運動によっ
て流動層中に取り込まれ、500〜600℃に維持された砂層
内で熱分解が行われる。熱分解によって発生するHCl
ガスは、流動層を上昇する過程でその砂層内を移動する
粒状CaOと接触反応し、腐食成分が粒状CaOに吸着
される。
On the other hand, the waste put into the fluidized bed, for example, chlorine plastic waste, is taken into the fluidized bed by the swirling motion of the fluidized bed and is thermally decomposed in the sand layer maintained at 500 to 600 ° C. Will be HCl generated by thermal decomposition
The gas contacts and reacts with the granular CaO moving in the sand layer in the process of ascending the fluidized bed, and the corrosive component is adsorbed on the granular CaO.

【0037】従って流動床炉3から排出される熱分解ガ
スについては腐食成分が除去されており、廃熱ボイラ9
に腐食性ガスが流れることを防止することができる。廃
熱ボイラ9において腐食の影響を考慮する必要がなけれ
ば、廃熱ボイラ9を高温,高圧ボイラ仕様とすることが
でき、結果として発電機10bの発電効率を高めること
ができる。
Therefore, the pyrolysis gas discharged from the fluidized-bed furnace 3 has no corrosive components removed, and the waste heat boiler 9
Can prevent the flow of corrosive gas. If it is not necessary to consider the influence of corrosion in the waste heat boiler 9, the waste heat boiler 9 can be set to a high-temperature, high-pressure boiler specification, and as a result, the power generation efficiency of the generator 10b can be increased.

【0038】図3は本発明に係る腐食成分の除去方法を
示すフローチャートである。
FIG. 3 is a flowchart showing a method for removing a corrosive component according to the present invention.

【0039】同図において、都市ごみとともに粒状Ca
Oを流動床炉3に供給する(ステップS1,S2)。供
給するCaOの粒度は1〜10mmの範囲が好ましい。粒
度が1mmを下回ると流動砂との分級が困難となり、ま
た、粒度が10mmを上回ると腐食ガスとの反応効率が低
下するからである。
Referring to FIG.
O is supplied to the fluidized bed furnace 3 (steps S1 and S2). The particle size of the supplied CaO is preferably in the range of 1 to 10 mm. If the particle size is less than 1 mm, it is difficult to classify with the fluidized sand, and if the particle size is more than 10 mm, the reaction efficiency with the corrosive gas decreases.

【0040】供給された粒状CaOは、砂層内で熱分解
された都市ごみから発生するHCl,SOxと接触反応
し、粒状CaO表面層に反応物が生成される(下記反応
式参照)。すなわち、粒状CaOを核としてその表面に
反応生成物が形成付着され、結果として粒状CaOに腐
食成分が吸着されたことになる。なお、粒状CaOは、
流動床炉3に供給される過程で若干粒径が減少した状態
で反応に供せされることになる。また、上記粒状CaO
における核の部分は未反応部分となる。
The supplied particulate CaO is contacted reacted HCl, and SO x generated from pyrolyzed municipal solid waste in the sand, the reactants are produced granulated CaO surface layer (see the following reaction formula). That is, a reaction product is formed and attached on the surface of the granular CaO as a core, and as a result, the corrosive component is adsorbed on the granular CaO. The granular CaO is
In the process of being supplied to the fluidized-bed furnace 3, the reaction is performed in a state where the particle diameter is slightly reduced. In addition, the above-mentioned granular CaO
Is a non-reacted portion.

【0041】CaO+2HCl→CaCl2+H2O CaO+SO2→CaSO3 反応済みの粒状CaOは、流動床炉3の炉床部がすり鉢
構造に形成されていること及び流動砂の旋回運動によ
り、アルミ等の不燃物、流動砂とともに不燃物排出口3
gから抜き出されスクリューコンベア5(図1参照)に
送られる(ステップS3)。
CaO + 2HCl → CaCl 2 + H 2 O CaO + SO 2 → CaSO 3 The reacted granular CaO is formed by the fact that the hearth of the fluidized-bed furnace 3 is formed in a mortar structure and the swirling motion of the fluidized sand causes the formation of aluminum or the like. Incombustibles outlet 3 with incombustibles and liquid sand
g and is sent to the screw conveyor 5 (see FIG. 1) (step S3).

【0042】流動砂、不燃物とともにスクリューコンベ
ア5で移送される反応済み粒状CaOは次いで第1分級
装置に供給される(ステップS4〜S6)。
The reacted granular CaO transported by the screw conveyor 5 together with the fluidized sand and incombustibles is then supplied to the first classifier (steps S4 to S6).

【0043】この第1分級装置では、アルミ等の10mm
を越える大きさの不燃物をふるい分け、系外に排出する
(ステップS7)。
In this first classifier, 10 mm of aluminum or the like is used.
Is sieved and discharged out of the system (step S7).

【0044】一方、10mm以下の不燃物すなわち、反応
済みの粒状CaOを含む不燃物についてはさらに分離装
置にかけられてその粒状CaOに吸着している反応生成
物が剥離除去される(ステップS8)。なお、分離装置
としてはトロンメル等を使用することができる。
On the other hand, the incombustible material of 10 mm or less, that is, the incombustible material containing the reacted granular CaO is further subjected to a separation device, and the reaction product adsorbed on the granular CaO is separated and removed (step S8). In addition, trommel etc. can be used as a separation device.

【0045】この分離装置から排出される不燃物には、
粒状CaO、流動砂としての珪砂、そして分離装置によ
って剥離された反応生成物(表面層の一部が削り落とさ
れた粒状CaOを含む)が含まれる。
The incombustibles discharged from this separation device include:
Includes granular CaO, silica sand as fluidized sand, and reaction products (including granular CaO whose part of the surface layer has been shaved off) separated by a separation device.

【0046】この不燃物はさらに第2分級装置に送られ
(ステップS9〜11)、粒径が0.5mm以上である珪
砂,粒状CaOと、粒径が0.5mm未満である粉砕Ca
O,反応生成物とに分別される。
The incombustibles are further sent to a second classifier (steps S9 to S11), where silica sand and granular CaO having a particle size of 0.5 mm or more and pulverized Ca having a particle size of less than 0.5 mm are used.
O and reaction products.

【0047】0.5mm未満の粉砕CaO,反応生成物
は、排ガス処理装置にて捕集された飛灰とともに、中間
(重金属類溶出防止)処理された後、系外に排出される
(ステップS12)。
The pulverized CaO of less than 0.5 mm and the reaction products are subjected to an intermediate treatment (prevention of elution of heavy metals) together with the fly ash collected by the exhaust gas treatment device, and then discharged out of the system (step S12). ).

【0048】一方、所定粒径、すなわち0.5mm以上1
0mm以下の粒状CaO及び珪砂は、コンベア3hを介し
て流動床炉3内に戻され、リサイクル使用される(ステ
ップS13)。このように、粒状CaOを流動床炉3に
戻すにあたっては、珪砂を流動床炉3に戻す既設のコン
ベア3hを利用することができるため、新たに専用の帰
還路を設ける必要がない。
On the other hand, a predetermined particle size, that is, 0.5 mm or more
Granular CaO and silica sand of 0 mm or less are returned into the fluidized-bed furnace 3 via the conveyor 3h, and are recycled (Step S13). As described above, when returning the granular CaO to the fluidized-bed furnace 3, the existing conveyor 3h for returning the silica sand to the fluidized-bed furnace 3 can be used, so that it is not necessary to newly provide a dedicated return path.

【0049】上記腐食成分の除去方法による脱塩効率を
表1に示す。
Table 1 shows the desalting efficiencies obtained by the above-described methods for removing corrosive components.

【0050】[0050]

【表1】 なお、本発明の反応剤は、上記実施形態に示した粒状C
aOが、コストを安くできる点で最も好ましいが、これ
に限らず、消石灰Ca(OH)2,炭酸カルシウムCa
CO3等のカルシウム化合物で構成することもできる。
[Table 1] The reactant of the present invention is the same as the particulate C shown in the above embodiment.
aO is most preferable because it can reduce the cost, but is not limited thereto, and slaked lime Ca (OH) 2 , calcium carbonate Ca
It can also be composed of a calcium compound such as CO 3 .

【0051】また、上記実施形態では腐食成分としてH
Clを例に取り説明したが、これに限らず、ゴム廃棄物
の燃焼によって発生するSOx等の腐食成分についても
除去することができる。
In the above embodiment, the corrosion component is H
Has been described taking the Cl as an example, not limited thereto, it can be removed for corrosive components of the SO x and the like generated by the combustion of the rubber waste.

【0052】[0052]

【発明の効果】以上説明したことから明らかなように、
請求項1の本発明によれば、例えばポリ塩化ビニルなど
の塩素系プラスチックが流動床炉で熱分解され塩化水素
等の腐食成分が発生した場合に、その腐食成分を流動床
炉に供給した粒状の反応剤表面層と反応させ、反応済み
の反応剤を流動床炉から排出することにより、腐食成分
を除去することができる。
As is apparent from the above description,
According to the first aspect of the present invention, for example, when a chlorine-based plastic such as polyvinyl chloride is thermally decomposed in a fluidized-bed furnace and a corrosive component such as hydrogen chloride is generated, the corrosive component is supplied to the fluidized-bed furnace. The corrosive component can be removed by reacting the reactant with the surface layer of the reactant and discharging the reacted reactant from the fluidized-bed furnace.

【0053】請求項2の本発明によれば、未反応の反応
剤を流動層に循環させてリサイクル使用することができ
る。
According to the second aspect of the present invention, the unreacted reactant can be circulated through the fluidized bed and recycled.

【0054】請求項3の本発明によれば、流動床炉から
排出した反応剤の表面層を削り落とすことにより、表面
に吸着されている腐食成分を反応剤から剥離することが
できる。腐食成分が剥離された反応剤は、所定の粒径を
満足する限り腐食成分との反応にリサイクル使用するこ
とができる。また、再生された反応剤を流動床炉に供給
させるにあたっては、流動床炉に流動砂を循環させる既
設のコンベアを利用することができるため、再生反応剤
を循環させる装置を新たに設ける必要がないという利点
がある。
According to the third aspect of the present invention, the corrosive component adsorbed on the surface can be separated from the reactant by shaving off the surface layer of the reactant discharged from the fluidized bed furnace. The reactant from which the corrosive component has been stripped can be recycled for reaction with the corrosive component as long as it satisfies a predetermined particle size. Further, when supplying the regenerated reactant to the fluidized bed furnace, an existing conveyor for circulating the fluidized sand in the fluidized bed furnace can be used, so it is necessary to newly provide a device for circulating the regenerated reactant. There is no advantage.

【0055】請求項4の本発明によれば、分級を行うこ
とによって上記所定の粒径を得ることができる。
According to the fourth aspect of the present invention, the predetermined particle size can be obtained by performing classification.

【0056】請求項5の本発明によれば、反応剤をカル
シウム化合物で構成し、塩化水素及び硫黄酸化物等の腐
食成分を吸着させることができる。
According to the fifth aspect of the present invention, the reactant is composed of a calcium compound, and can adsorb corrosive components such as hydrogen chloride and sulfur oxide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る腐食成分除去方法が適用される廃
棄物処理設備の構成を示す説明図である。
FIG. 1 is an explanatory view showing a configuration of a waste treatment facility to which a method for removing a corrosive component according to the present invention is applied.

【図2】図1に示す流動床炉、燃焼溶融炉及び廃熱ボイ
ラの拡大図である。
FIG. 2 is an enlarged view of a fluidized bed furnace, a combustion melting furnace, and a waste heat boiler shown in FIG.

【図3】本発明に係る腐食成分除去方法の説明するフロ
ーチャートである。
FIG. 3 is a flowchart illustrating a corrosion component removing method according to the present invention.

【符号の説明】[Explanation of symbols]

1 ごみピット 2 給塵機 3 流動床炉 3g 不燃物排出口 3h コンベア 4 燃焼溶融炉 9 廃熱ボイラ Reference Signs List 1 garbage pit 2 dust feeder 3 fluidized bed furnace 3 g incombustible discharge 3 h conveyor 4 combustion and melting furnace 9 waste heat boiler

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/30 ZAB F23J 1/00 A F23L 15/00 A B01D 53/34 134A 124Z F23J 1/00 B09B 3/00 ZAB F23L 15/00 Fターム(参考) 3K023 QA11 3K061 NA01 NA09 NA14 NA19 4D002 AA02 AA19 AA21 AC04 BA03 BA05 BA13 BA14 BA16 CA09 DA05 DA11 EA02 GA01 GB03 GB12 HA03 HA08 4D004 AA46 AC05 BA03 CA28 CA29 CB02 CB34 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23G 5/30 ZAB F23J 1/00 A F23L 15/00 A B01D 53/34 134A 124Z F23J 1/00 B09B 3 / 00 ZAB F23L 15/00 F term (reference) 3K023 QA11 3K061 NA01 NA09 NA14 NA19 4D002 AA02 AA19 AA21 AC04 BA03 BA05 BA13 BA14 BA16 CA09 DA05 DA11 EA02 GA01 GB03 GB12 HA03 HA08 4D004 AA46 AC05 BA02 CA28 CB29

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を流動床炉に供給し、その流動床
炉またはその後段の燃焼溶融炉で発生した排ガスの排熱
を熱回収装置で回収するとともに、前記流動床炉で発生
した熱分解ガスから金属を腐食させる成分である腐食成
分を除去する廃棄物処理設備における腐食成分除去方法
において、 前記腐食成分と反応する反応剤を前記流動床炉の流動層
に供給し、前記流動層で発生した熱分解ガス中の腐食成
分を、前記流動層の旋回運動を利用して前記反応剤表面
層と接触反応させ、反応済みの前記反応剤を前記流動床
炉から流動砂とともに排出することにより、前記熱分解
ガスから腐食成分を除去することを特徴とする廃棄物処
理設備における腐食成分除去方法。
A waste is supplied to a fluidized-bed furnace, and exhaust heat of exhaust gas generated in the fluidized-bed furnace or a subsequent combustion-melting furnace is recovered by a heat recovery device, and heat generated in the fluidized-bed furnace is recovered. In a method for removing a corrosive component in a waste treatment facility for removing a corrosive component that is a component that corrodes a metal from a cracked gas, a reactant reacting with the corrosive component is supplied to a fluidized bed of the fluidized-bed furnace, The corrosive component in the generated pyrolysis gas is brought into contact with the reactant surface layer using the swirling motion of the fluidized bed, and the reacted reactant is discharged from the fluidized bed furnace together with the fluidized sand from the fluidized bed furnace. And removing a corrosive component from the pyrolysis gas.
【請求項2】 前記反応済みの反応剤から前記腐食成分
を除去した後、前記流動層に循環供給させる請求項1記
載の廃棄物処理設備における腐食成分除去方法。
2. The method for removing corrosive components in a waste treatment facility according to claim 1, wherein the corrosive components are removed from the reacted reactant and then circulated and supplied to the fluidized bed.
【請求項3】 前記反応剤表面層を削り落とすことによ
り前記腐食成分を除去し、その腐食成分が除去されて再
生された前記反応剤のうち所定粒径のものを、前記排出
した流動砂とともに前記流動層に循環供給させる請求項
1または2に記載の廃棄物処理設備における腐食成分除
去方法。
3. The corrosive component is removed by scraping off the reactant surface layer, and the reactant regenerated by removing the corrosive component and having a predetermined particle size is removed together with the discharged fluidized sand. 3. The method for removing corrosive components in a waste treatment facility according to claim 1, wherein the corrosive component is circulated and supplied to the fluidized bed.
【請求項4】 前記腐食成分を除去した後、分級を行う
ことによって前記所定粒径のものを選別する請求項3記
載の廃棄物処理設備における腐食成分除去方法。
4. The method for removing corrosive components in a waste treatment facility according to claim 3, wherein after the corrosive components are removed, classification is performed by performing classification.
【請求項5】 前記反応剤がカルシウム化合物からな
り、前記腐食成分が塩化水素及び硫黄酸化物を含む請求
項1〜4のいずれかに記載の廃棄物処理設備における腐
食成分除去方法。
5. The method for removing corrosive components in a waste treatment facility according to claim 1, wherein said reactant comprises a calcium compound, and said corrosive components include hydrogen chloride and sulfur oxides.
JP2000026310A 2000-02-03 2000-02-03 Corrosion component removing method of waste treatment equipment Pending JP2001212429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026310A JP2001212429A (en) 2000-02-03 2000-02-03 Corrosion component removing method of waste treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026310A JP2001212429A (en) 2000-02-03 2000-02-03 Corrosion component removing method of waste treatment equipment

Publications (1)

Publication Number Publication Date
JP2001212429A true JP2001212429A (en) 2001-08-07

Family

ID=18552062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026310A Pending JP2001212429A (en) 2000-02-03 2000-02-03 Corrosion component removing method of waste treatment equipment

Country Status (1)

Country Link
JP (1) JP2001212429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028241A (en) * 2003-07-09 2005-02-03 Inax Corp Exhaust gas treatment apparatus, method for recovering calcium fluoride and method for recovering fluorine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028241A (en) * 2003-07-09 2005-02-03 Inax Corp Exhaust gas treatment apparatus, method for recovering calcium fluoride and method for recovering fluorine
JP4543629B2 (en) * 2003-07-09 2010-09-15 株式会社Inax Exhaust gas treatment apparatus, calcium fluoride recovery method, and fluorine recovery method

Similar Documents

Publication Publication Date Title
JP3153091B2 (en) Waste treatment method and gasification and melting and combustion equipment
EP0767343A2 (en) Heat recovery system and power generation system
JPH11148625A (en) Device and method of recovering combustion heat of waste
JPH11294726A (en) Waste treatment method
JP2001212429A (en) Corrosion component removing method of waste treatment equipment
JP2769964B2 (en) Incineration method and apparatus for chlorine-containing waste
JP3091197B1 (en) Method and apparatus for reducing dioxins in garbage gasification and melting equipment with char separation method
JP3270457B1 (en) Waste treatment method and gasification and melting equipment
JP3757032B2 (en) Waste pyrolysis melting combustion equipment
JP3057349B2 (en) Two-stage fluidized-bed incinerator with fine powder desalting agent supply function
JP2004263952A (en) Heat recovering method and device from exhaust gas
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP3046309B1 (en) Method and apparatus for reducing dioxins in a garbage gasifier for char separation
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
JP4265975B2 (en) Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus
JP3270456B2 (en) Waste treatment method and gasification and melting equipment
JP3270455B2 (en) Waste treatment method and gasification and melting equipment
JP2002130628A (en) Thermal gas decomposition gas rectifying apparatus for thermal decomposition/melting combustion apparatus
JPH11267456A (en) Method and device for removing and decomposing dioxins by unburned ash
JPH11201425A (en) Thermal decomposition melting combustion device of waste
JPH10323647A (en) Apparatus for thermally decomposing and gasifying and melting waste and method for thermally decomposing and gasifying and melting treatment
JP4028934B2 (en) Waste treatment method and treatment apparatus
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JPH0960847A (en) Method and device for generating superheated steam by waste incineration
JP3270452B2 (en) Waste treatment method and gasification and melting equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815