JP2001212086A - Tomography and tomograph - Google Patents

Tomography and tomograph

Info

Publication number
JP2001212086A
JP2001212086A JP2000028511A JP2000028511A JP2001212086A JP 2001212086 A JP2001212086 A JP 2001212086A JP 2000028511 A JP2000028511 A JP 2000028511A JP 2000028511 A JP2000028511 A JP 2000028511A JP 2001212086 A JP2001212086 A JP 2001212086A
Authority
JP
Japan
Prior art keywords
thickness
tomographic image
refractive index
confocal
tomography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000028511A
Other languages
Japanese (ja)
Other versions
JP3660185B2 (en
Inventor
Masamitsu Haruna
正光 春名
Masahito Omi
雅人 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000028511A priority Critical patent/JP3660185B2/en
Publication of JP2001212086A publication Critical patent/JP2001212086A/en
Application granted granted Critical
Publication of JP3660185B2 publication Critical patent/JP3660185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tomography and tomograph that can measure the thickness of affected parts easily and accurately by using short wave infrared light, or an invisible ray as a laser source of a confocal microscope. SOLUTION: To measure refractivity and thickness of transparent objects using interference method of low coherence light and confocal method is fundamental. The new tomography is made not only by confocal method but by OCT method. The tomograms are made after calculating the actual thickness by using formulas of a relation among a distance of interfaces, refractivity, and thickness obtained by two tomography. The distance of interfaces by OCT method is obtained by multiplying refractivity by thickness, and the one by confocal method is obtained by thickness divided by refractivity. As a result, the actual thickness is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低コヒーレンス光
干渉と共焦点光学系を用いる測定物体の断層像形成方法
とそのための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a tomographic image of a measurement object using low coherence optical interference and a confocal optical system, and an apparatus therefor.

【0002】[0002]

【従来の技術】生体診断において病巣の厚さを正しく診
断することは重要なことである。生体組織の断層像を光
学的に得る有力な方法は、オプティカル・コヒーレンス
・トモグラフィ(OCT)と呼ばれ、網膜下組織の診断
に使用されている。MITのD.Huang et a
l,Science Vol.254,p.1178
(1991)が最初の論文で、上記論文は以降の論文・
特許に多く引用されている。最近ではG.J.Tear
ney et al,Science Vol.27
6,p.2037(1997)がある。
2. Description of the Related Art It is important to correctly diagnose the thickness of a lesion in a biological diagnosis. A powerful method for optically obtaining a tomographic image of a living tissue is called optical coherence tomography (OCT) and is used for diagnosis of subretinal tissue. D. of MIT Huang et a
1, Science Vol. 254, p. 1178
(1991) is the first paper, and the above paper is
It is often cited in patents. Recently, G. J. Tear
ney et al, Science Vol. 27
6, p. 2037 (1997).

【0003】OCTは干渉長の短い低コヒーレンス光を
光源とし、干渉を利用して断層像を得るものである。こ
の方法の問題点は、厚さが厚さ×屈折率として表現さ
れ、真の厚さが得られない。
[0003] In OCT, a low-coherence light having a short interference length is used as a light source, and a tomographic image is obtained using interference. The problem with this method is that the thickness is expressed as thickness × refractive index, and a true thickness cannot be obtained.

【0004】共焦点方式でトモグラフィを得る方法は今
まで発表されていない。
[0004] A method for obtaining tomography by the confocal method has not been published yet.

【0005】本願発明者は、測定物体の屈折率と厚さの
同時測定の研究開発を行ってきた。その内容は、(1)
特開平9−218016号公報、(2)M.Ohmi
etal,Opt.Rev.vol.4,p.507
(1997)、(3)M.Haruna et al,
Opt.Lett.vol.23,p.966(199
8)等に述べられている。
The present inventor has been conducting research and development on simultaneous measurement of the refractive index and the thickness of a measurement object. The contents are (1)
JP-A-9-218016, (2) M.P. Ohmi
et al, Opt. Rev .. vol. 4, p. 507
(1997), (3) M.P. Haruna et al,
Opt. Lett. vol. 23, p. 966 (199
8) etc.

【0006】上記したように、低コヒーレンス光を用
い、共焦点測定と低コヒーレンス光干渉測定とを用い、
測定物体の屈折率と厚さを同時に測定している。
As described above, using low coherence light, using confocal measurement and low coherence light interference measurement,
The refractive index and thickness of the measurement object are measured simultaneously.

【0007】網膜組織のみならず、胃潰瘍、動脈硬化等
において、患部の厚さを簡便かつ正確に測定する方法が
要望されている。
[0007] There is a need for a method for simply and accurately measuring the thickness of an affected area not only in retinal tissue but also in gastric ulcer, arteriosclerosis and the like.

【0008】[0008]

【発明が解決しようとする課題】上記したように、これ
までは、低コヒーレンス光干渉を用いた光コヒーレンス
トモグラフィ(OCT)を既存の眼底カメラに組み込ん
だ形の装置が考案・実用化されている。
As described above, an apparatus in which optical coherence tomography (OCT) using low coherence optical interference is incorporated in an existing fundus camera has been devised and put into practical use. I have.

【0009】しかしながら、この場合には、光学的厚さ
(屈折率×厚さ)で網膜の断層像が表示されるので、黄
斑部を中心とする網膜の歪みや剥離を正確に測定するこ
とができない。
However, in this case, since a tomographic image of the retina is displayed by an optical thickness (refractive index × thickness), it is possible to accurately measure distortion and detachment of the retina centering on the macula. Can not.

【0010】本発明は、上記問題点を除去し、共焦点光
学系と低コヒーレンス光干渉計を組み合わせ、光源に近
赤外光を用いて、患部の厚さを簡便かつ正確に測定する
ことができる断層像形成方法及びそのための装置を提供
することを目的とする。
The present invention eliminates the above-mentioned problems, combines a confocal optical system and a low-coherence optical interferometer, and can easily and accurately measure the thickness of an affected area using near-infrared light as a light source. It is an object of the present invention to provide a tomographic image forming method and a device therefor.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕測定対象物の屈折率と厚さの同時測定が可能な断
層像形成方法において、被測定物体を断層像を入手した
いz方向に走査し、共焦点光学系を用いてz方向の断層
像を撮り、低コヒーレンス光干渉を用いてz方向の断層
像を撮り、前記二つの断層像に基づいて、演算処理を施
して、幾何学的サイズ(t)で屈折率分布〔n(x,
z)〕を表示することを特徴とする。
According to the present invention, there is provided a tomographic image forming method capable of simultaneously measuring a refractive index and a thickness of an object to be measured. Scan in the z-direction to obtain an image, take a tomographic image in the z-direction using a confocal optical system, take a tomographic image in the z-direction using low coherence optical interference, and calculate based on the two tomographic images. After processing, the refractive index distribution [n (x,
z)] is displayed.

【0012】〔2〕測定対象物の屈折率と厚さの同時測
定が可能な断層像形成装置において、被測定物体を断層
像を入手したいz方向に走査し、共焦点光学系を用いて
z方向の断層像を得る手段と、低コヒーレンス光干渉を
用いた光コヒーレンストモグラフィによりz方向の断層
像を得る手段と、前記二つの断層像に基づいて、演算処
理を施し、幾何学的サイズ(t)で屈折率分布〔n
(x,z)〕を表示する手段とを具備する。
[2] In a tomographic image forming apparatus capable of simultaneously measuring the refractive index and the thickness of a measurement object, the object to be measured is scanned in the z direction in which a tomographic image is desired to be obtained, and z is scanned using a confocal optical system. Means for obtaining a tomographic image in the direction, means for obtaining a tomographic image in the z direction by optical coherence tomography using low coherence optical interference, and arithmetic processing based on the two tomographic images to obtain a geometric size ( t), the refractive index distribution [n
(X, z)].

【0013】〔3〕測定対象物の屈折率と厚さの同時測
定が可能な断層像形成装置において、基板の上に厚さ、
屈折率が異なるスライドガラス、ニオブ酸リチウム板、
溶融石英板を重ねたサンプルを用いることを特徴とす
る。
[3] In a tomographic image forming apparatus capable of simultaneously measuring the refractive index and the thickness of an object to be measured, a thickness,
Slide glass with different refractive index, lithium niobate plate,
It is characterized by using a sample in which fused quartz plates are stacked.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明の実施例を示す測定光学系の
模式図、図6は本発明の実施例を示す光コヒーレンスト
モグラフィ(OCT)における照射光のコヒーレンス長
測定結果(光ビーム径1mm×20対物レンズを使用し
た場合:レンズ開口数0.05)を示す図、図7は本発
明の実施例を示す共焦点イメージングにおける光反射特
性(光ビーム径6mmで×20対物レンズを使用した場
合:レンズ開口数0.3)を示す図である。
FIG. 1 is a schematic view of a measuring optical system showing an embodiment of the present invention, and FIG. 6 is a result of measuring a coherence length of irradiation light (optical beam diameter 1 mm) in optical coherence tomography (OCT) showing an embodiment of the present invention. FIG. 7 shows a light reflection characteristic (a light beam diameter of 6 mm and a × 20 objective lens) in confocal imaging showing an embodiment of the present invention. (Case: lens numerical aperture 0.3).

【0016】図1において、1はSLD(スーパールミ
ネッセントダイオード)、2はLD(レーザーダイオー
ド)、3はリレーレンズ(×20)、4はアパーチャ、
5はリレーレンズ、6は反射ミラー、7はハーフミラ
ー、8はビームスプリッタ、9は参照光ミラー、10は
集光レンズ(対物レンズ)(×20)、11は測定サン
プル、12はハーフミラー、13はレンズ(×10)、
14は第1の光検出器、15は増幅器、16は第1の帯
域通過フィルタ(fd =2v/λ)、17はA/Dコン
バータ、18は光チョッパー、19はリレーレンズ(×
20)、20は単一モード光ファイバ、21はレンズ
(×10)、22は第2の光検出器、23は増幅器、2
4は第2の帯域通過フィルタ(fC )、25はA/Dコ
ンバータ、26はステージコントローラ、27はPC
(パーソナル・コンピュータ)である。
In FIG. 1, 1 is an SLD (super luminescent diode), 2 is an LD (laser diode), 3 is a relay lens (× 20), 4 is an aperture,
5 is a relay lens, 6 is a reflection mirror, 7 is a half mirror, 8 is a beam splitter, 9 is a reference light mirror, 10 is a condenser lens (objective lens) (× 20), 11 is a measurement sample, 12 is a half mirror, 13 is a lens (× 10),
14 is a first photodetector, 15 is an amplifier, 16 is a first band-pass filter (f d = 2 v / λ), 17 is an A / D converter, 18 is an optical chopper, 19 is a relay lens (×
20) and 20 are single mode optical fibers, 21 is a lens (× 10), 22 is a second photodetector, 23 is an amplifier,
4 is a second band pass filter (f C ), 25 is an A / D converter, 26 is a stage controller, and 27 is a PC
(Personal computer).

【0017】図1に示すように、光源として低コヒーレ
ンス光のスーパールミネッセントダイオード(SLD)
1の他に、波長0.8μmのレーザーダイオード2を用
いた。第1の光検出器14と第2の光検出器22の2つ
を設置することと合わせて、干渉光測定と共焦点測定と
を分離した。また、測定サンプル11が縦方向(z方
向、断層像方向)に走査できるようにしている。
As shown in FIG. 1, a super-luminescent diode (SLD) of low coherence light is used as a light source.
In addition to 1, a laser diode 2 having a wavelength of 0.8 μm was used. The interference light measurement and the confocal measurement were separated together with the installation of the two, the first light detector 14 and the second light detector 22. The measurement sample 11 can be scanned in the vertical direction (z direction, tomographic image direction).

【0018】また、測定サンプル11は、図2に示すよ
うに、基板31上にスライドガラス(厚さt3 =500
μm、屈折率n3 =1.51)32、ニオブ酸リチウム
板(厚さt2 =125μm、屈折率n2 =2.24)3
3、溶融石英板(厚さt1 =500μm、屈折率n1
1.46)34を順次ずらして重ね合わせた。すなわ
ち、基板31上にスライドガラス32/ニオブ酸リチウ
ム(Z板LiNbO3 )板33/溶融石英板34を段差
をつけて重ね合わせたもので、領域I〜IVの4つの領域
に分けられる。まず、波長850nmのSLD1を光源
とする干渉計で、図3に示すように、n×tイメージを
得た。ここで、図中の丸付き数字は反射面を示す。
As shown in FIG. 2, a measurement sample 11 is placed on a glass slide (thickness t 3 = 500) on a substrate 31.
μm, refractive index n 3 = 1.51) 32, lithium niobate plate (thickness t 2 = 125 μm, refractive index n 2 = 2.24) 3
3. Fused quartz plate (thickness t 1 = 500 μm, refractive index n 1 =
1.46) 34 were superimposed one after another with a shift. That is, the slide glass 32 / lithium niobate (Z-plate LiNbO 3 ) plate 33 / fused quartz plate 34 are superposed on the substrate 31 with a step, and are divided into four regions I to IV. First, as shown in FIG. 3, an nxt image was obtained with an interferometer using an SLD1 having a wavelength of 850 nm as a light source. Here, the circled numbers in the figure indicate the reflecting surfaces.

【0019】光コヒーレンストモグラフィ(OCT)は
従来の方法と同一であり、図3に示すように、その境界
面間距離はn×tで表示される。ここで、本願発明者の
先行技術である特開平9−218016号でのz1 =z
2 は=Δzで、sinθは=NA=ζである。
Optical coherence tomography (OCT) is the same as the conventional method. As shown in FIG. 3, the distance between the boundary surfaces is represented by n × t. Here, z 1 = z in JP 9-218016 is prior art of the present inventor
2 is = Δz, and sinθ is = NA = ζ.

【0020】ここで、ζは0.1〜0.2と小さく、ζ
2 ≪1として良い。
Here, ζ is as small as 0.1 to 0.2,
2 ≪1 is good.

【0021】従って、Δz=t/nとなる。Therefore, Δz = t / n.

【0022】次に、波長811nmのLD2からのLD
光を測定サンプル11にレンズ(×20)10で集光
し、反射光を共焦点光学系で検出した。ここで、測定サ
ンプル11をx方向に一定間隔づつシフトしながら、z
方向に走査して、図4に示すように、Δzイメージが得
られる。
Next, the LD from the LD 2 having a wavelength of 811 nm
The light was condensed on the measurement sample 11 by the lens (× 20) 10 and the reflected light was detected by the confocal optical system. Here, while shifting the measurement sample 11 in the x-direction at regular intervals, z
Scanning in the direction yields a Δz image, as shown in FIG.

【0023】つまり、境界面からの反射光で共焦点トモ
グラフィを得ている。ここでサンプル移動距離Δzは、
集光レンズの開口数NA=ζとすると、 Δz=t×{(1−ζ2 )/(n2 −ζ2 )}1/2 である。
That is, the confocal tomography is obtained by the reflected light from the boundary surface. Here, the sample movement distance Δz is
If the numerical aperture NA of the condenser lens is ζ, then Δz = t × {(1−ζ 2 ) / (n 2 −ζ 2 )} 1/2 .

【0024】図3および図4のイメージで各々の反射面
の位置が特定できているので、前述の簡単な演算処理を
行って、図5に示すような、反射型光トモグラフィが得
られる。
Since the positions of the respective reflecting surfaces can be specified by the images shown in FIGS. 3 and 4, the above-described simple arithmetic processing is performed to obtain a reflection type optical tomography as shown in FIG.

【0025】これは幾何学的サイズのイメージングであ
り、このイメージ内に分布する各屈折率の大きさはグレ
ーコード41,42で表示されている。なお、スライド
ガラス32やLiNbO3 板33の上端が荒れて傾斜し
ているため、この部分で反射光が欠落する。このため
に、図5のイメージの当該箇所に黒い帯43が現れてい
る。
This is a geometric size imaging, and the magnitude of each refractive index distributed in this image is indicated by gray codes 41 and 42. Since the upper ends of the slide glass 32 and the LiNbO 3 plate 33 are rough and inclined, reflected light is lost at this portion. For this reason, a black band 43 appears at the corresponding location in the image of FIG.

【0026】色調の濃淡は屈折率を同時に表示したもの
である。“領域”は重ね合わせた測定サンプル11の組
み合わせを選んだ時を示しており、全ての測定サンプル
11の断層像は領域IVである。
The shade of the color tone indicates the refractive index at the same time. “Region” indicates a time when a combination of superimposed measurement samples 11 is selected, and tomographic images of all the measurement samples 11 are regions IV.

【0027】上記したように、低コヒーレンス光干渉法
と共焦点法とを用いて、透明物体の屈折率、厚さの測定
をベースにしている。特に、新たに共焦点法でトモグラ
フィを作成するが、従来のOCT法でもトモグラフィを
作る。二つのトモグラフィから得られる境界面間距離と
屈折率、厚さの関係式より、真の厚さを算出し、断層像
とする。即ち、OCT法からの境界面間距離は(屈折
率)×(厚さ)であり、一方、共焦点法のそれは(厚
さ)/(屈折率)で示される。これより、真の厚さが求
められる。
As described above, the measurement of the refractive index and the thickness of a transparent object is based on the low coherence optical interferometry and the confocal method. In particular, tomography is newly created by the confocal method, but tomography is also created by the conventional OCT method. The true thickness is calculated from the relational expression between the boundary surface, the refractive index, and the thickness obtained from the two tomographs, and is set as a tomographic image. That is, the distance between the boundary surfaces from the OCT method is (refractive index) × (thickness), while that of the confocal method is represented by (thickness) / (refractive index). From this, the true thickness is required.

【0028】例えば、基板31の上に厚さ、屈折率が異
なるスライド(カバー)ガラス32、ニオブ酸リチウム
板33、溶融石英板34を重ねた測定サンプル11で実
証している。生体診断での患部や石灰化した部位の診断
に有効な方法である。
For example, this is demonstrated by a measurement sample 11 in which a slide (cover) glass 32 having a different thickness and a different refractive index, a lithium niobate plate 33, and a fused silica plate 34 are stacked on a substrate 31. This is an effective method for diagnosing affected parts and calcified parts in biological diagnosis.

【0029】光学分野においても、インプロセスで加工
品の検査に適用できる。
In the optical field, the present invention can be applied to the inspection of a processed product in an in-process.

【0030】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、それらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the spirit of the present invention, and they are not excluded from the scope of the present invention.

【0031】[0031]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0032】(A)共焦点顕微鏡のレーザ光源は近赤外
光、すなわち不可視光を用い、患部の厚さを簡便かつ正
確に測定することができる。
(A) The laser light source of the confocal microscope uses near-infrared light, that is, invisible light, so that the thickness of the affected part can be measured simply and accurately.

【0033】例えば、早期癌の浸透深さの同定や石灰化
した部位の臨床診断に有効な方法である。
For example, it is an effective method for identifying the penetration depth of early cancer and for clinical diagnosis of a calcified site.

【0034】(B)本発明の装置によれば、OCTと共
焦点レーザ走査顕微鏡を組み合わせたものであり、共焦
点顕微鏡のレーザ光源は近赤外光、すなわち不可視光で
あるので、眼科装置に用いる場合には、瞳孔が開いたま
まで(散瞳)、黄斑部を含む網膜面の像を正確に捕らえ
ることができる。この共焦点顕微鏡像に従って、黄斑部
を横切るOCT像(断層像)を撮影することができる。
(B) According to the apparatus of the present invention, the OCT and the confocal laser scanning microscope are combined, and the laser light source of the confocal microscope is near-infrared light, that is, invisible light. When used, the image of the retinal surface including the macula can be accurately captured with the pupil open (mydriasis). According to the confocal microscope image, an OCT image (tomographic image) crossing the macula can be taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す測定光学系の構成図であ
る。
FIG. 1 is a configuration diagram of a measuring optical system showing an embodiment of the present invention.

【図2】本発明の実施例を示す測定サンプルの構造と照
射光ビームの走査と移動を示す図である。
FIG. 2 is a diagram illustrating a structure of a measurement sample and scanning and movement of an irradiation light beam according to an embodiment of the present invention.

【図3】本発明の実施例を示す光コヒーレンストモグラ
フィ(OCT)(z方向のサイズはt×n)を示す図で
ある。
FIG. 3 is a diagram showing optical coherence tomography (OCT) (the size in the z direction is t × n) showing an embodiment of the present invention.

【図4】本発明の実施例を示す共焦点トモグラフィ(z
方向のサイズはt/n)を示す図である。
FIG. 4 shows confocal tomography (z
It is a figure which shows the size of a direction (t / n).

【図5】本発明の実施例を示す幾何学的サイズでの断面
における屈折率分布の表示を示す図である。
FIG. 5 is a diagram showing a display of a refractive index distribution in a cross section at a geometric size showing an embodiment of the present invention.

【図6】本発明の実施例を示す光コヒーレンストモグラ
フィ(OCT)における照射光のコヒーレンス長測定結
果(光ビーム径1mm×20対物レンズを使用した場
合:レンズ開口数0.05)を示す図である。
FIG. 6 is a diagram showing a measurement result of a coherence length of irradiation light in an optical coherence tomography (OCT) showing an embodiment of the present invention (when a light beam diameter of 1 mm × 20 objective lens is used: a lens numerical aperture of 0.05). It is.

【図7】本発明の実施例を示す共焦点イメージングにお
ける光反射特性(光ビーム径6mmで×20対物レンズ
を使用した場合:レンズ開口数0.3)を示す図であ
る。
FIG. 7 is a diagram showing light reflection characteristics (in the case of using a × 20 objective lens with a light beam diameter of 6 mm: lens numerical aperture: 0.3) in confocal imaging showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1 SLD(スーパールミネッセントダイオード) 2 LD(レーザーダイオード) 3,19 リレーレンズ(×20) 4 アパーチャ 5 リレーレンズ 6 反射ミラー 7,12 ハーフミラー 8 ビームスプリッタ 9 参照光ミラー 10 集光レンズ(対物レンズ) 11 測定サンプル 13,21 レンズ(×10) 14 第1の光検出器 15,23 増幅器 16 第1の帯域通過フィルタ(fd =2v/λ) 17,25 A/Dコンバータ 18 光チョッパー 20 単一モード光ファイバ 22 第2の光検出器 24 第2の帯域通過フィルタ(fC ) 26 ステージコントローラ 27 PC(パーソナル・コンピュータ) 31 基板 32 スライドガラス 33 ニオブ酸リチウム板 34 溶融石英板 41,42 グレーコード 43 黒い帯Reference Signs List 1 SLD (super luminescent diode) 2 LD (laser diode) 3,19 relay lens (× 20) 4 aperture 5 relay lens 6 reflection mirror 7,12 half mirror 8 beam splitter 9 reference light mirror 10 condensing lens (object Lens) 11 Measurement sample 13, 21 Lens (× 10) 14 First photodetector 15, 23 Amplifier 16 First band-pass filter (f d = 2 v / λ) 17, 25 A / D converter 18 Optical chopper 20 Single mode optical fiber 22 Second photodetector 24 Second bandpass filter (f C ) 26 Stage controller 27 PC (personal computer) 31 Substrate 32 Slide glass 33 Lithium niobate plate 34 Fused quartz plate 41, 42 Gray code 43 black belt

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物の屈折率と厚さの同時測定が
可能な断層像形成方法において、(a)被測定物体を断
層像を入手したいz方向に走査し、共焦点光学系を用い
てz方向の断層像を撮り、(b)低コヒーレンス光干渉
を用いてz方向の断層像を撮り、(c)前記二つの断層
像に基づいて、演算処理を施して、幾何学的サイズ
(t)で屈折率分布〔n(x,z)〕を表示することを
特徴とする断層像形成方法。
1. A tomographic image forming method capable of simultaneously measuring a refractive index and a thickness of an object to be measured. (A) An object to be measured is scanned in a z-direction in which a tomographic image is to be obtained, and a confocal optical system is used. (B) take a tomographic image in the z direction using low coherence light interference, and (c) perform arithmetic processing based on the two tomographic images to obtain a geometric size ( A method for forming a tomographic image, characterized by displaying a refractive index distribution [n (x, z)] at t).
【請求項2】 測定対象物の屈折率と厚さの同時測定が
可能な断層像形成装置において、(a)被測定物体を断
層像を入手したいz方向に走査し、共焦点光学系を用い
てz方向の断層像を得る手段と、(b)低コヒーレンス
光干渉を用いた光コヒーレンストモグラフィにより、z
方向の断層像を得る手段と、(c)前記二つの断層像に
基づいて、演算処理を施し、幾何学的サイズ(t)で屈
折率分布〔n(x,z)〕を表示する手段とを具備する
ことを特徴とする断層像形成装置。
2. A tomographic image forming apparatus capable of simultaneously measuring a refractive index and a thickness of an object to be measured. (A) Scanning an object to be measured in a z-direction in which a tomographic image is desired to be obtained, and using a confocal optical system. (B) optical coherence tomography using low coherence optical interference
Means for obtaining a tomographic image in the direction; and (c) means for performing arithmetic processing based on the two tomographic images and displaying a refractive index distribution [n (x, z)] in a geometric size (t). A tomographic image forming apparatus comprising:
【請求項3】 測定対象物の屈折率と厚さの同時測定が
可能な断層像形成装置において、基板の上に厚さ、屈折
率が異なるスライドガラス、ニオブ酸リチウム板、溶融
石英板を重ねたサンプルを用いることを特徴とする断層
像形成装置。
3. A tomographic image forming apparatus capable of simultaneously measuring a refractive index and a thickness of an object to be measured, wherein a slide glass, a lithium niobate plate, and a fused quartz plate having different thicknesses and refractive indexes are stacked on a substrate. Tomographic image forming apparatus, characterized in that a tomographic sample is used.
JP2000028511A 2000-02-07 2000-02-07 Tomographic image forming method and apparatus therefor Expired - Fee Related JP3660185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000028511A JP3660185B2 (en) 2000-02-07 2000-02-07 Tomographic image forming method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000028511A JP3660185B2 (en) 2000-02-07 2000-02-07 Tomographic image forming method and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2001212086A true JP2001212086A (en) 2001-08-07
JP3660185B2 JP3660185B2 (en) 2005-06-15

Family

ID=18553903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000028511A Expired - Fee Related JP3660185B2 (en) 2000-02-07 2000-02-07 Tomographic image forming method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3660185B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205213A (en) * 2004-01-20 2005-08-04 Siemens Ag Method and device for skin test of subject
JP2006010693A (en) * 2004-06-22 2006-01-12 Polytec Gmbh Apparatus for optically measuring object, and method for measuring using the same
JP2008191022A (en) * 2007-02-06 2008-08-21 Hoya Corp Oct system
JP2008237237A (en) * 2007-03-23 2008-10-09 Topcon Corp Fundus oculi observing system, ophthalmologic image display system, and program
JP2008541018A (en) * 2005-04-28 2008-11-20 ザ ジェネラル ホスピタル コーポレイション System, method and software apparatus for evaluating information related to anatomical structures by optical interferometry
JP2009509689A (en) * 2005-09-29 2009-03-12 ザ ジェネラル ホスピタル コーポレイション Optical imaging method and apparatus by spectral encoding
JP2011027647A (en) * 2009-07-28 2011-02-10 Optical Comb Inc Measurement device and measurement method
US20110205547A1 (en) * 2008-08-20 2011-08-25 Hamamatsu Photonics K.K. Observation device, and observation method
JP2012063330A (en) * 2010-09-17 2012-03-29 Kansai Paint Co Ltd Method for non-contact and non-destructive evaluation of multilayer coating film, and device using the same
US8369669B2 (en) 2004-07-02 2013-02-05 The General Hospital Corporation Imaging system and related techniques
US8416818B2 (en) 2003-06-06 2013-04-09 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US8559012B2 (en) 2003-01-24 2013-10-15 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
WO2014091993A1 (en) * 2012-12-13 2014-06-19 株式会社トプコン Optical property measurement device and optical property measurement method
US8804126B2 (en) 2010-03-05 2014-08-12 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US8965487B2 (en) 2004-08-24 2015-02-24 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
JP2015081874A (en) * 2013-10-24 2015-04-27 エムテックスマツムラ株式会社 Method for detecting application area and application amount of transparent resin applied on metallic gloss surface, and optical coherence tomography measurement system for the method
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9087368B2 (en) 2006-01-19 2015-07-21 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9375158B2 (en) 2007-07-31 2016-06-28 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
JP2018132465A (en) * 2017-02-17 2018-08-23 株式会社Screenホールディングス Imaging method and imaging device
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122883A1 (en) * 2015-01-26 2016-08-04 Thorlabs, Inc. Microscopy system with auto-focus adjustment by low-coherence interferometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635946B2 (en) * 1990-11-06 1994-05-11 直弘 丹野 Light wave reflection image measuring device
JPH09218016A (en) * 1995-12-08 1997-08-19 Kagaku Gijutsu Shinko Jigyodan Simultaneous measuring method of refractive index and thickness of subject by light interference method and apparatus therefor
JPH10153550A (en) * 1996-11-22 1998-06-09 Kao Corp Apparatus and method for measurement of layered fine structure by low-interference light interference measuring method
JPH11132949A (en) * 1997-10-31 1999-05-21 Nikon Corp Optical inspection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635946B2 (en) * 1990-11-06 1994-05-11 直弘 丹野 Light wave reflection image measuring device
JPH09218016A (en) * 1995-12-08 1997-08-19 Kagaku Gijutsu Shinko Jigyodan Simultaneous measuring method of refractive index and thickness of subject by light interference method and apparatus therefor
JPH10153550A (en) * 1996-11-22 1998-06-09 Kao Corp Apparatus and method for measurement of layered fine structure by low-interference light interference measuring method
JPH11132949A (en) * 1997-10-31 1999-05-21 Nikon Corp Optical inspection apparatus

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9897538B2 (en) 2001-04-30 2018-02-20 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US8559012B2 (en) 2003-01-24 2013-10-15 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US8416818B2 (en) 2003-06-06 2013-04-09 The General Hospital Corporation Process and apparatus for a wavelength tuning source
JP2005205213A (en) * 2004-01-20 2005-08-04 Siemens Ag Method and device for skin test of subject
JP4570970B2 (en) * 2004-01-20 2010-10-27 シーメンス アクチエンゲゼルシヤフト Method and apparatus for inspecting subject skin
JP2006010693A (en) * 2004-06-22 2006-01-12 Polytec Gmbh Apparatus for optically measuring object, and method for measuring using the same
US8369669B2 (en) 2004-07-02 2013-02-05 The General Hospital Corporation Imaging system and related techniques
US8676013B2 (en) 2004-07-02 2014-03-18 The General Hospital Corporation Imaging system using and related techniques
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US8965487B2 (en) 2004-08-24 2015-02-24 The General Hospital Corporation Process, system and software arrangement for measuring a mechanical strain and elastic properties of a sample
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
JP2008541018A (en) * 2005-04-28 2008-11-20 ザ ジェネラル ホスピタル コーポレイション System, method and software apparatus for evaluating information related to anatomical structures by optical interferometry
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US8351665B2 (en) 2005-04-28 2013-01-08 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
JP2013137319A (en) * 2005-09-29 2013-07-11 General Hospital Corp Device and method for performing multi-modality microscopic image generation of one or more biological structures
US9304121B2 (en) 2005-09-29 2016-04-05 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
JP2009509689A (en) * 2005-09-29 2009-03-12 ザ ジェネラル ホスピタル コーポレイション Optical imaging method and apparatus by spectral encoding
US8760663B2 (en) 2005-09-29 2014-06-24 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US8289522B2 (en) 2005-09-29 2012-10-16 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
JP2009510451A (en) * 2005-09-29 2009-03-12 ザ ジェネラル ホスピタル コーポレイション Optical imaging method and apparatus by spectral coding
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US9513276B2 (en) 2005-09-29 2016-12-06 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
JP2015099158A (en) * 2005-09-29 2015-05-28 ザ ジェネラル ホスピタル コーポレイション Device and method for performing multi-modality microscopic image generation of one or more biological structures
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9087368B2 (en) 2006-01-19 2015-07-21 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9186067B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
JP2008191022A (en) * 2007-02-06 2008-08-21 Hoya Corp Oct system
US9176319B2 (en) 2007-03-23 2015-11-03 The General Hospital Corporation Methods, arrangements and apparatus for utilizing a wavelength-swept laser using angular scanning and dispersion procedures
JP2008237237A (en) * 2007-03-23 2008-10-09 Topcon Corp Fundus oculi observing system, ophthalmologic image display system, and program
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US9375158B2 (en) 2007-07-31 2016-06-28 The General Hospital Corporation Systems and methods for providing beam scan patterns for high speed doppler optical frequency domain imaging
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US20110205547A1 (en) * 2008-08-20 2011-08-25 Hamamatsu Photonics K.K. Observation device, and observation method
US9080861B2 (en) * 2008-08-20 2015-07-14 Hamamatsu Photonics K.K. Observation device, and observation method
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
JP2011027647A (en) * 2009-07-28 2011-02-10 Optical Comb Inc Measurement device and measurement method
US8804126B2 (en) 2010-03-05 2014-08-12 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8896838B2 (en) 2010-03-05 2014-11-25 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
JP2012063330A (en) * 2010-09-17 2012-03-29 Kansai Paint Co Ltd Method for non-contact and non-destructive evaluation of multilayer coating film, and device using the same
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
WO2014091993A1 (en) * 2012-12-13 2014-06-19 株式会社トプコン Optical property measurement device and optical property measurement method
US9476693B2 (en) 2012-12-13 2016-10-25 Kabushiki Kaisha Topcon Optical property measurement apparatus and optical property measurement method
JP2014119269A (en) * 2012-12-13 2014-06-30 Topcon Corp Optical characteristics measurement device and optical characteristics measurement method
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
JP2015081874A (en) * 2013-10-24 2015-04-27 エムテックスマツムラ株式会社 Method for detecting application area and application amount of transparent resin applied on metallic gloss surface, and optical coherence tomography measurement system for the method
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11187519B2 (en) 2017-02-17 2021-11-30 SCREEN Holdings Co., Ltd. Imaging method and imaging apparatus
WO2018150744A1 (en) * 2017-02-17 2018-08-23 株式会社Screenホールディングス Imaging method and imaging device
JP2018132465A (en) * 2017-02-17 2018-08-23 株式会社Screenホールディングス Imaging method and imaging device

Also Published As

Publication number Publication date
JP3660185B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP3660185B2 (en) Tomographic image forming method and apparatus therefor
JP5623028B2 (en) Imaging method and apparatus for taking optical coherence tomographic image
Ogien et al. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo
Swanson et al. High-speed optical coherence domain reflectometry
JP5324839B2 (en) Optical image measuring device
Colston et al. Dental oct
Yazdanfar et al. High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography
Tearney et al. Optical coherence tomography for imaging<? xpp qa?> the vulnerable plaque
Go¨ tzinger et al. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography
Fujimoto et al. Optical biopsy and imaging using optical coherence tomography
JP5523658B2 (en) Optical image measuring device
Gladkova et al. In vivo optical coherence tomography imaging of human skin: norm and pathology
JP5339934B2 (en) Optical tomographic imaging apparatus and optical tomographic imaging method
Wojtkowski et al. Real-time in vivo imaging by high-speed spectral optical coherence tomography
JP5149535B2 (en) Polarization-sensitive optical coherence tomography apparatus, signal processing method for the apparatus, and display method for the apparatus
Yamanari et al. Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry
JP4501007B2 (en) Optical coherence tomography device
JP4823693B2 (en) Optical image measuring device
WO2011013315A1 (en) Fundus analysis device and fundus analysis method
Maheswari et al. Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex
BuAbbud et al. Optical coherence tomography imaging for diabetic retinopathy and macular edema
Hsieh et al. Subgingival calculus imaging based on swept-source optical coherence tomography
CN112168144B (en) Optical coherence tomography system for burned skin
Hong et al. Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography
Park et al. Multifunctional in vivo imaging for monitoring wound healing using swept‐source polarization‐sensitive optical coherence tomography

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees