JP2001211511A - Electric vehicle - Google Patents

Electric vehicle

Info

Publication number
JP2001211511A
JP2001211511A JP2000056515A JP2000056515A JP2001211511A JP 2001211511 A JP2001211511 A JP 2001211511A JP 2000056515 A JP2000056515 A JP 2000056515A JP 2000056515 A JP2000056515 A JP 2000056515A JP 2001211511 A JP2001211511 A JP 2001211511A
Authority
JP
Japan
Prior art keywords
inverter
voltage
battery
torque
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000056515A
Other languages
Japanese (ja)
Inventor
Toshiaki Jofu
敏昭 上符
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000056515A priority Critical patent/JP2001211511A/en
Publication of JP2001211511A publication Critical patent/JP2001211511A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency, energy saved, and low cost electric vehicle by reducing loss of a converter and a driving motor, and achieve miniaturization and weight reduction of the vehicle. SOLUTION: Setting up a booster circuit between a battery and an inverter circuit in an electric vehicle having a battery as a driving power source. The booster supplies the inverter with a higher voltage than a battery voltage when a higher torque is required such as for starting, accelerating, or having a vehicle climbing a gradient; the booster circuit activates the inverter circuit, boosts an input d.c. current to the inverter circuit above the battery voltage, and decreases an element current of a main controller of the inverter. When a low torque is allowed such as for constant driving on the ground, an d.c. input voltage to the inverter is kept the same level as a battery voltage and the booster circuit is stopped, so that an iron loss of the driving motor is decreased. In this way, an appropriate d.c. current is supplied to the inverter corresponding to a driving condition of the electric moving vehicle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電動式走行車輌に関
する。
[0001] The present invention relates to an electric traveling vehicle.

【0002】[0002]

【従来の技術】現在の電動式走行車輌は駆動エネルギ源
であるバッテリから、図1に示されるようにチョッパ回
路や図2のインバータ回路をとうして駆動モータを動作
させ,走行させている。したがって、モータの運転電圧
はバッテリ電圧以上には出来ない。このため、大トルク
要求時には大電流を供給する必要がある。したがって、
チョッパやインバータを構成するスイッチング素子,電
解コンデンサなども大電流耐量のものが必要になるほ
か、これらの損失による発生熱を放熱する冷却器も大き
くなる。この結果、駆動装置が大型化し、重量も増加す
る。
2. Description of the Related Art At present, an electric traveling vehicle runs a driving motor from a battery as a driving energy source by operating a driving motor through a chopper circuit or an inverter circuit shown in FIG. 2 as shown in FIG. Therefore, the operating voltage of the motor cannot be higher than the battery voltage. Therefore, when a large torque is required, a large current needs to be supplied. Therefore,
The switching element and the electrolytic capacitor constituting the chopper and the inverter also need to have a large current capacity, and the size of the cooler for dissipating the heat generated by the loss increases. As a result, the size of the driving device is increased and the weight is increased.

【0003】電動式走行車輌にとって積載重量の増加
は、エネルギ源であるバッテリの容量を促、増大させる
事につながり、省エネ、環境破壊の観点より見ても好ま
しくない。また、チョッパ回路やインバータの主制御素
子である半導体素子も低電圧大電流のものは市場要求が
少なく市販されていない。したがって、大電流を制御す
るには多数の素子を並列使用する事によってなされる
か、新たに大電流素子を開発する必要がある。これら
は、コスト面からも、コスト高となり問題がある。
[0003] For an electric traveling vehicle, an increase in the loaded weight leads to an increase in the capacity of a battery as an energy source, which is not preferable from the viewpoint of energy saving and environmental destruction. Further, the semiconductor element which is the main control element of the chopper circuit and the inverter has a low voltage and a large current, and the market demand is small and the semiconductor element is not commercially available. Therefore, to control a large current, it is necessary to use a large number of elements in parallel or to develop a new large current element. These are problematic in terms of cost because they are costly.

【0004】[0004]

【発明が解決しようとする課題】電動式走行車輌を構成
する変換装置および駆動モータの損失を低減し、小型化
や重量低減を図ることによって、高効率で省エネ化した
安価な電動式走行車輌を提供することを課題とする。
SUMMARY OF THE INVENTION An inexpensive electric traveling vehicle which is highly efficient and energy saving by reducing the loss of the conversion device and the drive motor constituting the electric traveling vehicle and reducing the size and weight. The task is to provide.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の電動式走行車輌は請求範囲のものである。バッテリ
とインバータ回路の中間に昇圧回路を設け、インバータ
へ供給する電圧をバッテリ電圧より高い電圧を供給出来
るように構成し、電動式走行車輌の始動、加速および登
坂走行時の走行車輌に必要な大トルク要求時に昇圧回路
を動作させ、インバータ回路の入力直流電圧をバッテリ
電圧以上に昇圧してインバータを構成する主制御素子電
流の低減を図ると共に、走行用モータへの供給電圧をあ
げ,電流の低減を図る。また、平地の定常走行時のよう
に低トルクでよい場合はインバータの直流入力電圧をバ
ッテリー電圧とするため、昇圧回路の動作をとめ、イン
バータ出力電圧を低くし走行モータの鉄損の低減を図
り、電動式走行車輌の運転状況に応じて、最適な直流電
圧をインバータに供給出来るようにする。
SUMMARY OF THE INVENTION An electric traveling vehicle according to the present invention for solving the above-mentioned problems is in the scope of the claims. A booster circuit is provided between the battery and the inverter circuit so that the voltage supplied to the inverter can be supplied to a voltage higher than the battery voltage. When the torque is required, the booster circuit is operated to boost the input DC voltage of the inverter circuit to the battery voltage or more, thereby reducing the current of the main control element that constitutes the inverter and increasing the supply voltage to the drive motor to reduce the current. Plan. In addition, when low torque is required as in the case of steady driving on level ground, the DC input voltage of the inverter is used as the battery voltage, so the operation of the booster circuit is stopped, and the inverter output voltage is lowered to reduce iron loss of the traveling motor. According to the present invention, an optimum DC voltage can be supplied to an inverter according to the driving condition of an electric traveling vehicle.

【0006】[0006]

【発明の実施の形態】以下,本発明の実施の形態を図面
に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0007】図3は本発明の実施の形態に係る電動走行
車輌の駆動状態におけるモータの必要トルクを示したも
のである。図4は本発明の走行システムの電気制御回路
と昇圧部の制御部の構成図、図5はインバータ部の制御
構成図である。
FIG. 3 shows the required torque of the motor in the driving state of the electric traveling vehicle according to the embodiment of the present invention. FIG. 4 is a configuration diagram of an electric control circuit and a control unit of a booster of the traveling system of the present invention, and FIG. 5 is a control configuration diagram of an inverter unit.

【0008】図3に於いてτ0は電動走行車輌の平地定
常走行時に必用なトルクで、Tmaxは登坂走行時に必
要トルクである。走行車輌の場合、τ0/τmax=1
/5〜1/20 のように車輌の許容登坂勾配による差
が大きい。したがって、始動および登坂走行の低速走行
領域ではトルクτmaxを保証でき、登坂走行速度以上
の走行速度領域ではトルクτ0を保証する。このトルク
に加速トルクを加えたものが、電動式走行車輌の要求ト
ルクとなる。図3ではτmax、τ0に斜線部分の加速
トルクを加えたτの包絡線で示される。図3では登坂走
行速度直後の加速トルクを大きく取っているが、この加
速トルクが大きいほど余力があり、加速性能に優れた走
行車輌となる。しかし、モータの供給電圧を一定にし、
速度を上昇すると、発生トルクは二乗低減トルクで示さ
れ、登坂最大速度のとき最大供給電圧とする一般的な電
動式走行車輌の場合、図3のような特性になる。
In FIG. 3, τ0 is a torque required when the electric traveling vehicle is traveling on a flat ground, and Tmax is a torque required when traveling uphill. In the case of a traveling vehicle, τ0 / τmax = 1
The difference due to the allowable uphill gradient of the vehicle is large, such as / 5 to 1/20. Therefore, the torque τmax can be guaranteed in the low-speed running region of the starting and the uphill running, and the torque τ0 is guaranteed in the running speed region higher than the uphill running speed. The sum of the torque and the acceleration torque is the required torque of the electric traveling vehicle. FIG. 3 shows the envelope of τ obtained by adding the acceleration torque in the hatched portion to τmax and τ0. In FIG. 3, the acceleration torque immediately after the uphill traveling speed is large, but the greater the acceleration torque, the more reserve power is obtained, and the traveling vehicle has excellent acceleration performance. However, if the motor supply voltage is kept constant,
When the speed is increased, the generated torque is represented by the squared reduction torque. In the case of a general electric traveling vehicle having the maximum supply voltage at the maximum climbing speed, the characteristic shown in FIG. 3 is obtained.

【0009】ここで、誘導電動機の発生トルクは電圧の
二乗に比例することから、定常走行時のように必要トル
クの小さな状態での走行速度−モータ電圧の関係を図3
のVLで示される低電圧で制御し、始動,加速および登
坂走行時のように,大きなトルクを必用とする場合の走
行速度−モータ電圧の関係をVhで示すように高電圧で
制御する事によりモータ電流を低減し、且つ,必要なト
ルクを効率よく得る事が出来る。このようにモータ電圧
を制御する為には、インバータ直流入力電圧をバッテリ
ー電圧以上に昇圧する事が、電動走行車輌のようにバッ
テリ電圧(96V以下)が低い場合効果的である。
Here, since the torque generated by the induction motor is proportional to the square of the voltage, the relationship between the traveling speed and the motor voltage when the required torque is small as in the case of steady traveling is shown in FIG.
By controlling the relationship between the traveling speed and the motor voltage when a large torque is required, such as when starting, accelerating, and traveling uphill, by controlling with a high voltage as indicated by Vh. The motor current can be reduced and the required torque can be obtained efficiently. In order to control the motor voltage in this manner, it is effective to increase the inverter DC input voltage to a value equal to or higher than the battery voltage when the battery voltage (96 V or less) is low as in an electric traveling vehicle.

【0010】図4はインバータ直流電圧をバッテリ電圧
以上に昇圧する為の昇圧回路を設けている。半導体スイ
ッチ43がオンするとバッテリー41、リアクトル4
2、半導体スイッチ43および電流検出器50の閉ルー
プの電流iはバッデリー電圧をVbとするとi=Vb/
L×tで上昇する。電流iが目標値にたっし、半導体ス
イッチ43がオフするとリアクトルLに蓄えられた1/
2Li×iのエネルギーはダイオード44を経て、電解
コンデンサ45に放出される。この結果、電解コンデン
サ45の電圧は上昇する。
FIG. 4 shows a booster circuit for boosting the DC voltage of the inverter to a voltage higher than the battery voltage. When the semiconductor switch 43 is turned on, the battery 41 and the reactor 4
2. The closed loop current i of the semiconductor switch 43 and the current detector 50 is i = Vb /
It increases by L × t. When the current i reaches the target value and the semiconductor switch 43 is turned off, 1 /
The energy of 2Li × i is released to the electrolytic capacitor 45 via the diode 44. As a result, the voltage of the electrolytic capacitor 45 increases.

【0011】図4に於いてVrefはインバータ直流入
力電圧目標値で、電解コンデンサ45の電圧検出値Vd
etとの差電圧をリミッター付き誤差増幅器53で誤差
増幅し、誤差増幅器53の出力を電流目標値として電流
検出値1detとリミッター付き誤差増幅器55にて誤
差増幅する。誤差増幅器55の出力は鋸歯状波発生器5
6の出力とコンパレータ58で比較される。誤差増幅器
55の出力が大きい時,半導体スイッチ43をオンさ
せ、鋸歯状波が大きいと半導体スイッチ43をオフさせ
るようにコンパレータ58は動作する。尚,ドライブ回
路60は半導体スイッチ43のドライブ回路でコンパレ
ータ58の出力をパワー増幅する。以上の動作の繰り返
しによって、インバータ直流入力電圧は目標電圧に昇圧
されるように制御され、電動式走行車両の走行速度−モ
ータ電圧の関係は図3の電圧Vh線で示される電圧で運
転される。
In FIG. 4, Vref is a target value of the inverter DC input voltage, and is a voltage detection value Vd of the electrolytic capacitor 45.
An error amplifier 53 with a limiter error-amplifies the difference voltage from the signal et, and the output of the error amplifier 53 is used as a current target value to amplify the error with a current detection value 1 det and an error amplifier 55 with a limiter. The output of the error amplifier 55 is a sawtooth wave generator 5
6 is compared with a comparator 58. The comparator 58 operates to turn on the semiconductor switch 43 when the output of the error amplifier 55 is large, and to turn off the semiconductor switch 43 when the sawtooth wave is large. The drive circuit 60 power-amplifies the output of the comparator 58 by the drive circuit of the semiconductor switch 43. By repeating the above operation, the inverter DC input voltage is controlled so as to be boosted to the target voltage, and the relationship between the traveling speed of the electric traveling vehicle and the motor voltage is operated at the voltage indicated by the voltage Vh line in FIG. .

【0012】次に半導体スイッチ48の動作について述
べる。走行車輌が加速を終了し定常走行状態に入ると、
モータ発生トルクは小さくてよいから、インバータ直流
入力電圧はバッテリー電圧で運転することが効率面から
要求される。しかし、電解コンデンサCの電圧は昇圧さ
れているので、バッテリ電圧より高い電圧になってい
る。この状態では誤差増幅器53、55の出力は昇圧動
作時と逆極性になるので鋸歯状波発生器57の出力とコ
ンパレータ59で比較される。誤差増幅器55の出力が
高電位にある時、コンパレータ59の出力は半導体スイ
ッチ48をオンするように動作する。反対に低電位にあ
る時はオフする動作をする。また、インバータが回生運
転状態の時には電解コンデンサ45の電圧が上昇する
が、この場合も半導体スイッチ48の制御によって、回
生エネルギーはバッテリー41に回生され、インバータ
直流入力電圧は目標電圧値に保たれる。
Next, the operation of the semiconductor switch 48 will be described. When the traveling vehicle finishes accelerating and enters a steady driving state,
Since the motor-generated torque may be small, it is required to operate the inverter DC input voltage at the battery voltage from the viewpoint of efficiency. However, since the voltage of the electrolytic capacitor C is boosted, the voltage is higher than the battery voltage. In this state, the outputs of the error amplifiers 53 and 55 have polarities opposite to those at the time of the boosting operation, and are compared with the output of the sawtooth wave generator 57 by the comparator 59. When the output of the error amplifier 55 is at a high potential, the output of the comparator 59 operates to turn on the semiconductor switch 48. On the other hand, when it is at a low potential, it turns off. When the inverter is in the regenerative operation state, the voltage of the electrolytic capacitor 45 rises. In this case also, the regenerative energy is regenerated to the battery 41 by the control of the semiconductor switch 48, and the inverter DC input voltage is maintained at the target voltage value. .

【0013】次に、電動走行車輌の要求トルクによっ
て、昇圧回路の動作、不動作をどのようにするか、につ
いて図5に従って述べる。図5は本発明のインバータ部
の制御ブロック図で、ベクトル制御を示している。図5
のアクセル速度指令71と速度推定部75の出力の偏差
をPI増幅器72で誤差増幅する。誤差増幅器72の出
力がリミット値にあり、且つ、速度指令値ωと速度推
定部75または速度演算部74の出力ωの差が、モータ
の許容すべり速度差以上であれば、加速状態にあると判
断し、昇圧回路を動作させるべく図4のインバータ入力
直流電圧目標値Vrefの値をバッテリ電圧以上に昇圧
すべく値に設定される。しかし,速度指令値ωと速度
検出値ωの差が、許容すべり速度以内であれば定常走行
中であると判断して、インバータ入力直流電圧目標値V
refの値は図3でVLの線の電圧特性が得られるよう
にする。すなわち、昇圧回路の昇圧動作をやめるべく、
バッテリ電圧値に設定される。
Next, how the booster circuit operates and deactivates according to the required torque of the electric traveling vehicle will be described with reference to FIG. FIG. 5 is a control block diagram of the inverter unit according to the present invention, showing vector control. FIG.
The difference between the accelerator speed command 71 and the output of the speed estimating unit 75 is error-amplified by the PI amplifier 72. If the output of the error amplifier 72 is at the limit value and the difference between the speed command value ω * and the output ω of the speed estimating unit 75 or the speed calculating unit 74 is equal to or greater than the allowable slip speed difference of the motor, the vehicle is in an acceleration state. Is determined, and the value of the inverter input DC voltage target value Vref in FIG. 4 is set to a value to increase the battery voltage to the battery voltage or higher in order to operate the booster circuit. However, if the difference between the speed command value ω * and the detected speed value ω is within the allowable slip speed, it is determined that the vehicle is traveling normally, and the inverter input DC voltage target value V
The value of ref is such that the voltage characteristic of the line VL in FIG. 3 can be obtained. That is, in order to stop the boost operation of the boost circuit,
Set to the battery voltage value.

【0014】次に,電動走行車輌の走行状態に応じて、
ベクトル制御ブロック図の速度−トルクパターン設定部
76、磁束設定パターン部77、トルクリミット設定パ
ターン部83もインバータ入力直流電圧目標値に合わせ
て切り替える必要がある。これらの選択は図5におい
て、インバータ直流入力電圧がバッテリ電圧より高電圧
の値にある時は各パターンのhを、バッテリ電圧の値に
ある時はLのパターンを選択される。このようにする事
によって、インバータでモータを安定に、且つ省エネ運
転することが出来る。
Next, according to the traveling state of the electric traveling vehicle,
The speed-torque pattern setting unit 76, the magnetic flux setting pattern unit 77, and the torque limit setting pattern unit 83 in the vector control block diagram also need to be switched according to the inverter input DC voltage target value. In FIG. 5, h of each pattern is selected when the inverter DC input voltage is at a value higher than the battery voltage, and L is selected when the inverter DC input voltage is at the battery voltage value. By doing so, the motor can be operated stably and energy-saving by the inverter.

【0015】[0015]

【発明の効果】以上,発明の実施の形態とともに具体的
に説明したように、本発明の電動走行車輌の駆動走行装
置を、高トルク必要時には、搭載しているバッテリ電圧
以上の高電圧で運転する,また、低トルク運転時ではバ
ッテリ電圧運転する事によって、インバータおよび、モ
ータの電流を低減し損失の低減を図ることが出来る。
As described above in detail with the embodiments of the present invention, when the driving device for an electric traveling vehicle according to the present invention requires a high torque, it is operated at a high voltage higher than the mounted battery voltage. In addition, at the time of low torque operation, by operating the battery voltage, the currents of the inverter and the motor can be reduced, and the loss can be reduced.

【0016】低電流化によってインバータ構成素子およ
び電解コンデンサの小型化が出来ると同時に走行駆動装
置の小型化と積載重量を低減できる。したがって、バッ
テリの小容量化、もしくは、走行距離の延長が可能とな
る。
By reducing the current, the inverter components and the electrolytic capacitor can be miniaturized, and at the same time, the traveling drive unit can be miniaturized and the load weight can be reduced. Therefore, it is possible to reduce the capacity of the battery or extend the traveling distance.

【0017】インバータ素子の低電流化により市販され
ている量産品が適用できる。この結果、コスト的に安価
な電動式走行車輌を提供できる。
Commercially available mass-produced products can be applied by reducing the current of the inverter element. As a result, an inexpensive electric traveling vehicle can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のチョッパー式電動走行車輌の走行駆動シ
ステム構成図
FIG. 1 is a configuration diagram of a traveling drive system of a conventional chopper type electric traveling vehicle.

【図2】従来のインバータ式電動走行車輌の走行駆動シ
ステム構成図
FIG. 2 is a configuration diagram of a traveling drive system of a conventional inverter-type electric traveling vehicle.

【図3】電動式走行車輌に要求されるモータ発生トル
ク、モータ端子電圧と走行速度の関係を示した特性図
FIG. 3 is a characteristic diagram showing a relationship between a motor generated torque, a motor terminal voltage, and a traveling speed required for an electric traveling vehicle.

【図4】本発明の回路構成図FIG. 4 is a circuit configuration diagram of the present invention.

【図5】本発明のインバータ部の制御ブロック図FIG. 5 is a control block diagram of an inverter unit according to the present invention.

【符号の説明】[Explanation of symbols]

1,21,41 バッテリ 2 チョッパ回路 3 直流モータ電機子 4 界磁巻線 5,44,49 ダイオード 6 閉路コンタクタ 22,45 電解コンデンサ 23,46 インバータ 24,47 インダクションモータ 42 リアクトル 43,48 半導体スイッチ 50,54 電流検出器 51 インバータ直流入力電圧目標値 52 直流電圧検出器 53,55,72 PI誤差増幅器(リミッタ付き) 56 鋸歯状波発生器(正側) 57 鋸歯状波発生器(負側) 58 コンパレータ(正側) 59 コンパレータ(負側) 60,61 ドライブ回路 71 アクセル 73 すべり演算部 74 速度演算部 75 速度推定部 76 速度−トルクパターン設定部 77 磁束設定パターン部 78 速度パルス検出器 79 電流制御部 80,81 2軸−3軸変換部 82 位相角演算部 83 トルクリミット設定パターン部 1,21,41 Battery 2 Chopper circuit 3 DC motor armature 4 Field winding 5,44,49 Diode 6 Closing contactor 22,45 Electrolytic capacitor 23,46 Inverter 24,47 Induction motor 42 Reactor 43,48 Semiconductor switch 50 , 54 Current detector 51 Inverter DC input voltage target value 52 DC voltage detector 53, 55, 72 PI error amplifier (with limiter) 56 Sawtooth wave generator (positive side) 57 Sawtooth wave generator (negative side) 58 Comparator (positive side) 59 Comparator (negative side) 60, 61 Drive circuit 71 Accelerator 73 Slip operation unit 74 Speed operation unit 75 Speed estimation unit 76 Speed-torque pattern setting unit 77 Magnetic flux setting pattern unit 78 Speed pulse detector 79 Current control Units 80, 81 2-axis to 3-axis conversion unit 82 Phase angle calculating section 83 torque limit pattern unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バッテリとインバータの中間に、昇圧回
路を設けた電動式走行車輌において、始動加速時や登坂
走行時のように、大トルクを必要とする走行状態で前述
の昇圧回路を動作させ、インバータ直流入力電圧をバッ
テリ電圧以上に昇圧する事によってインバータ出力電圧
を高くし、また平地走行時のように低トルク走行状態で
はインバータ直流入力電圧を昇圧することなく、バッテ
リ電圧で運転し、インバータおよびモータの電流の増加
を抑制し、鉄損および銅損失を低減し省エネ運転を図る
ことを特徴とする電動式走行車輌。
In an electric traveling vehicle provided with a booster circuit between a battery and an inverter, the booster circuit is operated in a running state requiring a large torque, such as at the time of starting acceleration or uphill running. By increasing the inverter DC input voltage to a level higher than the battery voltage, the inverter output voltage is increased.In low-torque driving conditions such as when driving on flat ground, the inverter operates at the battery voltage without boosting the inverter DC input voltage. An electric traveling vehicle characterized by suppressing an increase in motor current, reducing iron loss and copper loss, and achieving energy saving operation.
JP2000056515A 2000-01-25 2000-01-25 Electric vehicle Pending JP2001211511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056515A JP2001211511A (en) 2000-01-25 2000-01-25 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056515A JP2001211511A (en) 2000-01-25 2000-01-25 Electric vehicle

Publications (1)

Publication Number Publication Date
JP2001211511A true JP2001211511A (en) 2001-08-03

Family

ID=18577448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056515A Pending JP2001211511A (en) 2000-01-25 2000-01-25 Electric vehicle

Country Status (1)

Country Link
JP (1) JP2001211511A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230269A (en) * 2002-01-30 2003-08-15 Toyota Motor Corp Load drive device, discharge control method, and computer-readable recording medium in which program for making computer run discharge control is recorded
WO2005115788A1 (en) * 2004-05-26 2005-12-08 Toyota Jidosha Kabushiki Kaisha Motor drive apparatus
JP2008301598A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Apparatus and method for controlling vehicle, program for implementing this method, and recording medium with the program recorded therein
EP2131488A1 (en) * 2007-03-08 2009-12-09 Mitsubishi Electric Corporation Controller of electric vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230269A (en) * 2002-01-30 2003-08-15 Toyota Motor Corp Load drive device, discharge control method, and computer-readable recording medium in which program for making computer run discharge control is recorded
WO2005115788A1 (en) * 2004-05-26 2005-12-08 Toyota Jidosha Kabushiki Kaisha Motor drive apparatus
KR100801611B1 (en) 2004-05-26 2008-02-05 도요다 지도샤 가부시끼가이샤 Motor drive apparatus
US7511447B2 (en) 2004-05-26 2009-03-31 Toyota Jidosha Kabushiki Kaisha Motor drive apparatus
EP2131488A1 (en) * 2007-03-08 2009-12-09 Mitsubishi Electric Corporation Controller of electric vehicle
US20100087971A1 (en) * 2007-03-08 2010-04-08 Mitsubishi Electric Corporation Electric vehicle controller
EP2131488A4 (en) * 2007-03-08 2011-02-09 Mitsubishi Electric Corp Controller of electric vehicle
US8489262B2 (en) 2007-03-08 2013-07-16 Mitsubishi Electric Corporation Electric vehicle controller
JP2008301598A (en) * 2007-05-30 2008-12-11 Toyota Motor Corp Apparatus and method for controlling vehicle, program for implementing this method, and recording medium with the program recorded therein
US8093843B2 (en) 2007-05-30 2012-01-10 Toyota Jidosha Kabushiki Kaisha Vehicle controller and control method

Similar Documents

Publication Publication Date Title
KR100739391B1 (en) Motor drive control apparatus
JP3692993B2 (en) DRIVE DEVICE AND POWER OUTPUT DEVICE
US6700802B2 (en) Bi-directional power supply circuit
JP5138781B2 (en) Power converter
JP5597683B2 (en) Power supply
US7869233B2 (en) Voltage conversion device and computer-readable recording medium having program recorded thereon for computer to control voltage conversion by voltage conversion device
WO2008007723A1 (en) Load drive device and vehicle using the same
JP2013158232A (en) Control device for electric vehicle
JP2006353032A (en) Voltage conversion device
US7675192B2 (en) Active DC bus filter for fuel cell applications
JP2005051898A (en) Voltage conversion device and computer-readable recording medium with program stored thereon for making computer control voltage conversion
EP3121952A1 (en) Method for operating a switched reluctance motor
JP2010068611A (en) Controller of converter
JP2006311635A (en) Step-up converter controller
JP2004208409A (en) Power controller for vehicle
JP4142879B2 (en) Power converter
JP2001211511A (en) Electric vehicle
JP2004166370A (en) Voltage converter
JP3994846B2 (en) Voltage conversion device and computer-readable recording medium storing a program for causing computer to execute control of voltage conversion
JP3333833B2 (en) Automotive power converter
JP3931734B2 (en) Electric load drive
JP3371718B2 (en) Charging device
US11936318B2 (en) Charging system and method using motor driving system
US20230261591A1 (en) Regenerative Braking System, and Electrically Driven Work Vehicle Using the Same
US20220410741A1 (en) System for charging vehicle battery using motor driving system