JP2001210953A - Wiring board and producing method for the same - Google Patents

Wiring board and producing method for the same

Info

Publication number
JP2001210953A
JP2001210953A JP2000018629A JP2000018629A JP2001210953A JP 2001210953 A JP2001210953 A JP 2001210953A JP 2000018629 A JP2000018629 A JP 2000018629A JP 2000018629 A JP2000018629 A JP 2000018629A JP 2001210953 A JP2001210953 A JP 2001210953A
Authority
JP
Japan
Prior art keywords
hole
conductor
layer
main surface
core substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000018629A
Other languages
Japanese (ja)
Other versions
JP3816711B2 (en
Inventor
Sumio Ota
純雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000018629A priority Critical patent/JP3816711B2/en
Publication of JP2001210953A publication Critical patent/JP2001210953A/en
Application granted granted Critical
Publication of JP3816711B2 publication Critical patent/JP3816711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board and a producing method for the same, with which a breakage hardly occurs on a through hole conductor and reliability is high. SOLUTION: A wiring board 1 is provided with a core substrate 3, composed of the compound materials of inorganic fibers and resins, a principal side resin insulating layer 5 formed on a principal surface 3A and a backside resin insulating layer 7 formed on a rear surface 3B. Between the core substrate 3 and the principal side resin insulating layer 5, a principal side conductor layer 15 is formed and between the core substrate 3 and the principal side resin insulating layer 7, a backside conductor layer 19 is formed. Also a medium thickness through-hole 9 is formed on the core substrate 3 and a medium thick through- hole conductor 11 thicker than the principal side conductor 15 and the backside conductor 19 is formed therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コア基板に樹脂絶
縁層が積層された配線基板であって、コア基板を貫通す
るスルーホール導体を備える配線基板及び配線基板の製
造方法に関し、特に、コア基板がガラス繊維や石英繊維
などの無機繊維と樹脂との複合材からなる配線基板及び
配線基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board in which a resin insulating layer is laminated on a core board, the wiring board having a through-hole conductor penetrating the core board, and a method of manufacturing the wiring board. The present invention relates to a wiring board whose substrate is made of a composite material of an inorganic fiber such as glass fiber and quartz fiber and a resin, and a method of manufacturing the wiring board.

【0002】[0002]

【従来の技術】従来より、コア基板に樹脂絶縁層が積層
された配線基板の中で、コア基板がガラス繊維や石英繊
維などの無機繊維と樹脂との複合材からなり、このコア
基板を貫通するスルーホール導体が形成されたものが知
られている。例えば、図8に部分拡大断面図を示す配線
基板101が挙げられる。この配線基板101は、その
中心に、ガラス繊維布に樹脂を含浸させた複合材からな
る略板形状のコア基板103を備え、その主面103A
上には主面側樹脂絶縁層105が、裏面103B上には
裏面側樹脂絶縁層107がそれぞれ形成されている。
2. Description of the Related Art Conventionally, among wiring boards in which a resin insulating layer is laminated on a core board, the core board is made of a composite material of an inorganic fiber such as glass fiber or quartz fiber and a resin, and penetrates the core board. There is known a structure in which a through-hole conductor is formed. For example, there is a wiring board 101 whose partial enlarged sectional view is shown in FIG. The wiring substrate 101 has a substantially plate-shaped core substrate 103 made of a composite material obtained by impregnating a glass fiber cloth with a resin at the center thereof.
The main surface side resin insulation layer 105 is formed on the upper surface, and the back surface side resin insulation layer 107 is formed on the back surface 103B.

【0003】このうちコア基板103には、主面103
Aと裏面103Bとの間を貫通する略円筒状の貫通孔1
09が多数形成されている。そして、各貫通孔109に
は、その内周面に沿って略円筒状のスルーホール導体1
11が形成されている。また、コア基板103と主面側
樹脂絶縁層105との間には、スルーホール導体111
と接続する配線層、接続パッド等からなる主面側導体層
113が形成され、また、コア基板103と裏面側樹脂
絶縁層107との間にも、スルーホール導体111と接
続する配線層、接続パッド等からなる裏面側導体層11
5が形成されている。
The core substrate 103 includes a main surface 103.
A and a substantially cylindrical through hole 1 penetrating between A and the back surface 103B.
09 are formed in large numbers. Each through-hole 109 has a substantially cylindrical through-hole conductor 1 along its inner peripheral surface.
11 are formed. Further, a through-hole conductor 111 is provided between the core substrate 103 and the main surface side resin insulation layer 105.
A main surface-side conductor layer 113 including a wiring layer, a connection pad, and the like is formed, and a wiring layer connected to the through-hole conductor 111 is also provided between the core substrate 103 and the back surface-side resin insulation layer 107. Back-side conductor layer 11 composed of pads and the like
5 are formed.

【0004】なお、接続パッド等の主面側導体層113
の一部は、この配線基板101にICチップ等を搭載す
るために主面側樹脂絶縁層105に形成された開口10
5K内に露出している。同様に、裏面側導体層115の
接続パッド等も、この配線基板101を他の基板等に接
続するために裏面側樹脂絶縁層107に形成された開口
107K内に露出している。
The main surface side conductor layer 113 such as a connection pad is provided.
A part of the opening 10 formed in the main-surface-side resin insulating layer 105 for mounting an IC chip or the like on the wiring board 101 is formed.
It is exposed within 5K. Similarly, the connection pads and the like of the back side conductor layer 115 are also exposed in the opening 107K formed in the back side resin insulation layer 107 to connect the wiring board 101 to another board or the like.

【0005】[0005]

【発明が解決しようとする課題】このような配線基板1
01では、コア基板103が無機繊維と樹脂との複合材
からできているので、コア基板103の平面方向の熱膨
張率は、無機繊維によって比較的小さく、即ち、導体層
等の熱膨張率と同程度まで抑えられている。従って、コ
ア基板103と導体層等との熱膨張率の差に起因して主
面側導体層113や裏面側導体層115に発生する応力
は比較的小さい。
SUMMARY OF THE INVENTION Such a wiring board 1
In No. 01, since the core substrate 103 is made of a composite material of an inorganic fiber and a resin, the coefficient of thermal expansion in the planar direction of the core substrate 103 is relatively small due to the inorganic fibers, that is, the coefficient of thermal expansion of the conductor layer and the like. It is suppressed to the same degree. Therefore, stress generated in the main-surface-side conductor layer 113 and the rear-surface-side conductor layer 115 due to the difference in the coefficient of thermal expansion between the core substrate 103 and the conductor layer or the like is relatively small.

【0006】しかしながら、コア基板103の厚さ方向
の熱膨張率は、無機繊維によっては抑制されにくいの
で、樹脂の熱膨張率に近い値となり、導体層等の熱膨張
率と大きく異なることとなる。このため、コア基板10
3の貫通孔109内に形成されたスルーホール導体11
1には、熱膨張率の違いによる応力が厚さ方向(軸方
向)に掛かり、ヒートサイクル試験などにおいて、スル
ーホール導体111が貫通孔109内で破断するなどの
不具合が発生することがあり、信頼性に乏しい。
However, since the coefficient of thermal expansion in the thickness direction of the core substrate 103 is hardly suppressed by the inorganic fibers, the coefficient of thermal expansion becomes a value close to the coefficient of thermal expansion of the resin, and greatly differs from the coefficient of thermal expansion of the conductor layer and the like. . For this reason, the core substrate 10
3 through-hole conductor 11 formed in through-hole 109
In No. 1, stress due to a difference in thermal expansion coefficient is applied in the thickness direction (axial direction), and in a heat cycle test or the like, a problem such as breakage of the through-hole conductor 111 in the through-hole 109 may occur. Poor reliability.

【0007】本発明はかかる現状に鑑みてなされたもの
であって、スルーホール導体に破断が生じにくく、信頼
性が高い配線基板及び配線基板の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wiring board and a method of manufacturing the wiring board which are less likely to break in the through-hole conductor and have high reliability.

【0008】[0008]

【課題を解決するための手段、作用及び効果】その解決
手段は、主面と裏面とを有し、無機繊維と樹脂との複合
材からなるコア基板と、上記コア基板の主面上に形成さ
れた少なくとも1層の主面側樹脂絶縁層と、上記コア基
板の裏面上に形成された少なくとも1層の裏面側樹脂絶
縁層と、上記コア基板、主面側樹脂絶縁層、及び裏面側
樹脂絶縁層のうち、少なくとも上記コア基板の上記主面
がなす平面と裏面がなす平面との間を貫通する貫通孔
と、上記貫通孔内周面に形成されたスルーホール導体
と、上記コア基板と主面側樹脂絶縁層の間、または主面
側樹脂絶縁層間に形成され、上記貫通孔の主面側端部で
上記スルーホール導体と接続する主面側導体層と、上記
コア基板と裏面側樹脂絶縁層の間、または裏面側樹脂絶
縁層間に形成され、上記貫通孔の裏面側端部で上記スル
ーホール導体と接続する裏面側導体層と、を備え、上記
スルーホール導体の厚さが、上記主面側導体層及び裏面
側導体層の厚さより厚い配線基板である。
Means for Solving the Problems, Action and Effect The solution is to provide a core substrate having a main surface and a back surface, made of a composite material of inorganic fibers and a resin, and formed on the main surface of the core substrate. At least one main-surface-side resin insulation layer, at least one back-surface-side resin insulation layer formed on the back surface of the core substrate, the core substrate, the main-surface-side resin insulation layer, and the back-side resin Of the insulating layer, at least a through hole penetrating between a plane formed by the main surface and a plane formed by the back surface of the core substrate, a through-hole conductor formed on an inner peripheral surface of the through hole, and the core substrate A main-surface-side conductor layer formed between the main-surface-side resin insulation layers or between the main-surface-side resin insulation layers and connected to the through-hole conductor at the main-surface-side end of the through hole; It is formed between resin insulation layers or between resin insulation layers on the back side. A backside conductor layer connected to the through-hole conductor at the backside end of the through-hole, wherein the thickness of the through-hole conductor is greater than the thicknesses of the main surface-side conductor layer and the backside-side conductor layer It is.

【0009】コア基板が無機繊維と樹脂との複合材から
なる配線基板では、前述したように、コア基板の平面方
向の熱膨張率は、比較的小さく、導体層等と同程度にま
で抑えられているが、コア基板の厚さ方向の熱膨張率
は、導体層等と大きく異なっている。具体的に言うと、
例えば、FR−4(ガラス繊維にエポキシ樹脂を含浸さ
せた複合材)からなるコア基板では、平面方向の熱膨張
率が、導体層等の熱膨張率(例えばCuでは17.7p
pm(20〜300℃))と同程度の約15ppmであ
るのに対し、厚さ方向の熱膨張率は、およそ50〜60
ppmであり、導体層等の熱膨張率と大きく異なる。
In a wiring board in which the core substrate is made of a composite material of inorganic fibers and a resin, as described above, the coefficient of thermal expansion in the planar direction of the core substrate is relatively small and can be suppressed to the same level as that of the conductor layer and the like. However, the coefficient of thermal expansion in the thickness direction of the core substrate is significantly different from that of the conductor layer and the like. Specifically,
For example, in a core substrate made of FR-4 (a composite material in which glass fiber is impregnated with an epoxy resin), the coefficient of thermal expansion in the planar direction is equal to the coefficient of thermal expansion of a conductor layer (for example, 17.7 p in Cu).
pm (20-300 ° C.)), while the thermal expansion coefficient in the thickness direction is about 50-60.
ppm, which is significantly different from the coefficient of thermal expansion of the conductor layer and the like.

【0010】従って、コア基板と樹脂絶縁層との間に形
成された主面側導体層及び裏面側導体層には、比較的小
さい応力しか掛からない。また、主面側樹脂絶縁層間及
び裏面側樹脂絶縁層層間に形成された主面側導体層及び
裏面側導体層についても、コア基板の熱膨張率が低いこ
とから、樹脂絶縁層の熱膨張率が抑制されるので、これ
らの導体層に掛かる応力も小さい。一方、コア基板だけ
を貫通するスルーホール導体や、コア基板とコア基板の
主面上及び裏面上に形成した樹脂絶縁層をも貫通するス
ルーホール導体には、コア基板の熱膨張率との違い、樹
脂絶縁層をも貫通する場合には、さらにその樹脂絶縁層
の熱膨張率との違い、による応力が掛かる。このため、
ヒートサイクル試験などにおいて、スルーホール導体が
貫通孔内で破断するなどの不具合が発生しやすい。
Therefore, relatively small stress is applied to the main-surface-side conductor layer and the back-surface-side conductor layer formed between the core substrate and the resin insulating layer. Also, since the thermal expansion coefficient of the core substrate is low, the thermal expansion coefficient of the resin insulating layer of the main surface side conductor layer and the rear surface side conductor layer formed between the main surface side resin insulation layer and the back surface side resin insulation layer is also low. Is suppressed, so that the stress applied to these conductor layers is also small. On the other hand, through-hole conductors that penetrate only the core substrate and through-hole conductors that penetrate the core substrate and the resin insulation layers formed on the main surface and the back surface of the core substrate also differ from the thermal expansion coefficient of the core substrate. In the case where the resin insulating layer also penetrates, a stress is further applied due to a difference from the coefficient of thermal expansion of the resin insulating layer. For this reason,
In a heat cycle test or the like, problems such as breakage of the through-hole conductor in the through-hole easily occur.

【0011】これに対し、本発明では、コア基板の厚さ
方向に形成するスルーホール導体の厚さを、その平面方
向に形成する主面側導体層及び裏面側導体層の厚さより
厚くしている。このため、スルーホール導体に、コア基
板との熱膨張率の違いに起因する応力や、スルーホール
導体が樹脂絶縁層をも貫通する場合には、その樹脂絶縁
層との熱膨張率の違いに起因する応力が掛かっても、ス
ルーホール導体が破断することが防止される。従って、
この配線基板は、スルーホール導体に破断が生じにく
く、信頼性が高い。
On the other hand, in the present invention, the thickness of the through-hole conductor formed in the thickness direction of the core substrate is made larger than the thickness of the main surface side conductor layer and the back surface side conductor layer formed in the plane direction. I have. For this reason, the stress caused by the difference in the coefficient of thermal expansion between the through-hole conductor and the core substrate and the difference in the coefficient of thermal expansion between the through-hole conductor and the resin insulating layer when the through-hole conductor also penetrates the resin insulating layer. Even if the resulting stress is applied, the breakage of the through-hole conductor is prevented. Therefore,
This wiring board is less likely to break in the through-hole conductor and has high reliability.

【0012】ここで、貫通孔としては、コア基板を直接
貫通するものの他、コア基板を貫通する孔の中に充填さ
れた樹脂等の充填体内を貫通するものをも含む。このよ
うな充填体内に形成されたスルーホール導体において
も、コア基板の厚さ方向の熱膨張に伴って充填体も膨張
するので、コア基板とスルーホール導体との熱膨張率の
違いに起因する応力が生じ、スルーホール導体が破断し
やすくなるからである。従って、このようなスルーホー
ル導体の厚さを、主面側導体層及び裏面側導体層の厚さ
より厚くすることで、スルーホール導体の破断を防止す
ることができる。
Here, the through-hole includes not only a hole that directly penetrates the core substrate but also a hole that penetrates a resin or the like filled in the hole penetrating the core substrate. Even in the through-hole conductor formed in such a filling body, the filling body also expands in accordance with the thermal expansion in the thickness direction of the core substrate, which is caused by a difference in the coefficient of thermal expansion between the core substrate and the through-hole conductor. This is because stress is generated and the through-hole conductor is easily broken. Therefore, by making the thickness of such a through-hole conductor thicker than the thickness of the main-surface-side conductor layer and the back-surface-side conductor layer, breakage of the through-hole conductor can be prevented.

【0013】また、無機繊維と樹脂との複合体として
は、配線基板の強度や熱耐性等を考慮して適宜選択すれ
ば良いが、ガラス繊維や石英繊維などの無機繊維からな
る無機繊維布、無機繊維不織布、無機繊維ペーパなど
に、エポキシ樹脂等の樹脂を含浸させたものが挙げられ
る。
The composite of the inorganic fiber and the resin may be appropriately selected in consideration of the strength and heat resistance of the wiring board, but may be selected from inorganic fiber cloths made of inorganic fibers such as glass fiber and quartz fiber. Inorganic fiber nonwoven fabric, inorganic fiber paper, and the like are impregnated with a resin such as an epoxy resin.

【0014】さらに、上記の配線基板であって、前記ス
ルーホール導体の厚さは、軸方向の中央部近傍で最も厚
くされている配線基板とすると良い。
Further, in the above wiring board, it is preferable that the thickness of the through-hole conductor is the thickest in the vicinity of the central portion in the axial direction.

【0015】スルーホール導体に、コア基板との熱膨張
率の違いによる応力が生じる場合、スルーホール導体の
うち最も破断しやすい部分は、傾向的に、軸方向の中央
部近傍であることが判っている。これに対し、本発明で
は、スルーホール導体の厚さが、軸方向の中央部近傍で
最も厚くなっている。つまり、熱膨張率の違いによる応
力により破断しやすい部分ほど厚さが厚くなるようにし
てある。従って、この配線基板は、スルーホール導体に
破断がより生じにくく、信頼性をより一層高くすること
ができる。
When stress is generated in the through-hole conductor due to a difference in the coefficient of thermal expansion from that of the core substrate, it is found that the most susceptible portion of the through-hole conductor tends to be near the center in the axial direction. ing. On the other hand, in the present invention, the thickness of the through-hole conductor is greatest near the center in the axial direction. In other words, the thickness of the portion that is easily broken by the stress due to the difference in the coefficient of thermal expansion is increased. Therefore, in this wiring board, the breakage of the through-hole conductor is less likely to occur, and the reliability can be further improved.

【0016】また、他の解決手段は、主面と裏面とを有
し無機繊維と樹脂との複合材からなるコア基板の所定の
位置に、上記主面と裏面との間を貫通する貫通孔を、ま
たは、上記コア基板と、この主面上及び裏面上に形成さ
れたそれぞれ少なくとも1層の主面側樹脂絶縁層及び裏
面側樹脂絶縁層とからなる基板の所定の位置に、基板主
面と基板裏面との間を貫通する貫通孔を、形成する貫通
孔形成工程と、上記主面上及び裏面上に、または基板主
面上及び基板裏面上に、第1メッキ層を形成するととも
に、上記貫通孔の内周面に上記第1メッキ層よりも厚い
第2メッキ層からなる略筒状のスルーホール導体を形成
するメッキ層形成工程と、上記第1メッキ層をエッチン
グして、所定パターンの導体層を形成する導体層形成工
程と、を備える配線基板の製造方法である。
Another solution is to provide a through hole penetrating between the main surface and the back surface at a predetermined position of a core substrate having a main surface and a back surface and made of a composite material of an inorganic fiber and a resin. Or a substrate main surface at a predetermined position of a substrate comprising the core substrate and at least one main surface side resin insulating layer and at least one back surface resin insulating layer formed on the main surface and the rear surface, respectively. And a through-hole forming step of forming a through-hole penetrating between the substrate and the back surface of the substrate, and forming the first plating layer on the main surface and the back surface, or on the main surface of the substrate and the back surface of the substrate, A plating layer forming step of forming a substantially cylindrical through-hole conductor made of a second plating layer thicker than the first plating layer on the inner peripheral surface of the through hole; and etching the first plating layer to form a predetermined pattern. A conductor layer forming step of forming a conductor layer of It is a method of manufacturing a substrate.

【0017】本発明によれば、メッキ層形成工程におい
て、メッキ手法によって、コア基板の主面上及び裏面上
に、または基板の基板主面上及び基板裏面上に、第1メ
ッキ層を形成するとともに、貫通孔の内周面に第1メッ
キ層よりも厚いスルーホール導体を形成するので、一度
に形成することができる。さらに、スルーホール導体の
厚さを導体層の厚さより厚く形成することにより、スル
ーホール導体にコア基板との熱膨張率の違いに起因する
応力が掛かっても、スルーホール導体が破断することが
防止される。従って、スルーホール導体に破断が生じに
くく、信頼性が高い配線基板を製造することができる。
また、導体層形成工程では、第1メッキ層をエッチング
して導体層を形成するので、スルーホール導体より第1
メッキ層が薄くされていることにより、効率よくまた精
度良くエッチングされるので、導体層のパターン精度を
向上させることもできる。
According to the present invention, in the plating layer forming step, the first plating layer is formed on the main surface and the back surface of the core substrate, or on the main surface of the substrate and the back surface of the substrate by a plating technique. At the same time, since a through-hole conductor thicker than the first plating layer is formed on the inner peripheral surface of the through-hole, they can be formed at once. Furthermore, by forming the thickness of the through-hole conductor thicker than the thickness of the conductor layer, the through-hole conductor can be broken even if stress is applied to the through-hole conductor due to a difference in thermal expansion coefficient with the core substrate. Is prevented. Therefore, the through-hole conductor is less likely to break, and a highly reliable wiring board can be manufactured.
Further, in the conductor layer forming step, the first plating layer is etched to form the conductor layer.
Since the plating layer is thinned, the etching is performed efficiently and accurately, so that the pattern accuracy of the conductor layer can be improved.

【0018】ここで、メッキ層形成工程は、メッキ手法
により第1メッキ層よりも第2メッキ層の厚さを厚くす
る他、以下に示す方法を採ることもできる。即ち、例え
ば、メッキ層形成工程のうちメッキ工程で、コア基板の
主面上及び裏面上に、または基板の基板主面上及び基板
裏面上に、第1メッキ層を形成するとともに、上記貫通
孔の内周面に第2メッキ層を形成する。その後、研磨工
程で、第1メッキ層を研磨除去する。このようにして
も、メッキ層形成工程で、第1メッキ層よりも第2メッ
キ層を厚くすることができる。
Here, in the plating layer forming step, besides making the thickness of the second plating layer larger than that of the first plating layer by a plating technique, the following method can be adopted. That is, for example, in the plating step of the plating layer forming step, the first plating layer is formed on the main surface and the back surface of the core substrate, or on the substrate main surface and the back surface of the substrate, and the through hole is formed. A second plating layer is formed on the inner peripheral surface of the substrate. Thereafter, in a polishing step, the first plating layer is polished and removed. Also in this case, in the plating layer forming step, the second plating layer can be made thicker than the first plating layer.

【0019】また、例えば、メッキ層形成工程のうちメ
ッキ工程で、コア基板の主面上及び裏面上に、または基
板の基板主面上及び基板裏面上に、第1メッキ層を形成
するとともに、上記貫通孔の内周面に第2メッキ層を形
成する。その後、エッチング粗化工程で、蟻酸などを用
いて、メッキ層をエッチングしながら粗化する。このよ
うなエッチング粗化をすると、貫通孔内の第2メッキ層
は粗化されにくいので、第1メッキ層を選択的に薄くす
ることができる。
For example, in the plating step of the plating layer forming step, the first plating layer is formed on the main surface and the back surface of the core substrate, or on the main surface of the substrate and the back surface of the substrate. A second plating layer is formed on the inner peripheral surface of the through hole. Thereafter, in an etching roughening step, the plating layer is roughened while being etched using formic acid or the like. When the etching is roughened, the second plating layer in the through-hole is hardly roughened, so that the first plating layer can be selectively thinned.

【0020】さらに、上記の配線基板の製造方法であっ
て、前記貫通孔形成工程において、レーザにより、軸方
向の中央部近傍で最も径大となる中太貫通孔を形成し、
前記メッキ層形成工程において、前記スルーホール導体
の厚さが、軸方向の中央部近傍で最も厚くなる中厚スル
ーホール導体を形成する配線基板の製造方法とすると良
い。
Further, in the above-described method for manufacturing a wiring board, in the through-hole forming step, a medium-thick through-hole having the largest diameter near the center in the axial direction is formed by a laser.
In the plating layer forming step, a method of manufacturing a wiring board for forming a medium-thick through-hole conductor in which the thickness of the through-hole conductor is largest near the center in the axial direction is preferable.

【0021】本発明によれば、貫通孔形成工程で、軸方
向の中央部近傍が径大な中太貫通孔を形成しているの
で、メッキ層形成工程において、メッキ手法により、ス
ルーホール導体の厚さが、軸方向の中央部近傍で最も厚
くなるスルーホール導体を容易に形成することができ
る。このような中厚スルーホール導体は、コア基板との
熱膨張率の違いによる応力により破断しやすい部分ほど
厚さが厚くなっているので、スルーホール導体の破断が
より確実に防止される。従って、本発明の製造方法によ
れば、スルーホール導体に破断がより生じにくく、信頼
性がさらに高い配線基板を、容易に製造することができ
る。
According to the present invention, in the through hole forming step, the middle through hole having a large diameter near the center in the axial direction is formed. Therefore, in the plating layer forming step, the through hole conductor is formed by a plating technique. A through-hole conductor whose thickness is the thickest near the center in the axial direction can be easily formed. Such a medium-thick through-hole conductor is thicker in a portion that is more likely to be broken by stress due to a difference in the coefficient of thermal expansion from the core substrate, so that the through-hole conductor is more reliably prevented from being broken. Therefore, according to the manufacturing method of the present invention, the through-hole conductor is less likely to break, and a wiring board having higher reliability can be easily manufactured.

【0022】[0022]

【発明の実施の形態】(実施形態1)以下、本発明の実
施の形態を、図面を参照しつつ説明する。本実施形態の
配線基板1の部分拡大断面図を図1に示す。この配線基
板1は、その中心に、ガラス繊維布(無機繊維)にエポ
キシ樹脂(樹脂)を含浸させた複合材からなり、厚さ約
800μmの略板形状をなすコア基板3を備える。その
主面3A上には、厚さ約50μmのエポキシ樹脂等から
なる主面側樹脂絶縁層5が、裏面3B上にも、厚さ約5
0μmのエポキシ樹脂等からなる裏面側樹脂絶縁層7が
それぞれ形成されている。
(Embodiment 1) Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a partially enlarged cross-sectional view of the wiring board 1 of the present embodiment. This wiring board 1 is provided at its center with a core substrate 3 made of a composite material obtained by impregnating a glass fiber cloth (inorganic fiber) with an epoxy resin (resin) and having a substantially plate shape with a thickness of about 800 μm. On the main surface 3A, a main-surface-side resin insulation layer 5 made of epoxy resin or the like having a thickness of about 50 μm is provided.
A backside resin insulation layer 7 made of 0 μm epoxy resin or the like is formed.

【0023】このうちコア基板3には、主面3Aと裏面
3Bとの間を貫通する多数の貫通孔9が形成されてい
る。この貫通孔9は、その主面側端部9A及び裏面側端
部9B近傍から軸方向の中央部9C近傍に向かって徐々
に径大となり、中央部9C近傍で最も径大となる形状の
中太貫通孔9であり、両端部近傍の径はそれぞれ約55
μm、中央部9C近傍の径は約70μmとなっている。
そして、この中太貫通孔9内には、その内周面に、Cu
からなる略筒状のスルーホール導体11が形成されてい
る。このスルーホール導体11は、その主面側端部11
A及び裏面側端部11B近傍から軸方向の中央部11C
近傍に向かって徐々に厚さが厚くなり、中央部11C近
傍で最も厚くなる形状の中厚スルーホール導体11であ
る。両端部近傍の厚さはそれぞれ約25μm、中央部1
1C近傍の厚さは約30〜35μmとなっている。な
お、スルーホール導体11内には、エポキシ樹脂等から
なる樹脂充填体12が形成されている。
The core substrate 3 has a large number of through holes 9 penetrating between the main surface 3A and the back surface 3B. The diameter of the through hole 9 gradually increases from the vicinity of the main surface side end 9A and the rear surface side end 9B toward the vicinity of the central portion 9C in the axial direction, and the through hole 9 has the largest diameter near the center 9C. Thick through holes 9 with diameters near both ends of about 55
μm, and the diameter near the center 9C is about 70 μm.
And, in the inside of this medium-sized through hole 9, Cu
A substantially cylindrical through-hole conductor 11 is formed. This through-hole conductor 11 has a main surface side end 11.
A and the central portion 11C in the axial direction from the vicinity of the rear end portion 11B.
This is a medium-thick through-hole conductor 11 whose thickness gradually increases in the vicinity and becomes thickest in the vicinity of the central portion 11C. The thickness near both ends is about 25 μm each,
The thickness near 1C is about 30 to 35 μm. Note that a resin filler 12 made of epoxy resin or the like is formed in the through-hole conductor 11.

【0024】また、コア基板3の主面3A上、即ちコア
基板3と主面側樹脂絶縁層5との間には、中太貫通孔9
の主面側端部9Aで、中厚スルーホール導体11の主面
側端部11Aと接続する配線層13及び接続パッド14
からなる主面側導体層15が形成されている。同様に、
裏面3B上、即ちコア基板3と裏面側樹脂絶縁層7との
間にも、中太貫通孔9の裏面側端部9Bで、中厚スルー
ホール導体11の裏面側端部11Bと接続する配線層1
7及び接続パッド18からなる裏面側導体層19が形成
されている。これら主面側導体層15及び裏面側導体層
19は、いずれもCuからなり、その厚さが約20μm
となっている。従って、上述した中厚スルーホール導体
11(厚さ約25〜35μm)は、全体に渡って、これ
らの導体層よりも厚くなっている。
On the main surface 3A of the core substrate 3, that is, between the core substrate 3 and the main surface side resin insulating layer 5, a medium through hole 9 is formed.
Wiring layer 13 and connection pad 14 connected to main surface side end 11A of medium thickness through-hole conductor 11 at main surface side end 9A.
The main surface side conductor layer 15 is formed. Similarly,
On the back surface 3B, that is, also between the core substrate 3 and the back surface side resin insulation layer 7, wiring connecting to the back surface side end portion 11B of the medium-thick through-hole conductor 11 at the back side end portion 9B of the medium through hole 9 Tier 1
A back-side conductor layer 19 composed of 7 and connection pads 18 is formed. Each of the main surface side conductor layer 15 and the back surface side conductor layer 19 is made of Cu and has a thickness of about 20 μm.
It has become. Therefore, the above-described medium-thick through-hole conductor 11 (about 25 to 35 μm in thickness) is thicker than these conductor layers throughout.

【0025】また、主面側樹脂絶縁層5には、多数の開
口5Kが形成され、各開口5K内には、この配線基板1
に図示しないICチップを搭載するために、主面側導体
層15の接続パッド14が露出している。同様に、裏面
側樹脂絶縁層7にも、多数の開口7Kが形成され、各開
口7K内には、この配線基板1を図示しない他の基板に
接続するために、裏面側導体層19の接続パッド18が
露出している。
A large number of openings 5K are formed in the resin insulating layer 5 on the main surface side.
In order to mount an IC chip (not shown), the connection pad 14 of the main-surface-side conductor layer 15 is exposed. Similarly, a large number of openings 7K are also formed in the backside resin insulating layer 7, and a connection of the backside conductor layer 19 is provided in each of the openings 7K in order to connect the wiring board 1 to another substrate (not shown). Pad 18 is exposed.

【0026】このような配線基板1は、コア基板3がガ
ラス繊維布とエポキシ樹脂との複合材からできているの
で、コア基板3の平面方向の熱膨張率は、約15ppm
と比較的小さく抑えられ、Cuの熱膨張率(約17.7
ppm)と同程度である。従って、コア基板3と主面側
導体層15及び裏面側導体層19との熱膨張率の差に起
因して生じる平面方向(図中左右方向)の応力は比較的
小さい。一方、コア基板3の厚さ方向の熱膨張率は、ガ
ラス繊維布によってはほとんど抑制されないので、エポ
キシ樹脂の熱膨張率に近い値の約50〜60ppmとな
り、Cuの熱膨張率(約17.7ppm)と大きく異な
る。従って、コア基板3内に形成された中厚スルーホー
ル導体11には、コア基板3と中厚スルーホール導体1
1との熱膨張率の違いによる厚さ方向(軸方向)の応力
が掛かる。
In such a wiring board 1, since the core board 3 is made of a composite material of glass fiber cloth and epoxy resin, the thermal expansion coefficient of the core board 3 in the plane direction is about 15 ppm.
And the coefficient of thermal expansion of Cu (about 17.7).
ppm). Therefore, the stress in the plane direction (the left-right direction in the drawing) caused by the difference in the coefficient of thermal expansion between the core substrate 3 and the main surface side conductor layer 15 and the back surface side conductor layer 19 is relatively small. On the other hand, since the coefficient of thermal expansion in the thickness direction of the core substrate 3 is hardly suppressed by the glass fiber cloth, it is about 50 to 60 ppm, which is a value close to the coefficient of thermal expansion of the epoxy resin, and the coefficient of thermal expansion of Cu (about 17. 7 ppm). Accordingly, the medium-thick through-hole conductor 11 formed in the core substrate 3 includes the core substrate 3 and the medium-thick through-hole conductor 1.
A stress is applied in the thickness direction (axial direction) due to the difference in the coefficient of thermal expansion from 1.

【0027】しかし、本実施形態では、中厚スルーホー
ル導体11の厚さ(約25〜約35μm)を、主面側導
体層15及び裏面側導体層19の厚さ(約20μm)よ
りも厚くしたので、大きな応力が掛かっても、中厚スル
ーホール導体11が破断することが防止される。特に、
中厚スルーホール導体11の厚さを、主面側導体層15
及び裏面側導体層19の厚さの25%増以上の厚さとし
ているので、中厚スルーホール導体11の破断をより効
果的に防止することができる。さらに、本実施形態で
は、中厚スルーホール導体11の厚さが、その軸方向の
中央部11C近傍で最も厚くなっている。つまり、熱膨
張率の違いによる応力により破断しやすい部分ほど厚さ
を厚くしてある。このため、中厚スルーホール導体11
がより破断しにくく、配線基板1の信頼性が高い。
However, in the present embodiment, the thickness (about 25 to about 35 μm) of the medium-thick through-hole conductor 11 is larger than the thickness (about 20 μm) of the main surface side conductor layer 15 and the back surface side conductor layer 19. Accordingly, even when a large stress is applied, the breakage of the medium-thickness through-hole conductor 11 is prevented. In particular,
The thickness of the medium-thick through-hole conductor 11 is
In addition, since the thickness of the backside conductor layer 19 is 25% or more of the thickness of the backside conductor layer 19, breakage of the medium-thick through-hole conductor 11 can be more effectively prevented. Further, in the present embodiment, the thickness of the medium-thickness through-hole conductor 11 is the largest near the central portion 11C in the axial direction. In other words, the thickness is increased in a portion that is easily broken by a stress due to a difference in thermal expansion coefficient. Therefore, the medium-thick through-hole conductor 11
Are more difficult to break, and the reliability of the wiring board 1 is high.

【0028】次に、上記配線基板1の製造方法につい
て、図2及び図3を参照しつつ説明する。まず、図2
(a)に示すように、公知の手法により作製された上記
コア基板3、即ち、ガラス繊維にエポキシ樹脂を含浸さ
せた複合材からなる略板形状のコア基板3を用意する。
Next, a method of manufacturing the wiring board 1 will be described with reference to FIGS. First, FIG.
As shown in (a), the core substrate 3 prepared by a known method, that is, a substantially plate-shaped core substrate 3 made of a composite material in which glass fiber is impregnated with an epoxy resin is prepared.

【0029】次に、貫通孔形成工程において、図2
(b)に示すように、コア基板3の所定位置をレーザで
穿孔し、主面3Aと裏面3Bとの間を貫通する中太貫通
孔9を多数形成する。具体的には、レーザにより、主面
側端部9A及び裏面側端部9B近傍から軸方向の中央部
9C近傍に向かうにつれて徐々に径大となり、中央部9
C近傍で最も径大となる中太貫通孔9を形成する。この
際、レーザの条件等は、コア基板3の材質や厚さ等に応
じて適宜変更すればよいが、ここでは、CO2 レーザを
用いて、その条件をパルス幅が150μmsec、パル
スピークが1KW、ショット数が10回のサイクルパル
ス法としている。このようなレーザ加工で貫通孔9を形
成すれば、別途特別な加工を行わなくても、一挙に中太
貫通孔9を形成することができるので好適である。
Next, in the through hole forming step, FIG.
As shown in (b), a predetermined position of the core substrate 3 is pierced by a laser to form a large number of large through holes 9 penetrating between the main surface 3A and the back surface 3B. Specifically, the diameter gradually increases from the vicinity of the main surface side end portion 9A and the back surface side end portion 9B toward the vicinity of the central portion 9C in the axial direction, and the central portion 9
A middle through hole 9 having the largest diameter near C is formed. At this time, the laser conditions and the like may be changed as appropriate according to the material and thickness of the core substrate 3. In this case, a CO 2 laser is used and the conditions are such that the pulse width is 150 μmsec and the pulse peak is 1 KW. The cycle pulse method has 10 shots. It is preferable to form the through-hole 9 by such laser processing, because the medium-thick through-hole 9 can be formed at once without any special processing.

【0030】次に、メッキ層形成工程において、図3
(a)に示すように、コア基板3の主面3A及び裏面3
B上に第1メッキ層21を形成するとともに、中太貫通
孔9の内周面に、全体に渡って第1メッキ層21より厚
く、かつ、軸方向の中央部近傍に向かうにつれて徐々に
厚さが厚くなる第2メッキ層22、即ち中厚スルーホー
ル導体11を形成する。
Next, in the plating layer forming step, FIG.
As shown in (a), the main surface 3A and the back surface 3 of the core substrate 3
B, the first plating layer 21 is formed on the inner peripheral surface of the middle and thick through-holes 9, and the thickness of the first plating layer 21 is gradually increased toward the vicinity of the central portion in the axial direction. The second plating layer 22 having a large thickness, that is, the medium-thick through-hole conductor 11 is formed.

【0031】具体的には、まず、無電解メッキを施し、
コア基板3の主面3A及び裏面3B並びに中太貫通孔9
の内周面に、無電解メッキ層を形成する。さらに、ブラ
イトナー(光沢剤)を50%希釈したプレディップ槽で
前処理した後、電解メッキを施し、無電解メッキ層上に
電解メッキ層を形成する。この際、電解メッキの条件を
適宜選択して、第1メッキ層21よりも厚く、中央部1
1C近傍が最も厚い中厚スルーホール導体11を形成す
る。ここでは、電解メッキの条件を、Cu濃度が18g
/l、H2SO4が180g/l、Cl- が48mg/
l、レベラー(メッキ抑制剤)が0.3mg/l、電流
密度が1A/dm2 としている。なお、ブライトナーと
しては、チオ尿素、チオカルバーメート等の含イオウ有
機化合物、レベラーとしては、ポリアミン等を用いるこ
とができる。
Specifically, first, electroless plating is performed,
Main surface 3A and back surface 3B of core substrate 3 and medium-sized through hole 9
An electroless plating layer is formed on the inner peripheral surface of the substrate. Furthermore, after pretreatment in a pre-dip tank in which a brightener (brightener) is diluted by 50%, electrolytic plating is performed to form an electrolytic plating layer on the electroless plating layer. At this time, the conditions of the electrolytic plating are appropriately selected, and the thickness of the central portion 1 is larger than that of the first plating layer 21.
A medium-thick through-hole conductor 11 having the thickest portion near 1C is formed. Here, the conditions for the electrolytic plating were as follows:
/ L, H 2 SO 4 is 180g / l, Cl - is 48 mg /
1, the leveler (plating inhibitor) is 0.3 mg / l, and the current density is 1 A / dm 2 . As the brightener, a sulfur-containing organic compound such as thiourea or thiocarbamate can be used, and as the leveler, a polyamine or the like can be used.

【0032】これにより、第1メッキ層21及びこれよ
り厚い中厚スルーホール導体11が、一度に形成され
る。また、本実施形態では、貫通孔形成工程で、中央部
9C近傍が最も径大な中太貫通孔9を形成しているの
で、スルーホール導体11の中央部11C近傍を、主面
側端部11A及び裏面側端部11B近傍よりも、容易に
厚くすることができる。
Thus, the first plating layer 21 and the thicker through-hole conductor 11 having a larger thickness are formed at a time. Further, in the present embodiment, in the through hole forming step, the middle diameter through hole 9 having the largest diameter is formed in the vicinity of the central portion 9C, so that the vicinity of the central portion 11C of the through hole conductor 11 is changed to the main surface side end portion. It can be made thicker than the vicinity of 11A and the back side end 11B.

【0033】次に、充填体形成工程において、中厚スル
ーホール導体11内に、樹脂充填体12を形成する(図
3(b)参照)。具体的には、中厚スルーホール導体1
1内に、エポキシ樹脂に無機フィラーと硬化剤とを混ぜ
た樹脂ペーストを印刷充填し、これを加熱して半硬化さ
せる。その後、コア基板3の主面3A及び裏面3Bから
膨出した余分な樹脂を研磨除去し、さらに、半硬化の樹
脂を加熱硬化させて、樹脂充填体12を形成する。
Next, in a filling body forming step, a resin filling body 12 is formed in the medium-thick through-hole conductor 11 (see FIG. 3B). Specifically, the medium-thick through-hole conductor 1
A resin paste in which an epoxy resin is mixed with an inorganic filler and a curing agent is printed and filled in 1 and heated and semi-cured. Thereafter, excess resin swelling from the main surface 3A and the back surface 3B of the core substrate 3 is polished and removed, and the semi-cured resin is cured by heating to form the resin filler 12.

【0034】次に、導体層形成工程において、図3
(b)に示すように、第1メッキ層21をエッチング
し、所定パターンの主面側導体層15及び裏面側導体層
19(導体層)を形成する。具体的には、第1メッキ層
21等上に所定パターンのエッチングレジスト層を形成
し、このレジスト層から露出する第1メッキ層21をエ
ッチング除去することにより、主面側導体層15及び裏
面側導体層19を形成する。その際、上記メッキ層形成
工程で、第1メッキ層21は中厚スルーホール導体11
よりも薄くしてあるので、効率良くまた精度良くエッチ
ングすることができ、パターン精度の高い主面側導体層
15及び裏面側導体層19を形成することができる。
Next, in the conductor layer forming step, FIG.
As shown in (b), the first plating layer 21 is etched to form the main surface side conductor layer 15 and the rear surface side conductor layer 19 (conductor layer) in a predetermined pattern. Specifically, an etching resist layer having a predetermined pattern is formed on the first plating layer 21 and the like, and the first plating layer 21 exposed from the resist layer is removed by etching, so that the main-surface-side conductor layer 15 and the rear-surface-side The conductor layer 19 is formed. At this time, in the plating layer forming step, the first plating layer 21 is formed into the medium thickness through-hole conductor 11.
Since the thickness is thinner than that, the etching can be performed efficiently and accurately, and the main surface side conductor layer 15 and the back surface side conductor layer 19 with high pattern accuracy can be formed.

【0035】次に、樹脂絶縁層形成工程において、コア
基板3の主面3A上に、開口5Kを有する主面側樹脂絶
縁層5を、裏面3B上に、開口7Kを有する裏面側樹脂
絶縁層7をそれぞれ形成する。具体的には、コア基板3
の主面3A及び裏面3B上に、エポキシ樹脂等からなる
半硬化の主面側樹脂絶縁層及び裏面側樹脂絶縁層を形成
し、開口5K,7Kに対応した所定パターンを有するマ
スクを用いてそれぞれ露光し、さらに現像する。その
後、さらに加熱処理し硬化させて、開口5Kを有する主
面側樹脂絶縁層5及び開口7Kを有する裏面側樹脂絶縁
層7を形成する。この工程においても、主面側導体層1
5及び裏面側導体層19が比較的薄くされているので、
主面3A及び裏面3Bの凹凸が小さくなり、主面側樹脂
絶縁層5及び裏面側樹脂絶縁層7の表面をより平坦に形
成することができる。以上のようにして、図1に示す本
実施形態の配線基板1が完成する。
Next, in the resin insulating layer forming step, the main surface side resin insulating layer 5 having the opening 5K is formed on the main surface 3A of the core substrate 3, and the back side resin insulating layer having the opening 7K is formed on the back surface 3B. 7 are formed respectively. Specifically, the core substrate 3
A semi-cured main-surface-side resin insulating layer made of epoxy resin or the like and a back-side resin insulating layer are formed on the main surface 3A and the back surface 3B, respectively, using a mask having a predetermined pattern corresponding to the openings 5K and 7K. Exposure and further development. Thereafter, the substrate is further heated and cured to form the main surface side resin insulating layer 5 having the opening 5K and the back surface side resin insulating layer 7 having the opening 7K. Also in this step, the main surface side conductor layer 1
5 and the back side conductor layer 19 are relatively thin,
The unevenness of the main surface 3A and the back surface 3B is reduced, and the surfaces of the main surface side resin insulation layer 5 and the back surface side resin insulation layer 7 can be formed more flat. As described above, the wiring board 1 of the present embodiment shown in FIG. 1 is completed.

【0036】(実施形態2)次いで、実施形態2の配線
基板及び配線基板の製造方法について、図4〜図7を参
照しつつ説明する。なお、上記実施形態1と同様な部分
の説明は、省略または簡略化する。本実施形態の配線基
板51の部分拡大断面図を図4に示す。この配線基板5
1は、上記実施形態1のコア基板3と同様なコア基板5
3を備える。その主面53A上には、厚さ約50μmの
エポキシ樹脂等からなる主面側第1樹脂絶縁層55P、
及び、その上に積層された厚さ約40μmのエポキシ樹
脂等からなる主面側第2樹脂絶縁層55Qの2層からな
る主面側樹脂絶縁層55が形成されている。また、裏面
53B上にも、厚さ約50μmのエポキシ樹脂等からな
る裏面側第1樹脂絶縁層57P、及び、その上に積層さ
れた厚さ約40μmのエポキシ樹脂等からなる裏面側第
2樹脂絶縁層57Qの2層からなる裏面側樹脂絶縁層5
7が形成されている。
(Embodiment 2) Next, a wiring board and a method of manufacturing the wiring board of Embodiment 2 will be described with reference to FIGS. The description of the same parts as in the first embodiment will be omitted or simplified. FIG. 4 is a partially enlarged cross-sectional view of the wiring board 51 of the present embodiment. This wiring board 5
1 is a core substrate 5 similar to the core substrate 3 of the first embodiment.
3 is provided. On the main surface 53A, a main surface side first resin insulation layer 55P made of epoxy resin or the like having a thickness of about 50 μm,
Further, a main-surface-side resin insulating layer 55 composed of two main-surface-side second resin insulating layers 55Q made of epoxy resin or the like having a thickness of about 40 μm and laminated thereon is formed. Also, on the back surface 53B, a back side first resin insulating layer 57P made of an epoxy resin or the like having a thickness of about 50 μm, and a back side second resin made of an epoxy resin or the like having a thickness of about 40 μm laminated thereon. Back side resin insulating layer 5 composed of two layers of insulating layer 57Q
7 are formed.

【0037】このうちコア基板53には、その主面53
Aと裏面53Bとの間を貫通する多数の外側貫通孔59
(貫通孔)が形成されている。この外側貫通孔59は、
直径約300μmの略円筒状をなし、その内周面には、
厚さ約25μmのCuからなる略円筒状の外側スルーホ
ール導体61(スルーホール導体)が形成されている。
そして、外側スルーホール導体61内には、エポキシ樹
脂等からなる外側樹脂充填体62が形成されている。
The core substrate 53 has a main surface 53
A number of outer through holes 59 penetrating between A and the back surface 53B
(Through holes) are formed. This outer through hole 59 is
It has a substantially cylindrical shape with a diameter of about 300 μm, and its inner peripheral surface has
A substantially cylindrical outer through-hole conductor 61 (through-hole conductor) made of Cu having a thickness of about 25 μm is formed.
An outer resin filler 62 made of an epoxy resin or the like is formed in the outer through-hole conductor 61.

【0038】外側樹脂充填体62内には、外側貫通孔5
9(外側スルーホール導体61)と略同軸で、コア基板
53の主面53Aがなす平面と裏面53Bがなす平面と
の間を貫通し、さらに、主面側第1樹脂絶縁層55P及
び裏面側第1樹脂絶縁層57Pをも貫通する内側貫通孔
63が形成されている。この内側貫通孔63は、コア基
板53と主面側樹脂絶縁層55との境界、及びコア基板
53と裏面側樹脂絶縁層57との境界から、軸方向の中
央部63C近傍に向かうにつれて徐々に径大となり、中
央部63C近傍で最も径大となる。また、これらの境界
から主面側端部63A及び裏面側端部63Bに向かうに
つれて徐々に径大となる形状の内側中太貫通孔である。
各境界における径はそれぞれ約55μm、中央部63C
近傍の径は約70μm、主面側端部63A及び裏面側端
部63B近傍の径はそれぞれ約70μmとなっている。
The outer resin filler 62 has an outer through hole 5
9 (outer through-hole conductor 61), penetrating between a plane formed by the main surface 53A of the core substrate 53 and a plane formed by the back surface 53B, and further formed on the main surface side first resin insulating layer 55P and the back surface side. An inner through-hole 63 that penetrates also the first resin insulating layer 57P is formed. The inner through-hole 63 gradually extends from the boundary between the core substrate 53 and the main surface side resin insulating layer 55 and the boundary between the core substrate 53 and the back surface side resin insulating layer 57 toward the vicinity of the central portion 63C in the axial direction. The diameter becomes large and becomes the largest in the vicinity of the central portion 63C. In addition, the inner through hole has a shape whose diameter gradually increases from the boundary toward the main surface side end portion 63A and the back surface side end portion 63B.
The diameter at each boundary is about 55 μm, and the central part 63C
The diameter in the vicinity is about 70 μm, and the diameter in the vicinity of the main surface side end 63A and the back surface side end 63B is about 70 μm, respectively.

【0039】そして、この内側中太貫通孔63の内周面
には、外側スルーホール導体61と略同軸で、Cuから
なる略筒状の内側スルーホール導体65が形成されてい
る。この内側スルーホール導体65は、その主面側端部
65A及び裏面側端部65B近傍から、軸方向の中央部
65C近傍に向かって、徐々に厚さが厚くなり、中央部
65C近傍で最も厚くなる形状の内側中厚スルーホール
導体65である。主面側端部65A及び裏面側端部65
B近傍の厚さはそれぞれ約25μm、中央部65C近傍
の厚さは約30〜35μmとなっている。なお、内側中
厚スルーホール導体65内には、エポキシ樹脂等からな
る内側樹脂充填体66が形成されている。
A substantially cylindrical inner through-hole conductor 65 made of Cu and formed substantially coaxially with the outer through-hole conductor 61 is formed on the inner peripheral surface of the inner and middle through-hole 63. The thickness of the inner through-hole conductor 65 gradually increases from the vicinity of the main surface side end 65A and the rear surface side end 65B toward the vicinity of the central portion 65C in the axial direction, and becomes thickest near the central portion 65C. An inner middle through-hole conductor 65 having the following shape. Main surface side end 65A and back surface side end 65
The thickness in the vicinity of B is about 25 μm, and the thickness in the vicinity of the central portion 65C is about 30 to 35 μm. Note that an inside resin filler 66 made of epoxy resin or the like is formed in the inside medium thickness through-hole conductor 65.

【0040】コア基板53と主面側樹脂絶縁層55(主
面側第1樹脂絶縁層55P)との間には、外側貫通孔5
9の主面側端部59Aで、外側スルーホール導体61の
主面側端部61Aと接続する配線層からなる主面側コア
導体層69(主面側導体層)が形成されている。同様
に、コア基板53と裏面側樹脂絶縁層57(裏面側第1
樹脂絶縁層57P)との間にも、外側貫通孔59の裏面
側端部59Bで、外側スルーホール導体61の裏面側端
部61Bと接続する配線層からなる裏面側コア導体層7
1(裏面側導体層)が形成されている。これら主面側コ
ア導体層69及び裏面側コア導体層71は、いずれもC
uからなり、その厚さが約20μmとなっている。従っ
て、前述した外側スルーホール導体61(厚さ約25μ
m)は、これらの導体層よりも厚くなっている。
The outer through hole 5 is provided between the core substrate 53 and the main-surface-side resin insulating layer 55 (the main-surface-side first resin insulating layer 55P).
A main surface side core conductor layer 69 (main surface side conductor layer) composed of a wiring layer connected to the main surface side end portion 61A of the outer through-hole conductor 61 is formed at the main surface side end portion 59A. Similarly, the core substrate 53 and the back side resin insulating layer 57 (the back side first
The back-side core conductor layer 7 formed of a wiring layer connected to the back-side end 61B of the outer through-hole conductor 61 at the back-side end 59B of the outer through-hole 59 also between itself and the resin insulating layer 57P).
1 (backside conductor layer) is formed. Both the main surface side core conductor layer 69 and the rear surface side core conductor layer 71
u, and its thickness is about 20 μm. Therefore, the above-mentioned outer through-hole conductor 61 (about 25 μm thick)
m) is thicker than these conductor layers.

【0041】また、主面側樹脂絶縁層55間(主面側第
1樹脂絶縁層55Pと主面側第2樹脂絶縁層55Qとの
間)には、内側中太貫通孔63の主面側端部63Aで、
内側中厚スルーホール導体65の主面側端部65Aと接
続する配線層73や接続パッド74からなる主面側層間
導体層75(主面側導体層)が形成されている。同様
に、裏面側樹脂絶縁層57間(裏面側第1樹脂絶縁層5
7Pと裏面側第2樹脂絶縁層57Qとの間)にも、内側
中太貫通孔63の裏面側端部63Bで、内側中厚スルー
ホール導体65の裏面側端部65Bと接続する配線層7
7や接続パッド78からなる裏面側層間導体層79(裏
面側導体層)が形成されている。これら主面側層間導体
層75及び裏面側層間導体層79は、いずれもCuから
なり、その厚さが約20μmとなっている。従って、前
述した内側中厚スルーホール導体65の厚さ(約25〜
35μm)は、全体に渡って、これらの導体層よりも厚
くなっている。
Further, between the main-surface-side resin insulation layers 55 (between the main-surface-side first resin insulation layers 55P and the main-surface-side second resin insulation layers 55Q), the main-surface-side inner through hole 63 has At the end 63A,
A main surface side interlayer conductor layer 75 (main surface side conductor layer) including a wiring layer 73 and a connection pad 74 connected to the main surface side end portion 65A of the inner middle through-hole conductor 65 is formed. Similarly, between the back side resin insulation layers 57 (the back side first resin insulation layer 5).
7P and the back side second resin insulating layer 57Q), the wiring layer 7 connected to the back side end 65B of the inner middle through-hole conductor 65 at the back side end 63B of the inner middle through hole 63.
A back-side interlayer conductor layer 79 (back-side conductor layer) including the connection pads 7 and the connection pads 78 is formed. Each of the main surface side interlayer conductor layer 75 and the back surface side interlayer conductor layer 79 is made of Cu and has a thickness of about 20 μm. Therefore, the thickness of the above-mentioned inner middle through-hole conductor 65 (about 25 to
35 μm) is thicker than these conductor layers throughout.

【0042】また、主面側樹脂絶縁層55のうち主面側
第1樹脂絶縁層55P内には、主面側コア導体層69と
主面側層間導体層75とを接続する主面側ビア導体81
が多数形成され、裏面側樹脂絶縁層57のうち裏面側第
1樹脂絶縁層57Pにも、裏面側コア導体層71と裏面
側層間導体層79とを接続する裏面側ビア導体83が多
数形成されている。
In the main-surface-side first resin insulation layer 55P of the main-surface-side resin insulation layer 55, a main-surface-side via for connecting the main-surface-side core conductor layer 69 and the main-surface-side interlayer conductor layer 75 is provided. Conductor 81
A large number of back side via conductors 83 connecting the back side core conductor layer 71 and the back side interlayer conductor layer 79 are also formed on the back side first resin insulation layer 57P of the back side resin insulation layer 57. ing.

【0043】さらに、主面側樹脂絶縁層55のうち主面
側第2樹脂絶縁層55Qには、多数の開口55Kが形成
され、各開口55K内には、主面側層間導体層75の接
続パッド74が露出している。同様に、裏面側樹脂絶縁
層57のうち裏面側第2樹脂絶縁層57Qにも、多数の
開口57Kが形成され、各開口57K内には、裏面側層
間導体層79の接続パッド78が露出している。
Further, a large number of openings 55K are formed in the second resin insulating layer 55Q on the main surface side of the resin insulating layer 55 on the main surface side, and a connection of the main surface side interlayer conductor layer 75 is formed in each opening 55K. The pad 74 is exposed. Similarly, a large number of openings 57K are formed in the second resin insulating layer 57Q on the back surface of the resin insulating layer 57 on the back surface, and the connection pads 78 of the back surface side interlayer conductor layer 79 are exposed in each opening 57K. ing.

【0044】このような配線基板51は、上記実施形態
1と同様に、コア基板53の平面方向の熱膨張率(約1
5ppm)が、Cuの熱膨張率(約17.7ppm)と
同程度である。従って、コア基板53と、主面側コア導
体層69及び裏面側コア導体層71との熱膨張率の差に
起因して生じる平面方向の応力は小さい。また、コア基
板53により主面側樹脂絶縁層55及び裏面側樹脂絶縁
層57の平面方向の熱膨張率も抑制されるので、主面側
樹脂絶縁層55間の主面側層間導体層75及び裏面側樹
脂絶縁層57間の裏面側層間導体層79についても、熱
膨張率の差に起因して生じる応力は小さい。
The wiring board 51 has a coefficient of thermal expansion (about 1) in the plane direction of the core board 53, as in the first embodiment.
5 ppm) is about the same as the coefficient of thermal expansion of Cu (about 17.7 ppm). Therefore, the stress in the plane direction caused by the difference in the coefficient of thermal expansion between the core substrate 53 and the main surface side core conductor layer 69 and the back surface side core conductor layer 71 is small. In addition, the core substrate 53 also suppresses the coefficient of thermal expansion of the main surface side resin insulation layer 55 and the back surface side resin insulation layer 57 in the planar direction. Also in the back side interlayer conductor layer 79 between the back side resin insulation layers 57, the stress generated due to the difference in the coefficient of thermal expansion is small.

【0045】一方、コア基板53の厚さ方向の熱膨張率
(約50〜60ppm)は、Cuの熱膨張率(約17.
7ppm)と大きく異なる。従って、コア基板53だけ
を貫通する外側スルーホール導体61には、コア基板5
3とCuとの熱膨張率との違いによる厚さ方向(軸方
向)の応力が掛かる。また、コア基板53が膨張する
と、それに伴い外側樹脂充填体62も厚さ方向に引っ張
られる。また、主面側第1樹脂絶縁層55P及び裏面側
第1樹脂絶縁層55Qも厚さ方向に膨張する。このた
め、コア基板53、主面側第1樹脂絶縁層55P及び裏
面側第1樹脂絶縁層55Qを貫通する内側中厚スルーホ
ール導体65にも、熱膨張率の違いに起因する厚さ方向
(軸方向)の応力が掛かる。
On the other hand, the coefficient of thermal expansion in the thickness direction of the core substrate 53 (about 50 to 60 ppm) is the same as the coefficient of thermal expansion of Cu (about 17.6 ppm).
7 ppm). Therefore, the outer through-hole conductor 61 penetrating only through the core substrate 53 is provided with the core substrate 5.
Stress in the thickness direction (axial direction) is applied due to the difference between the coefficient of thermal expansion of Cu and the coefficient of thermal expansion of Cu. When the core substrate 53 expands, the outer resin filler 62 is also pulled in the thickness direction. In addition, the main surface side first resin insulation layer 55P and the back surface side first resin insulation layer 55Q also expand in the thickness direction. For this reason, the thickness direction (due to the difference in the coefficient of thermal expansion) also occurs in the inner middle through-hole conductor 65 penetrating the core substrate 53, the main surface side first resin insulation layer 55P, and the back surface side first resin insulation layer 55Q. (Axial direction) stress is applied.

【0046】しかし、本実施形態では、外側スルーホー
ル導体61の厚さ(約25μm)や内側中厚スルーホー
ル導体65の厚さ(約25〜35μm)を、主面側コア
導体層69、裏面側コア導体層71、主面側層間導体層
75及び裏面側層間導体層79(いずれも約20μm)
よりも厚くしたので、大きな応力が掛かっても、これら
のスルーホール導体が破断することが防止される。さら
に、内側中厚スルーホール導体65については、上記実
施形態1の中厚スルーホール導体11と同様に、その厚
さが中央部65C近傍で最も厚くなっているので、より
破断しにくく、配線基板51の信頼性が高い。
However, in this embodiment, the thickness of the outer through-hole conductor 61 (about 25 μm) and the thickness of the inner middle through-hole conductor 65 (about 25 to 35 μm) are determined by changing the main surface side core conductor layer 69 and the back surface. Side core conductor layer 71, main surface side interlayer conductor layer 75, and back surface side interlayer conductor layer 79 (each about 20 μm)
The through-hole conductors are prevented from breaking even when a large stress is applied. Further, the inner middle through-hole conductor 65 is thickest in the vicinity of the central portion 65C as in the case of the middle through-hole conductor 11 of the first embodiment. 51 is highly reliable.

【0047】次に、上記配線基板51の製造方法につい
て、図5〜図7を参照しつつ説明する。まず、上記実施
形態1と同様なコア基板53を用意し、外側貫通孔形成
工程において、図5(a)に示すように、コア基板53
の所定位置をドリルで穿孔し、主面53Aと裏面53B
との間を貫通する外側貫通孔59を多数形成する。な
お、この外側貫通孔59は、径(約300μm)が大き
いので作業効率等を考慮して、ドリルによって穿孔す
る。従って、上記実施形態1の貫通孔9や本実施形態の
内側貫通孔63と異なり、略円筒状の貫通孔である。
Next, a method for manufacturing the wiring board 51 will be described with reference to FIGS. First, a core substrate 53 similar to that of the first embodiment is prepared, and in the outer through-hole forming step, as shown in FIG.
The main surface 53A and the back surface 53B
And a large number of outer through holes 59 penetrating therethrough. Since the outer through-hole 59 has a large diameter (about 300 μm), the outer through-hole 59 is drilled with a drill in consideration of work efficiency and the like. Therefore, unlike the through hole 9 of the first embodiment and the inner through hole 63 of the present embodiment, the through hole 9 is a substantially cylindrical through hole.

【0048】次に、コアメッキ層形成工程において、図
5(b)に示すように、コア基板53の主面53A及び
裏面53B上に第1コアメッキ層85(第1メッキ層)
を形成するとともに、外側貫通孔59の内周面に、第1
コアメッキ層85より厚い第2コアメッキ層87(第2
メッキ層)からなる外側スルーホール導体61を形成す
る。具体的には、上記実施形態1のメッキ層形成工程と
同様にして、無電解メッキ及び電解メッキを施せばよ
い。これにより、第1コアメッキ層85及びこれより厚
い外側スルーホール導体61が、一度に形成される。
Next, in a core plating layer forming step, as shown in FIG. 5B, a first core plating layer 85 (first plating layer) is formed on the main surface 53A and the back surface 53B of the core substrate 53.
And the inner peripheral surface of the outer through hole 59 is provided with the first
The second core plating layer 87 (second
An outer through-hole conductor 61 made of a plating layer) is formed. Specifically, the electroless plating and the electrolytic plating may be performed in the same manner as in the plating layer forming step of the first embodiment. As a result, the first core plating layer 85 and the thicker outer through-hole conductor 61 are formed at one time.

【0049】次に、外側充填体形成工程において、外側
スルーホール導体61内に、外側樹脂充填体62を形成
する(図6(a)参照)。具体的には、外側スルーホー
ル導体61内に、エポキシ樹脂に無機フィラーと硬化剤
とを混ぜた樹脂ペーストを印刷充填し、これを加熱して
半硬化させる。その後、コア基板53の主面53A及び
裏面53Bから膨出した余分な樹脂を研磨除去し、さら
に、半硬化の樹脂を加熱硬化させて、外側樹脂充填体6
2を形成する。なお、樹脂ペーストとしては、25℃に
おける粘度が2000Pa・S以下、弾性率が3.0〜
8.0GPaであり、加熱によるペーストの揮発分が
1.0%以下のものを用いると印刷充填性が良く、ま
た、硬化後のクラック発生防止の点で好ましい。さらに
は、無機フィラーは粒径0.1〜10μmの球状のフィ
ラーであるものが好ましい。
Next, in the outer filler forming step, an outer resin filler 62 is formed in the outer through-hole conductor 61 (see FIG. 6A). Specifically, a resin paste in which an epoxy resin is mixed with an inorganic filler and a curing agent is printed and filled in the outer through-hole conductor 61, and the resin paste is heated and semi-cured. After that, excess resin swelling from the main surface 53A and the back surface 53B of the core substrate 53 is polished and removed, and the semi-cured resin is cured by heating to form the outer resin filler 6.
Form 2 The resin paste has a viscosity at 25 ° C. of 2000 Pa · S or less and an elastic modulus of 3.0 to 3.0.
It is preferable to use a paste having a GPa of 8.0 GPa and a volatile content of the paste of 1.0% or less when heated, in terms of good print filling properties and prevention of cracking after curing. Further, the inorganic filler is preferably a spherical filler having a particle size of 0.1 to 10 μm.

【0050】次に、コア導体層形成工程において、上記
実施形態1の導体層形成工程と同様にして、第1コアメ
ッキ層85をエッチングし、所定パターンの主面側コア
導体層69及び裏面側コア導体層71を形成する(図6
(a)参照)。その際、前記コアメッキ層形成工程で、
第1コアメッキ層85は外側スルーホール導体61より
も薄くしてあるので、効率良くまた精度良くエッチング
することができ、パターン精度の高い主面側コア導体層
69及び裏面側コア導体層71を形成することができ
る。
Next, in the core conductor layer forming step, the first core plating layer 85 is etched in the same manner as in the conductor layer forming step of the first embodiment, and the main conductor core layer 69 and the rear core core in a predetermined pattern are formed. The conductor layer 71 is formed (FIG. 6
(A)). At that time, in the core plating layer forming step,
Since the first core plating layer 85 is thinner than the outer through-hole conductor 61, the first core plating layer 85 can be efficiently and accurately etched, and the main surface side core conductor layer 69 and the rear surface side core conductor layer 71 having high pattern accuracy are formed. can do.

【0051】次に、第1樹脂絶縁層形成工程において、
上記実施形態1の樹脂絶縁層形成工程と同様にして、図
6(a)に示すように、コア基板53の主面53A上
に、有底孔55Yを有する主面側第1樹脂絶縁層55P
を、裏面53B上にも、有底孔57Yを有する裏面側第
1樹脂絶縁層57Pをそれぞれ形成する。
Next, in the first resin insulating layer forming step,
As shown in FIG. 6A, the main surface side first resin insulating layer 55P having the bottomed hole 55Y on the main surface 53A of the core substrate 53 in the same manner as in the resin insulating layer forming step of the first embodiment.
Are also formed on the back surface 53B, respectively, on the back surface side first resin insulating layer 57P having the bottomed hole 57Y.

【0052】次に、内側貫通孔形成工程において、図6
(b)に示すように、コア基板53と主面側第1樹脂絶
縁層55P及び裏面側第1樹脂絶縁層57Pとからなる
基板89の所定位置をレーザで穿孔し、この基板主面8
9Aと基板裏面89Bとの間を貫通する内側中太貫通孔
63を多数形成する。具体的には、上記実施形態1の貫
通孔形成工程と同様なレーザの条件により、中央部63
C近傍が最も径大な内側中太貫通孔63を形成する。こ
のとき、主面側第1絶縁層55P及び裏面側第1樹脂絶
縁層57Pは、コア基板53に比してレーザ加工されや
すいので、これらの樹脂絶縁層内では、内側中太貫通孔
63は、主面側端部63A及び裏面側端部63Bに向か
うにつれて径大な形状となる。このようにレーザ加工す
れば、別途特別な加工を行わなくても、一挙に内側中太
貫通孔63を形成することができる。
Next, in the inner through-hole forming step, FIG.
As shown in (b), a predetermined position of a substrate 89 composed of the core substrate 53, the first resin insulating layer 55P on the main surface side, and the first resin insulating layer 57P on the back surface is pierced by a laser, and the substrate main surface 8 is formed.
A large number of inner middle through holes 63 penetrating between 9A and the back surface 89B of the substrate are formed. Specifically, the central portion 63 is formed under the same laser conditions as in the through-hole forming step of the first embodiment.
The vicinity of C forms the largest inner middle through hole 63. At this time, the main surface side first insulation layer 55P and the back surface side first resin insulation layer 57P are easier to be laser-processed than the core substrate 53. The diameter becomes larger toward the main surface side end portion 63A and the rear surface side end portion 63B. By performing the laser processing in this manner, the inner and middle through-holes 63 can be formed at once without performing special processing.

【0053】次に、基板メッキ層形成工程において、図
7(a)に示すように、基板89の基板主面89A及び
基板裏面89B上に第1基板メッキ層91(第1メッキ
層)を、また、有底孔55Y,57Y内に主面側ビア導
体81及び裏面側ビア導体83を形成する。また、これ
らとともに、内側中太貫通孔63の内周面に、全体に渡
って第1基板メッキ層91より厚く、かつ、軸方向の中
央部近傍に向かうにつれて徐々に厚さが厚くなる第2基
板メッキ層93からなる内側中厚スルーホール導体65
を形成する。
Next, in the substrate plating layer forming step, as shown in FIG. 7A, a first substrate plating layer 91 (first plating layer) is formed on the substrate main surface 89A and the substrate back surface 89B of the substrate 89. Further, the main surface side via conductor 81 and the back surface side via conductor 83 are formed in the bottomed holes 55Y and 57Y. Along with these, on the inner peripheral surface of the inner middle thick through-hole 63, a second thickness that is thicker than the first substrate plating layer 91 over the entirety and gradually increases toward the vicinity of the central portion in the axial direction. Inner middle thickness through-hole conductor 65 composed of substrate plating layer 93
To form

【0054】具体的には、上記実施形態1のメッキ層形
成工程及び本実施形態のコア基板メッキ層形成工程と同
様にして、無電解メッキ及び電解メッキを施せばよい。
これにより、第1基板メッキ層91、これより厚い内側
中厚スルーホール導体65、及びビア導体が、一度に形
成される。また、その際、内側貫通孔形成工程では、中
央部63C近傍が径大な内側中太貫通孔63を形成して
いるので、内側スルーホール導体65の中央部65C近
傍を、主面側端部65A及び裏面側端部65B近傍に比
して、容易に厚くすることができる。
Specifically, the electroless plating and the electrolytic plating may be performed in the same manner as the plating layer forming step of the first embodiment and the core substrate plating layer forming step of the present embodiment.
As a result, the first substrate plating layer 91, the inner middle through-hole conductor 65 thicker than this, and the via conductor are formed at one time. Also, at this time, in the inside through-hole forming step, since the large diameter inside middle through-hole 63 is formed in the vicinity of the center portion 63C, the vicinity of the center portion 65C of the inside through-hole conductor 65 is changed to the main surface side end portion. The thickness can be easily increased as compared with the vicinity of 65A and the back side end 65B.

【0055】次に、内側充填体形成工程において、内側
中太スルーホール導体65内に、内側樹脂充填体66を
形成する(図7(b)参照)。具体的には、内側中太ス
ルーホール導体65内に、エポキシ樹脂に金属フィラー
と無機フィラーと硬化剤とを混ぜた樹脂ペーストを印刷
充填し、これを加熱して半硬化させる。その後、基板8
9の主面89A及び裏面89Bから膨出した余分な樹脂
を研磨除去し、さらに、半硬化の樹脂を加熱硬化させ
て、外側樹脂充填体66を形成する。なお、樹脂ペース
トとしては、前記外側充填体形成工程で述べた物性値の
範囲内のものを用いるのが好ましく、さらには、金属フ
ィラーは粒径1.0〜20μmの球状のフィラーである
ものが好ましい。
Next, in the inner filling body forming step, the inner resin filling body 66 is formed in the inner middle thick through-hole conductor 65 (see FIG. 7B). Specifically, a resin paste in which a metal filler, an inorganic filler, and a curing agent are mixed into an epoxy resin is printed and filled in the inner middle-thick through-hole conductor 65, and the resin paste is heated and semi-cured. Then, the substrate 8
Excess resin that swells from the main surface 89A and the back surface 89B of 9 is polished and removed, and the semi-cured resin is cured by heating to form the outer resin filler 66. In addition, as the resin paste, it is preferable to use a resin paste having a physical property value in the range described in the outer filler forming step. Further, the metal filler is preferably a spherical filler having a particle size of 1.0 to 20 μm. preferable.

【0056】次に、層間導体層形成工程において、上記
コア導体層形成工程と同様にして、図7(b)に示すよ
うに、第1基板メッキ層91をエッチングし、所定パタ
ーンの主面側層間導体層75及び裏面側層間導体層79
を形成する。その際、前記基板メッキ層形成工程で、第
1基板メッキ層91は、内側中厚スルーホール導体65
よりも薄くしてあるので、効率良くまた精度良くエッチ
ングすることができ、パターン精度の高い主面側層間導
体層75及び裏面側層間導体層79を形成することがで
きる。
Next, in the step of forming the interlayer conductor layer, the first substrate plating layer 91 is etched as shown in FIG. Interlayer conductor layer 75 and backside interlayer conductor layer 79
To form At this time, in the substrate plating layer forming step, the first substrate plating layer 91 is
Since the thickness is smaller than that, the etching can be performed efficiently and accurately, and the main surface side interlayer conductor layer 75 and the back surface side interlayer conductor layer 79 with high pattern accuracy can be formed.

【0057】次に、第2樹脂絶縁層形成工程において、
前記第1樹脂絶縁層形成工程と同様にして、基板89の
基板主面89A上に、開口55Kを有する主面側第2樹
脂絶縁層55Qを、基板裏面89B上に、開口57Kを
有する裏面側第2樹脂絶縁層57Qをそれぞれ形成す
る。以上のようにして、図4に示す本実施形態の配線基
板51が完成する。
Next, in the second resin insulating layer forming step,
Similarly to the first resin insulating layer forming step, a main surface side second resin insulating layer 55Q having an opening 55K is formed on the substrate main surface 89A of the substrate 89, and a back surface having an opening 57K is formed on the substrate back surface 89B. The second resin insulation layers 57Q are respectively formed. As described above, the wiring board 51 of the present embodiment shown in FIG. 4 is completed.

【0058】以上において、本発明を各実施形態1,2
に即して説明したが、本発明は上記各実施形態1,2に
限定されるものではなく、その要旨を逸脱しない範囲
で、適宜変更して適用できることはいうまでもない。例
えば、上記実施形態1では、中太貫通孔9に中厚スルー
ホール導体11を形成し、また、上記実施形態2では、
内側中太貫通孔63に内側中厚スルーホール導体65を
形成している。しかし、これらの貫通孔を略円筒状の貫
通孔とし、スルーホール導体は中央部近傍が厚いものと
したり、あるいは、これらの貫通孔を略円筒状の貫通孔
とし、スルーホール導体を略均一厚さの略円筒状とする
こともできる。このようにしても、スルーホール導体の
厚さは、平面方向に形成した導体層よりも厚いので、ス
ルーホール導体の破断が防止される。
The present invention has been described with reference to the first and second embodiments.
However, it is needless to say that the present invention is not limited to the first and second embodiments and can be appropriately modified and applied without departing from the gist of the present invention. For example, in the first embodiment, the medium-thick through-hole conductor 11 is formed in the medium-thick through-hole 9, and in the second embodiment,
An inner middle through-hole conductor 65 is formed in the inner middle through hole 63. However, these through holes should be substantially cylindrical through holes, and the through hole conductor should be thick near the center, or these through holes should be approximately cylindrical through holes, and the through hole conductor should have a substantially uniform thickness. It can also be substantially cylindrical. Also in this case, since the thickness of the through-hole conductor is thicker than the conductor layer formed in the plane direction, breakage of the through-hole conductor is prevented.

【0059】また、上記実施形態2では、略円筒状の外
側貫通孔59に、略円筒状の外側スルーホール導体61
を形成しているが、外側貫通孔59を軸方向の中央部近
傍が最も径大な外側中太貫通孔とし、外側スルーホール
導体61を軸方向の中央部近傍が最も厚い外側中厚スル
ーホール導体とすることもできる。また、外側貫通孔5
9の形状を変えずに、外側スルーホール導体61を軸方
向の中央部近傍が最も厚い外側中厚スルーホール導体と
することもできる。このような中厚なスルーホール導体
を形成すれば、外側スルーホール導体の破断はさらに防
止され、配線基板の信頼性がさらに高くなる。
In the second embodiment, the substantially cylindrical outer through-hole conductor 59 is formed in the substantially cylindrical outer through hole 59.
The outer through-hole 59 has the largest diameter in the vicinity of the center in the axial direction, and the outer through-hole conductor 61 has the thickest outer middle through-hole in the vicinity of the center in the axial direction. It can also be a conductor. In addition, the outer through hole 5
Without changing the shape of 9, the outer through-hole conductor 61 may be an outer middle-thick through-hole conductor having the thickest portion near the center in the axial direction. By forming such a thick through-hole conductor, breakage of the outer through-hole conductor is further prevented, and the reliability of the wiring board is further increased.

【0060】また、上記実施形態2では、外側スルーホ
ール導体61の厚さを、主面側コア導体層69及び裏面
側コア導体層71の厚さよりも厚くし、また、内側スル
ーホール導体65の厚さも、主面側層間導体層75及び
裏面側層間導体層79の厚さよりも厚くしている。しか
しながら、いずれか一方のスルーホール導体だけを導体
層より厚くすることもできる。このような場合でも、厚
くしたスルーホール導体については、スルーホール導体
に破断が生じにくくなり、配線基板の信頼性を高くする
ことができる。
In the second embodiment, the thickness of the outer through-hole conductor 61 is made larger than the thickness of the main surface side core conductor layer 69 and the thickness of the rear surface side core conductor layer 71. The thickness is also greater than the thickness of the main surface side interlayer conductive layer 75 and the back surface side interlayer conductive layer 79. However, it is also possible to make only one of the through-hole conductors thicker than the conductor layer. Even in such a case, with respect to the thick through-hole conductor, the through-hole conductor hardly breaks, and the reliability of the wiring board can be increased.

【0061】また、上記実施形態2では、外側スルーホ
ール導体61と、これと同軸でこれより内側に位置する
内側スルーホール65とを備える配線基板51を示した
が、外側スルーホール導体61のない、コア基板53と
主面側第1樹脂絶縁層55Pと裏面側第1樹脂絶縁層5
7Pとを貫通するスルーホール導体を備える配線基板と
することもできる。このようなスルーホール導体も、上
記実施形態2の内側スルーホール導体65と同様に、軸
方向に応力が生じても破断しにくく、配線基板の信頼性
が高い。なお、このスルーホール導体を備える配線基板
は、コアメッキ層形成工程において、第2コアメッキ層
87を形成しないで、第1コアメッキ層85(第1メッ
キ層)だけを形成することにより製造することができ
る。
In the second embodiment, the wiring board 51 having the outer through-hole conductors 61 and the inner through-holes 65 coaxial with the outer through-hole conductors 61 is shown. , Core substrate 53, main surface side first resin insulation layer 55P, and back surface side first resin insulation layer 5
The wiring board may be provided with a through-hole conductor penetrating through 7P. Like the inner through-hole conductor 65 of the second embodiment, such a through-hole conductor is less likely to break even when a stress is generated in the axial direction, and the wiring board has high reliability. The wiring board having the through-hole conductor can be manufactured by forming only the first core plating layer 85 (first plating layer) without forming the second core plating layer 87 in the core plating layer forming step. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1に係る配線基板の部分拡大断面図で
ある。
FIG. 1 is a partially enlarged cross-sectional view of a wiring board according to a first embodiment.

【図2】実施形態1に係る配線基板の製造方法を示す図
であり、(a)はコア基板を示す説明図であり、(b)
は貫通孔を形成した様子を示す説明図である。
FIGS. 2A and 2B are diagrams illustrating a method of manufacturing the wiring board according to the first embodiment, wherein FIG. 2A is an explanatory view illustrating a core substrate, and FIG.
FIG. 4 is an explanatory view showing a state in which a through hole is formed.

【図3】実施形態1に係る配線基板の製造方法を示す図
であり、(a)はメッキ層を形成した様子を示す説明図
であり、(b)は所定パターンの導体層を形成した様子
を示す説明図である。
3A and 3B are diagrams illustrating a method of manufacturing the wiring board according to the first embodiment, in which FIG. 3A is an explanatory diagram illustrating a state in which a plating layer is formed, and FIG. 3B is a state in which a conductor layer having a predetermined pattern is formed; FIG.

【図4】実施形態2に係る配線基板の部分拡大断面図で
ある。
FIG. 4 is a partially enlarged cross-sectional view of a wiring board according to a second embodiment.

【図5】実施形態2に係る配線基板の製造方法を示す図
であり、(a)はコア基板に外側貫通孔を形成した様子
を示す説明図であり、(b)はコアメッキ層を形成した
様子を示す説明図である。
5A and 5B are diagrams illustrating a method of manufacturing the wiring board according to the second embodiment, wherein FIG. 5A is an explanatory view illustrating a state in which an outer through hole is formed in a core substrate, and FIG. It is explanatory drawing which shows a situation.

【図6】実施形態2に係る配線基板の製造方法を示す図
であり、(a)は第1樹脂絶縁層を形成した様子を示す
説明図であり、(b)は基板に内側貫通孔を形成した様
子を示す説明図である。
6A and 6B are diagrams illustrating a method of manufacturing the wiring board according to the second embodiment, wherein FIG. 6A is an explanatory view illustrating a state in which a first resin insulating layer is formed, and FIG. It is explanatory drawing which shows a mode that it formed.

【図7】実施形態2に係る配線基板の製造方法を示す図
であり、(a)は基板メッキ層及びビア導体を形成した
様子を示す説明図であり、(b)は所定パターンの層間
導体層を形成した様子を示す説明図である。
FIGS. 7A and 7B are diagrams illustrating a method of manufacturing the wiring board according to the second embodiment, wherein FIG. 7A is an explanatory view illustrating a state where a substrate plating layer and a via conductor are formed, and FIG. It is explanatory drawing which shows a mode that the layer was formed.

【図8】従来技術に係る配線基板の部分拡大断面図であ
る。
FIG. 8 is a partially enlarged cross-sectional view of a wiring board according to the related art.

【符号の説明】[Explanation of symbols]

1,51 配線基板 3,53 コア基板 3A,53A (コア基板の)主面 3B,53B (コア基板の)裏面 5,55 主面側樹脂絶縁層 7,57 裏面側樹脂絶縁層 9 貫通孔(中太貫通孔) 9C (貫通孔の)中央部 11 スルーホール導体(中厚スルーホール
導体) 11C (スルーホール導体の)中央部 15 主面側導体層 19 裏面側導体層 59 外側貫通孔 61 外側スルーホール導体 63 内側貫通孔(内側中太貫通孔) 63C (内側貫通孔の)中央部 65 内側スルーホール導体(内側中厚スル
ーホール導体) 65C (内側スルーホール導体の)中央部 69 主面側コア導体層 71 裏面側コア導体層 75 主面側層間導体層 79 裏面側層間導体層 89 基板 89A 基板主面 89B 基板裏面
1, 51 Wiring board 3, 53 Core board 3A, 53A Main surface (of core substrate) 3B, 53B Back surface (of core substrate) 5, 55 Main surface side resin insulation layer 7, 57 Back surface side resin insulation layer 9 Through hole ( 9C (through-hole conductor) central part 11 through-hole conductor (medium-thick through-hole conductor) 11C (through-hole conductor) central part 15 main-surface-side conductor layer 19 back-side conductor layer 59 outside through-hole 61 outside Through-hole conductor 63 Inner through-hole (inner middle through-hole) 63C (inner through-hole conductor) central portion 65 Inner through-hole conductor (inner middle-thick through-hole conductor) 65C (inner through-hole conductor) central portion 69 Main surface side Core conductor layer 71 Backside core conductor layer 75 Main surface side interlayer conductor layer 79 Backside interlayer conductor layer 89 Substrate 89A Substrate main surface 89B Substrate rear surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】主面と裏面とを有し、無機繊維と樹脂との
複合材からなるコア基板と、 上記コア基板の主面上に形成された少なくとも1層の主
面側樹脂絶縁層と、 上記コア基板の裏面上に形成された少なくとも1層の裏
面側樹脂絶縁層と、 上記コア基板、主面側樹脂絶縁層、及び裏面側樹脂絶縁
層のうち、少なくとも上記コア基板の上記主面がなす平
面と裏面がなす平面との間を貫通する貫通孔と、 上記貫通孔内周面に形成されたスルーホール導体と、 上記コア基板と主面側樹脂絶縁層の間、または主面側樹
脂絶縁層間に形成され、上記貫通孔の主面側端部で上記
スルーホール導体と接続する主面側導体層と、 上記コア基板と裏面側樹脂絶縁層の間、または裏面側樹
脂絶縁層間に形成され、上記貫通孔の裏面側端部で上記
スルーホール導体と接続する裏面側導体層と、を備え、 上記スルーホール導体の厚さが、上記主面側導体層及び
裏面側導体層の厚さより厚い配線基板。
1. A core substrate having a main surface and a back surface and comprising a composite material of inorganic fibers and a resin, at least one main-surface-side resin insulating layer formed on the main surface of the core substrate. At least one backside resin insulation layer formed on the backside of the core substrate, and at least the main surface of the core substrate among the core substrate, the main surface side resin insulation layer, and the backside resin insulation layer A through-hole penetrating between a plane formed by the rear surface and a plane formed by the back surface; a through-hole conductor formed on the inner peripheral surface of the through-hole; A main surface side conductor layer formed between the resin insulation layers and connected to the through hole conductor at a main surface side end of the through hole; and between the core substrate and the back surface side resin insulation layer, or between the back surface side resin insulation layers. The through-hole conductor is formed at an end on the back side of the through-hole. The back surface side and the conductor layer, with a thickness of the through-hole conductors is thicker wiring board than the thickness of the main surface side conductor layer and the back surface side conductor layer to be connected.
【請求項2】請求項1に記載の配線基板であって、 前記スルーホール導体の厚さは、軸方向の中央部近傍で
最も厚くされている配線基板。
2. The wiring board according to claim 1, wherein the thickness of the through-hole conductor is greatest near a central portion in the axial direction.
【請求項3】主面と裏面とを有し無機繊維と樹脂との複
合材からなるコア基板の所定の位置に、上記主面と裏面
との間を貫通する貫通孔を、または、上記コア基板と、
この主面上及び裏面上に形成されたそれぞれ少なくとも
1層の主面側樹脂絶縁層及び裏面側樹脂絶縁層とからな
る基板の所定の位置に、基板主面と基板裏面との間を貫
通する貫通孔を、形成する貫通孔形成工程と、 上記主面上及び裏面上に、または基板主面上及び基板裏
面上に、第1メッキ層を形成するとともに、上記貫通孔
の内周面に上記第1メッキ層よりも厚い第2メッキ層か
らなる略筒状のスルーホール導体を形成するメッキ層形
成工程と、 上記第1メッキ層をエッチングして、所定パターンの導
体層を形成する導体層形成工程と、を備える配線基板の
製造方法。
3. A core substrate having a main surface and a back surface, comprising a through hole penetrating between the main surface and the back surface at a predetermined position of a core substrate made of a composite material of an inorganic fiber and a resin. Board and
At a predetermined position of the substrate composed of at least one main-surface-side resin insulating layer and at least one back-surface-side resin insulating layer formed on the main surface and the back surface, the substrate penetrates between the main surface of the substrate and the back surface of the substrate. A through-hole forming step of forming a through-hole; forming a first plating layer on the main surface and the back surface, or on the main surface and the back surface of the substrate, and forming the first plating layer on the inner peripheral surface of the through-hole; A plating layer forming step of forming a substantially cylindrical through-hole conductor made of a second plating layer thicker than the first plating layer; and forming a conductor layer of a predetermined pattern by etching the first plating layer. And a method for manufacturing a wiring board.
【請求項4】請求項3に記載の配線基板の製造方法であ
って、 前記貫通孔形成工程において、レーザにより、軸方向の
中央部近傍で最も径大となる中太貫通孔を形成し、 前記メッキ層形成工程において、前記スルーホール導体
の厚さが、軸方向の中央部近傍で最も厚くなる中厚スル
ーホール導体を形成する配線基板の製造方法。
4. The method for manufacturing a wiring board according to claim 3, wherein in the through hole forming step, a middle diameter through hole having the largest diameter near an axial center is formed by a laser. In the plating layer forming step, a method of manufacturing a wiring board for forming a medium-thick through-hole conductor in which the thickness of the through-hole conductor is largest near a central portion in the axial direction.
JP2000018629A 2000-01-27 2000-01-27 Wiring board manufacturing method Expired - Fee Related JP3816711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018629A JP3816711B2 (en) 2000-01-27 2000-01-27 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018629A JP3816711B2 (en) 2000-01-27 2000-01-27 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2001210953A true JP2001210953A (en) 2001-08-03
JP3816711B2 JP3816711B2 (en) 2006-08-30

Family

ID=18545455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018629A Expired - Fee Related JP3816711B2 (en) 2000-01-27 2000-01-27 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3816711B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080199A (en) * 2004-09-08 2006-03-23 Ibiden Co Ltd Electric relay plate
JP2009054761A (en) * 2007-08-27 2009-03-12 Kyocera Corp Wiring board, mounting board and mounting structure, and manufacturing method of wiring board
JP2010258319A (en) * 2009-04-28 2010-11-11 Kyocera Corp Wiring board and method of manufacturing the same
CN101593750B (en) * 2008-05-30 2012-06-20 富士通株式会社 Core substrate and printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080199A (en) * 2004-09-08 2006-03-23 Ibiden Co Ltd Electric relay plate
JP4599121B2 (en) * 2004-09-08 2010-12-15 イビデン株式会社 Electrical relay plate
JP2009054761A (en) * 2007-08-27 2009-03-12 Kyocera Corp Wiring board, mounting board and mounting structure, and manufacturing method of wiring board
CN101593750B (en) * 2008-05-30 2012-06-20 富士通株式会社 Core substrate and printed wiring board
JP2010258319A (en) * 2009-04-28 2010-11-11 Kyocera Corp Wiring board and method of manufacturing the same

Also Published As

Publication number Publication date
JP3816711B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US5888627A (en) Printed circuit board and method for the manufacture of same
JP4133560B2 (en) Printed wiring board manufacturing method and printed wiring board
US8119925B2 (en) Core substrate and printed wiring board
JP2009218545A (en) Multilayer printed wiring board and its manufacturing method
JP5254775B2 (en) Wiring board manufacturing method
US20070069360A1 (en) Semiconductor package substrate having different thicknesses between wire bonding pad and ball pad and method for fabricating the same
KR20080033069A (en) Substrate with built-in electronic component and method for manufacturing the same
US20100018758A1 (en) Printed wiring board
US9451711B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP6790847B2 (en) Wiring board, multilayer wiring board and manufacturing method of wiring board
JP2017017307A (en) Printed circuit board and method of manufacturing printed circuit board
JP2009231818A (en) Multilayer printed circuit board and method for manufacturing the same
JP2002134864A (en) Wiring substrate and method of manufacturing the same
JP3592129B2 (en) Manufacturing method of multilayer wiring board
JP2014045071A (en) Printed wiring board and manufacturing method of the same
JP3816711B2 (en) Wiring board manufacturing method
JP4282161B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP2013080823A (en) Printed wiring board and manufacturing method of the same
JP2004207338A (en) Wiring board
JP2007273896A (en) Wiring board
JP4160765B2 (en) Wiring board manufacturing method
JP3851768B2 (en) Wiring board and method of manufacturing wiring board
JP2014090079A (en) Printed wiring board
JPH11289165A (en) Multilayer wiring board and method for manufacturing the same
JPH03145796A (en) Manufacture of through-hole printed wiring board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees