JP2001210825A - Polycrystalline thin-film transistor - Google Patents

Polycrystalline thin-film transistor

Info

Publication number
JP2001210825A
JP2001210825A JP2000020822A JP2000020822A JP2001210825A JP 2001210825 A JP2001210825 A JP 2001210825A JP 2000020822 A JP2000020822 A JP 2000020822A JP 2000020822 A JP2000020822 A JP 2000020822A JP 2001210825 A JP2001210825 A JP 2001210825A
Authority
JP
Japan
Prior art keywords
film transistor
polycrystalline
polycrystalline semiconductor
critical path
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000020822A
Other languages
Japanese (ja)
Inventor
Mutsumi Kimura
睦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000020822A priority Critical patent/JP2001210825A/en
Publication of JP2001210825A publication Critical patent/JP2001210825A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the current drive capability of a polycrystalline thin-film transistor in the transistor. SOLUTION: A critical path, having a high electrical conductivity between a source region and a drain region in comparison with that of other critical paths, exists in a polycrystalline semiconductor film. A defect in an MOS interface, the number of crystal grain boundaries and defects in the crystal grain boundaries in the critical path are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多結晶薄膜トラン
ジスタ、特に、高電流駆動能力を実現する多結晶薄膜ト
ランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline thin film transistor, and more particularly, to a polycrystalline thin film transistor realizing a high current driving capability.

【0002】[0002]

【背景技術】近年、多結晶薄膜トランジスタは、表示装
置やセンサーなどに、多種多様多数用いられており、今
後さらに利用範囲は拡大してゆくことが予想される。多
結晶薄膜トランジスタの利点は、アクティブマトリクス
素子として各画素に形成されスイッチングを行うだけで
なく、駆動回路も形成できる点にある(H. Ohshima,Pro
c. Euro Display '96 Workshop, p17参照)。駆動回路
を形成するためには、多結晶トランジスタは、電流駆動
能力が高くなければならない。特に、最近は、多結晶ト
ランジスタの電流駆動能力を高めるため、様々な結晶化
プロセスが開発され、結晶粒の大粒径化と位置制御が実
現されつつある。
2. Description of the Related Art In recent years, polycrystalline thin film transistors have been used in a wide variety of devices such as display devices and sensors, and the range of use is expected to further expand in the future. The advantage of a polycrystalline thin film transistor is that not only can it be formed in each pixel as an active matrix element to perform switching, but also a drive circuit can be formed (H. Ohshima, Pro.
c. See Euro Display '96 Workshop, p17). In order to form a driving circuit, a polycrystalline transistor must have high current driving capability. In particular, recently, various crystallization processes have been developed in order to increase the current driving capability of the polycrystalline transistor, and the increase in the crystal grain size and the position control are being realized.

【0003】本発明の発明者は、多結晶半導体中のキャ
リア伝導について、研究を行っている。図1は、多結晶
半導体中のキャリア伝導のシミュレーションの第1の例
である。(a)はシミュレーション結果、(b)はシミ
ュレーションに用いた構造を示す。陰極1と陽極2間に
は、電圧0.1Vが印加されている。各結晶粒3の境界にあ
る結晶粒界4には、結晶粒界欠陥が存在し、キャリアを
トラップしてキャリア数を減少させるとともに、ポテン
シャルバリアを形成する(木村 睦, 2000年春季第47回
応用物理学関係連合講演会 講演予稿集, To be publish
ed)。図示されている曲線は、電流流線5で、その密度
は電流密度に対応する。図2〜10は、多結晶半導体中
のキャリア伝導のシミュレーションの第2〜第8の例で
ある。それぞれ、陰極1や陽極2の位置、結晶粒3の粒径
などを、変えたものである。
[0003] The inventor of the present invention is studying carrier conduction in a polycrystalline semiconductor. FIG. 1 is a first example of a simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation. A voltage of 0.1 V is applied between the cathode 1 and the anode 2. At the grain boundaries 4 at the boundaries of the crystal grains 3, there are grain boundary defects, which trap carriers to reduce the number of carriers and form a potential barrier (Kimura Mutsumi, 47th Spring 2000) Applied Physics Alliance Lecture Meeting Proceedings, To be publish
ed). The curve shown is a current flow line 5 whose density corresponds to the current density. 2 to 10 are second to eighth examples of simulation of carrier conduction in a polycrystalline semiconductor. The positions of the cathode 1 and the anode 2 and the grain size of the crystal grains 3 are changed respectively.

【0004】図2〜10を見ると、次のようなことがわ
かる。電流密度が高いところと、低いところとが、存在
する。その差は、10倍ほどに達することもある。
The following can be seen from FIGS. There are places where the current density is high and places where the current density is low. The difference can be as much as 10 times.

【0005】[0005]

【発明が解決しようとする課題】本発明では、多結晶薄
膜トランジスタにおいて、電流駆動能力を高めること
を、目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to increase the current driving capability of a polycrystalline thin film transistor.

【0006】[0006]

【課題を解決するための手段】請求項1記載の本発明
は、多結晶半導体と、ゲート電極と、多結晶半導体とゲ
ート電極間のゲート絶縁膜と、多結晶半導体にドーパン
トを導入したソース領域とドレイン領域とを備えた、多
結晶薄膜トランジスタにおいて、多結晶半導体中に、ソ
ース領域とドレイン領域間の電気伝導率が他に比べて高
いクリティカルパスが、少なくともひとつ存在すること
を特徴とする、多結晶薄膜トランジスタである。
According to the present invention, there is provided a polycrystalline semiconductor, a gate electrode, a gate insulating film between the polycrystalline semiconductor and the gate electrode, and a source region in which a dopant is introduced into the polycrystalline semiconductor. A polycrystalline thin film transistor, comprising: a polycrystalline thin film transistor having at least one critical path having a higher electric conductivity between the source region and the drain region than the others in the polycrystalline semiconductor. It is a crystalline thin film transistor.

【0007】請求項1記載の技術によれば、多結晶薄膜
トランジスタにおいて、電流駆動能力を高めることが、
可能となる。
According to the first aspect of the present invention, in the polycrystalline thin film transistor, the current driving capability can be enhanced.
It becomes possible.

【0008】請求項2記載の本発明は、請求項1記載の
多結晶薄膜トランジスタにおいて、クリティカルパス中
のMOS界面欠陥が低減されていることを特徴とする、多
結晶薄膜トランジスタである。
According to a second aspect of the present invention, there is provided the polycrystalline thin film transistor according to the first aspect, wherein a MOS interface defect in a critical path is reduced.

【0009】請求項2記載の技術によれば、多結晶薄膜
トランジスタにおいて、さらに電流駆動能力を高めるこ
とが、可能となる。
According to the second aspect of the present invention, it is possible to further increase the current driving capability of the polycrystalline thin film transistor.

【0010】請求項3記載の本発明は、請求項1記載の
多結晶薄膜トランジスタにおいて、クリティカルパス中
の結晶粒界数が低減されていることを特徴とする、多結
晶薄膜トランジスタである。
According to a third aspect of the present invention, there is provided the polycrystalline thin film transistor according to the first aspect, wherein the number of crystal grain boundaries in a critical path is reduced.

【0011】請求項3記載の技術によれば、多結晶薄膜
トランジスタにおいて、さらに電流駆動能力を高めるこ
とが、可能となる。
According to the third aspect of the present invention, it is possible to further increase the current driving capability of the polycrystalline thin film transistor.

【0012】請求項4記載の本発明は、請求項1記載の
多結晶薄膜トランジスタにおいて、クリティカルパス中
の結晶粒界欠陥が低減されていることを特徴とする、多
結晶薄膜トランジスタである。
According to a fourth aspect of the present invention, there is provided the polycrystalline thin film transistor according to the first aspect, wherein crystal grain boundary defects in a critical path are reduced.

【0013】請求項4記載の技術によれば、多結晶薄膜
トランジスタにおいて、さらに電流駆動能力を高めるこ
とが、可能となる。
According to the fourth aspect of the present invention, it is possible to further increase the current driving capability of the polycrystalline thin film transistor.

【0014】[0014]

【発明の実施の形態】以下、本発明の好ましい実施例を
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described.

【0015】(第1の実施例)図11は、本発明の第1
の実施例における多結晶半導体である。図12は、本発
明の第1の実施例における多結晶薄膜トランジスタの断
面図である。図11は、図12の多結晶半導体7を、上
から見た図になっている。図11において、電気伝導率
が他に比べて高い電流経路が、少なくともひとつ存在す
る。これを、クリティカルパス6と呼ぶ。多結晶半導体
中のキャリア伝導は、クリティカルパス6を流れる電流
が支配的となる。クリティカルパス6が存在すること
で、多結晶薄膜トランジスタにおいて、電流駆動能力を
高めることが、可能となる。また、クリティカルパス6
中のMOS界面欠陥を低減することにより、クリティカル
パス6中に存在するフリーキャリア(欠陥にトラップさ
れず、電気伝導に寄与するキャリア)を増加させ、さら
に電流駆動能力を高めることが、可能となる。
(First Embodiment) FIG. 11 shows a first embodiment of the present invention.
Is a polycrystalline semiconductor according to the embodiment. FIG. 12 is a sectional view of the polycrystalline thin film transistor according to the first embodiment of the present invention. FIG. 11 is a view of the polycrystalline semiconductor 7 of FIG. 12 as viewed from above. In FIG. 11, there is at least one current path having a higher electric conductivity than the others. This is called critical path 6. Current flowing through the critical path 6 is dominant in carrier conduction in the polycrystalline semiconductor. The existence of the critical path 6 makes it possible to increase the current driving capability of the polycrystalline thin film transistor. Critical path 6
By reducing the MOS interface defects in the inside, it is possible to increase the free carriers (carriers that are not trapped by the defects and contribute to electric conduction) existing in the critical path 6 and further increase the current driving capability. .

【0016】(第2の実施例)図13は、本発明の第2
の実施例における多結晶半導体である。第1の実施例と
比較して、クリティカルパス6中の結晶粒界4の数が低減
されている。これにより、さらに電流駆動能力を高める
ことが、可能となる。また、クリティカルパス6中の結
晶粒界4に存在する欠陥を低減することにより、クリテ
ィカルパス6中に存在するフリーキャリアを増加させる
とともに、クリティカルパス6中のポテンシャルバリア
を低減させ、さらに電流駆動能力を高めることが、可能
となる。クリティカルパス6中の結晶粒界4の数を低減す
る手法としては、結晶粒の大粒径化と位置制御が挙げら
れる。その具体的方法としては、以下に列挙するよう
に、様々な方法が研究開発されている。本発明の請求項
記載の構造になるのであれば、如何なる製造方法であっ
ても、本発明の思想は有効である。 ・ H. J. Kim, Samsung Elect., Low-Temperature Poly
-Si TFT Technology, Proc. IDW '99, p147 ・ M. Matsumura, Tokyo Inst. of Technol., Excimer-
Laser Processed Crystal-Si TFTs on Glass, Proc. Eu
ro Display '99, p351 ・ S. Maersch, Sopra, LACRASIL: Large Area Crystal
lization of AmorphousSilicon using a Mesa-shaped L
aser, Proc. Late-news Papers, Euro Display'99, p12
7 ・ K. Makihira, Kyushu Inst. of Technol., Enhanced
Nucleation of a-Si Solid-Phase Crystallization by
Imprint Technology, Digest AM-LCD '99, p85 ・ M. Ozawa, Tokyo Inst. of Technol., Excimer-Lase
r-Induced Lateral Crystallization in Pre-Patterned
Si Islands, Digest AM-LCD '99, p93 ・ R. Ishihara, Delft Univ. of Technol., Microtext
ure Analysis of Location Controlled Large Grain Fo
rmed by Excimer-Laser Crystallization Method, Dige
st AM-LCD '99, p99 ・ C. Prat, SOPRA, Excimer-Laser Crystallization o
f Amorphous Silicon for Flat Panel Display Applica
tions: The Assets of a Long-Pulse Duration,Digest
AM-LCD '99, p115 ・ J. S. Im, Columbia Univ., Sequential Lateral So
lidification of Si Films for Polycrystalline and S
ingle Crystal Si TFTs, Digest AM-LCD '99, p229 ・ Y. Oana, Toshiba, Low Temperature Polycrystalli
ne Si TFT Technology for Liquid Crystal Displays,
Digest AM-LCD '99, p251 ・ C. -H. Oh, Tokyo Inst. of Technol., Ultrahigh-P
erformance Low-Temperature "Poly-Si" TFTs, Digest
AM-LCD '99, p255 ・ A. Hara, Fujitsu Labs., A New Lateral Growth Me
thod of Poly-Silicon by Excimer Laser Irradiation,
Digest AM-LCD '99, p275 ・ L. Mariucci, CNR-IESS, A. Grain Location Contro
l by a Two-Pass Excimer Laser Crystallization Pro
cess, Digest AM-LCD '99, p283 ・ A. Mimura, Hitachi, Direct Laser Crystallizatio
n of PECVD a-Si for Flat and Large Poly-Si Grains
by New Multi-Chamber Processor, Digest AM-LCD '99,
p287 ・ J-H. Jeon, Seoul National University, Excimer-L
aser Recrystallizationof Poly-Si Using Nucleation
Seeds, Digest SID '99, p382 ・ Z. Meng, The Hong Kong University of Science an
d Technology, Offset Metal-Induced Unilaterally Cr
ystallized Poly-Si TFTs, p386
(Second Embodiment) FIG. 13 shows a second embodiment of the present invention.
Is a polycrystalline semiconductor according to the embodiment. Compared with the first embodiment, the number of grain boundaries 4 in the critical path 6 is reduced. This makes it possible to further increase the current driving capability. In addition, by reducing the defects present at the grain boundaries 4 in the critical path 6, the number of free carriers existing in the critical path 6 is increased, and the potential barrier in the critical path 6 is reduced. Can be increased. Techniques for reducing the number of grain boundaries 4 in the critical path 6 include increasing the grain size of the crystal grains and controlling the position. As a specific method, various methods have been researched and developed as listed below. The concept of the present invention is effective in any manufacturing method as long as the structure described in the claims of the present invention is obtained.・ HJ Kim, Samsung Elect., Low-Temperature Poly
-Si TFT Technology, Proc.IDW '99, p147 ・ M. Matsumura, Tokyo Inst. Of Technol., Excimer-
Laser Processed Crystal-Si TFTs on Glass, Proc.Eu
ro Display '99, p351 ・ S. Maersch, Sopra, LACRASIL: Large Area Crystal
lization of AmorphousSilicon using a Mesa-shaped L
aser, Proc. Late-news Papers, Euro Display'99, p12
7 ・ K. Makihira, Kyushu Inst. Of Technol., Enhanced
Nucleation of a-Si Solid-Phase Crystallization by
Imprint Technology, Digest AM-LCD '99, p85 ・ M. Ozawa, Tokyo Inst. Of Technol., Excimer-Lase
r-Induced Lateral Crystallization in Pre-Patterned
Si Islands, Digest AM-LCD '99, p93 ・ R. Ishihara, Delft Univ. Of Technol., Microtext
ure Analysis of Location Controlled Large Grain Fo
rmed by Excimer-Laser Crystallization Method, Dige
st AM-LCD '99, p99 ・ C. Prat, SOPRA, Excimer-Laser Crystallization o
f Amorphous Silicon for Flat Panel Display Applica
tions: The Assets of a Long-Pulse Duration, Digest
AM-LCD '99, p115 ・ JS Im, Columbia Univ., Sequential Lateral So
lidification of Si Films for Polycrystalline and S
ingle Crystal Si TFTs, Digest AM-LCD '99, p229 ・ Y.Oana, Toshiba, Low Temperature Polycrystalli
ne Si TFT Technology for Liquid Crystal Displays,
Digest AM-LCD '99, p251 ・ C. -H. Oh, Tokyo Inst. Of Technol., Ultrahigh-P
erformance Low-Temperature "Poly-Si" TFTs, Digest
AM-LCD '99, p255 ・ A. Hara, Fujitsu Labs., A New Lateral Growth Me
thod of Poly-Silicon by Excimer Laser Irradiation,
Digest AM-LCD '99, p275 ・ L. Mariucci, CNR-IESS, A. Grain Location Contro
l by a Two-Pass Excimer Laser Crystallization Pro
cess, Digest AM-LCD '99, p283 ・ A. Mimura, Hitachi, Direct Laser Crystallizatio
n of PECVD a-Si for Flat and Large Poly-Si Grains
by New Multi-Chamber Processor, Digest AM-LCD '99,
p287 ・ JH.Jeon, Seoul National University, Excimer-L
aser Recrystallizationof Poly-Si Using Nucleation
Seeds, Digest SID '99, p382 ・ Z. Meng, The Hong Kong University of Science an
d Technology, Offset Metal-Induced Unilaterally Cr
ystallized Poly-Si TFTs, p386

【図面の簡単な説明】[Brief description of the drawings]

【図1】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第1の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 1 is a diagram showing a first example of a simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図2】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第2の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 2 is a diagram illustrating a second example of a simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図3】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第3の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 3 is a diagram showing a third example of a simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図4】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第4の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 4 is a diagram showing a fourth example of simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図5】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第5の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 5 is a diagram showing a fifth example of a simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図6】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第6の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 6 is a diagram showing a sixth example of a simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図7】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第7の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 7 is a diagram showing a seventh example of simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図8】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第8の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 8 is a diagram showing an eighth example of simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図9】多結晶半導体中のキャリア伝導のシミュレーシ
ョンの第9の例を示す図。(a)はシミュレーション結
果、(b)はシミュレーションに用いた構造を示す。
FIG. 9 is a view showing a ninth example of simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図10】多結晶半導体中のキャリア伝導のシミュレー
ションの第10の例を示す図。(a)はシミュレーショ
ン結果、(b)はシミュレーションに用いた構造を示
す。
FIG. 10 is a diagram showing a tenth example of simulation of carrier conduction in a polycrystalline semiconductor. (A) shows a simulation result, and (b) shows a structure used for the simulation.

【図11】第1の実施例における多結晶半導体を示す
図。
FIG. 11 is a diagram showing a polycrystalline semiconductor according to the first embodiment.

【図12】第1の実施例における多結晶薄膜トランジス
タの断面図。
FIG. 12 is a sectional view of a polycrystalline thin film transistor according to the first embodiment.

【図13】第2の実施例における多結晶半導体を示す
図。
FIG. 13 is a diagram showing a polycrystalline semiconductor according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 陰極 2 陽極 3 結晶粒 4 結晶粒界 5 電流流線 6 クリティカルパス 7 多結晶半導体 8 ゲート電極 9 ゲート絶縁膜 10 ソース領域 11 ドレイン領域 12 MOS界面 DESCRIPTION OF SYMBOLS 1 Cathode 2 Anode 3 Crystal grain 4 Crystal grain boundary 5 Current flow line 6 Critical path 7 Polycrystalline semiconductor 8 Gate electrode 9 Gate insulating film 10 Source region 11 Drain region 12 MOS interface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多結晶半導体と、ゲート電極と、前記多
結晶半導体と前記ゲート電極間のゲート絶縁膜と、前記
多結晶半導体にドーパントを導入したソース領域とドレ
イン領域とを備えた、多結晶薄膜トランジスタにおい
て、 前記多結晶半導体中に、前記ソース領域と前記ドレイン
領域間の電気伝導率が他に比べて高いクリティカルパス
が、少なくともひとつ存在することを特徴とする、多結
晶薄膜トランジスタ。
1. A polycrystalline semiconductor comprising: a polycrystalline semiconductor; a gate electrode; a gate insulating film between the polycrystalline semiconductor and the gate electrode; and a source region and a drain region in which a dopant is introduced into the polycrystalline semiconductor. In the thin film transistor, the polycrystalline semiconductor includes at least one critical path having a higher electric conductivity between the source region and the drain region than the others.
【請求項2】 請求項1記載の多結晶薄膜トランジスタ
において、 前記クリティカルパス中のMOS界面欠陥が低減されてい
ることを特徴とする、多結晶薄膜トランジスタ。
2. The polycrystalline thin film transistor according to claim 1, wherein MOS interface defects in the critical path are reduced.
【請求項3】 請求項1記載の多結晶薄膜トランジスタ
において、 前記クリティカルパス中の結晶粒界数が低減されている
ことを特徴とする、多結晶薄膜トランジスタ。
3. The polycrystalline thin film transistor according to claim 1, wherein the number of crystal grain boundaries in the critical path is reduced.
【請求項4】 請求項1記載の多結晶薄膜トランジスタ
において、 前記クリティカルパス中の結晶粒界欠陥が低減されてい
ることを特徴とする、多結晶薄膜トランジスタ。
4. The polycrystalline thin film transistor according to claim 1, wherein crystal grain boundary defects in the critical path are reduced.
JP2000020822A 2000-01-28 2000-01-28 Polycrystalline thin-film transistor Withdrawn JP2001210825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020822A JP2001210825A (en) 2000-01-28 2000-01-28 Polycrystalline thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020822A JP2001210825A (en) 2000-01-28 2000-01-28 Polycrystalline thin-film transistor

Publications (1)

Publication Number Publication Date
JP2001210825A true JP2001210825A (en) 2001-08-03

Family

ID=18547324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020822A Withdrawn JP2001210825A (en) 2000-01-28 2000-01-28 Polycrystalline thin-film transistor

Country Status (1)

Country Link
JP (1) JP2001210825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462862B1 (en) * 2002-01-18 2004-12-17 삼성에스디아이 주식회사 Polysilicon thin layer for thin film transistor and device using thereof
US7087504B2 (en) 2001-05-18 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by irradiating with a laser beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087504B2 (en) 2001-05-18 2006-08-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by irradiating with a laser beam
US7217952B2 (en) 2001-05-18 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and semiconductor manufacturing apparatus
KR100462862B1 (en) * 2002-01-18 2004-12-17 삼성에스디아이 주식회사 Polysilicon thin layer for thin film transistor and device using thereof

Similar Documents

Publication Publication Date Title
US6936844B1 (en) Semiconductor device having a gate wiring comprising laminated wirings
US6172671B1 (en) Active matrix type display device and fabrication method of the same
US8618543B2 (en) Thin film transistor including selectively crystallized channel layer and method of manufacturing the thin film transistor
WO2018196087A1 (en) Array substrate, display apparatus and manufacturing method therefor
KR101963703B1 (en) Semiconductor device and method for manufacturing the same
JP7189305B2 (en) semiconductor equipment
JP2006332400A (en) Thin-film semiconductor device and manufacturing method thereof
JP2000340798A (en) Electro-optical device and preparation thereof
US10121883B2 (en) Manufacturing method of top gate thin-film transistor
JP2000208780A (en) Operational amplifying circuit group and differential amplifying circuit group
US20120112180A1 (en) Metal oxide thin film transistor and manufacturing method thereof
JP2007123698A (en) Thin-film transistor and method of manufacturing same
JPH10150110A (en) Semiconductor device
US8120029B2 (en) Thin film transistor and method of manufacturing the same
JP2001210825A (en) Polycrystalline thin-film transistor
JP4850763B2 (en) Method for manufacturing semiconductor device
Kwon et al. Low temperature poly-Si thin film transistor on plastic substrates
US6437403B1 (en) Semiconductor device
Yang et al. Self-aligned gate and source drain contacts in inverted-staggered a-Si: H thin-film transistors fabricated using selective area silicon PECVD
JPS6376474A (en) Inverter circuit for thin film transistor
Xu et al. Blue laser diode annealing-enhanced bottom-gate low-temperature Poly-Si thin-film transistors
Zhang et al. Three-mask polycrystalline silicon TFT with metallic gate and junctions
Jamshidi-Roudbari et al. Integrated full-bit shift register by low-temperature amorphous indium gallium zinc oxide thin-film transistors
CN215896394U (en) High-performance double-gate LTPO panel structure
JP3265073B2 (en) Display device and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403