JP2001210690A - Macroscopic inspecting apparatus for semiconductor wafer - Google Patents

Macroscopic inspecting apparatus for semiconductor wafer

Info

Publication number
JP2001210690A
JP2001210690A JP2000018991A JP2000018991A JP2001210690A JP 2001210690 A JP2001210690 A JP 2001210690A JP 2000018991 A JP2000018991 A JP 2000018991A JP 2000018991 A JP2000018991 A JP 2000018991A JP 2001210690 A JP2001210690 A JP 2001210690A
Authority
JP
Japan
Prior art keywords
inspection
value
semiconductor wafer
normalized correlation
macro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000018991A
Other languages
Japanese (ja)
Other versions
JP3654501B2 (en
Inventor
Yoshitake Shigeyama
吉偉 重山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000018991A priority Critical patent/JP3654501B2/en
Publication of JP2001210690A publication Critical patent/JP2001210690A/en
Application granted granted Critical
Publication of JP3654501B2 publication Critical patent/JP3654501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To exactly detect macroscopic irregularities appearing in the growth stage of a semiconductor wafer. SOLUTION: A photographed original image of the entire area or a part of a semiconductor wafer is collected, the die of the wafer is adopted as an inspection region unit, and the image densities of mutually adjacent dies are compared to extract a macroscopic irregularity appearing as a nonuniformity of the density over a wide range of the wafer. The normalized correlation for the density comparison of the dies one with the other is used to eliminate the influence of the illumination nonuniformity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェアの膜
厚異常や露光現象不良といった、いわゆるミクロ検査と
呼ばれる顕微鏡検査では検出が不可能な、マクロ異常を
自動的に検出する半導体ウェハのマクロ検査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a macro inspection of a semiconductor wafer for automatically detecting a macro abnormality which cannot be detected by a so-called micro inspection such as an abnormal film thickness of a semiconductor ware or an exposure phenomenon defect. Related to the device.

【0002】[0002]

【従来の技術】半導体ウェアのマクロ検査において、カ
セットからのウェハのローディングやウェハのハンドリ
ング等は、省力化やクリーン度維持を目的として自動化
が進んでいるが、検査部分については人間の目視観察に
頼りきっているのが現状で、自動化に関する技術は数少
ない。
2. Description of the Related Art In the macro inspection of semiconductor ware, the loading of wafers from a cassette and the handling of wafers have been automated for the purpose of labor saving and maintaining a clean level. At present, there are few technologies related to automation.

【0003】マクロ検査の自動化を実現するものとし
て、特開平10−144747号公報に見られるよう
に、半導体ウェハのダイの繰り返し性を利用し、ウェハ
上の1つまたは複数のダイからなる基準領域を基準テン
プレートとして、他の検査領域とのテンプレートマッチ
ングによって比較し、一致度の低い場所を欠陥として出
力するというマクロ検査方法がある。
[0003] To realize automation of macro inspection, as disclosed in Japanese Patent Application Laid-Open No. H10-144747, a reference region composed of one or a plurality of dies on a wafer is utilized by utilizing the repeatability of the dies of a semiconductor wafer. There is a macro inspection method in which is compared with another inspection area by using template matching as a reference template, and a place having a low degree of coincidence is output as a defect.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のマクロ
検査方法では、照明のムラとマクロ異常によるムラとを
正確に分離できないという問題がある。
However, the conventional macro inspection method has a problem that illumination unevenness and unevenness due to macro abnormality cannot be accurately separated.

【0005】例えば、図11に示すように、基準となる
テンプレート検査領域内の濃淡ヒストグラムに対して、
検査対象の濃淡ヒストグラムのプロフィールにマクロ異
常による形状変化を伴う場合(b)、これを不良として
検出できるが、良品のために濃淡プロフィールの形状は
そのままで、照明ムラの影響でプロフィール全体が基準
画像(a)に対して左右にシフトするような場合(c)
には、これを良品ではなくマクロ異常として誤検出して
しまう。
[0005] For example, as shown in FIG.
If the profile of the density histogram of the inspection object is accompanied by a shape change due to macro abnormality (b), this can be detected as a defect. When shifting to the left or right with respect to (a) (c)
In this case, this is erroneously detected as a macro error instead of a non-defective product.

【0006】本発明はそのような実情に鑑みてなされた
もので、半導体ウェハのマクロ異常を常に正確に検出す
ることのできる半導体ウェハのマクロ検査装置の提供を
目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a semiconductor wafer macro inspection apparatus capable of always accurately detecting a macro abnormality of a semiconductor wafer.

【0007】[0007]

【課題を解決するための手段】本発明の半導体ウェハの
マクロ検査装置は、半導体ウェハの全域もしくは一部の
撮像原画像を採取し、ウェハ上のダイを検査領域単位と
して領域分割する検査領域分割手段と、互いに隣接する
検査領域同士を関連付け、相互に比較し合うダイの関連
付けを設定する検査領域関連付け手段と、相互に関連付
けされた検査領域同士の濃淡比較において正規化相関を
用いる濃淡比較手段と、その正規化相関値が所定の閾値
を下回るか否かを判定する判定手段を備え、正規化相関
値が所定の閾値を下回る領域を異常箇所として出力する
ように構成されていることによって特徴づけられる。
According to the present invention, there is provided a macro inspection apparatus for a semiconductor wafer, which collects an original image of an entire area or a part of the semiconductor wafer, and divides the die on the wafer into inspection area units. Means, an inspection area associating means for associating inspection areas adjacent to each other, setting an association of dies to be compared with each other, and a density comparing means using a normalized correlation in the density comparison between the mutually associated inspection areas. A determination unit that determines whether the normalized correlation value is below a predetermined threshold, and configured to output an area where the normalized correlation value is below a predetermined threshold as an abnormal point. Can be

【0008】本発明の半導体ウェハのマクロ検査装置に
おいて、正規化相関値の演算を、与えられた領域に加え
て、周辺8近傍に1画素ずらした領域についても行い、
合計9つの正規化相関値の中から最大値(最も一致度の
高い領域での値)を選出し、これを代表値として判定を
行うように構成してもよい。
In the semiconductor wafer macro inspection apparatus according to the present invention, the calculation of the normalized correlation value is performed not only on the given area but also on the area shifted by one pixel in the vicinity of the periphery 8.
The maximum value (the value in the region with the highest matching degree) may be selected from a total of nine normalized correlation values, and the determination may be made using this as a representative value.

【0009】本発明の半導体ウェハのマクロ検査装置に
よれば、エリアセンサやラインセンサ等を使って半導体
ウェハの全域もしくは一部の撮像原画像を採取し、ウェ
ハ上のダイを検査領域単位とした領域分割を行った上
で、互いに隣接するダイ同士の濃淡比較を行うので、ウ
ェハ上の広い範囲にまたがって濃淡ムラとして発生する
マクロ異常を抽出することができる。さらに、ダイ同士
の濃淡比較において正規化相関を用いることにより、照
明ムラの影響を受けにくいマクロ異常検査が可能にな
る。
According to the semiconductor wafer macro inspection apparatus of the present invention, the whole or a part of the original image of the semiconductor wafer is collected using an area sensor or a line sensor, and the dies on the wafer are used as inspection area units. Since the density comparison is performed between the dies adjacent to each other after the area is divided, it is possible to extract macro abnormalities that occur as density unevenness over a wide range on the wafer. Further, the use of the normalized correlation in the density comparison between the dies makes it possible to perform a macro abnormality inspection that is not easily affected by illumination unevenness.

【0010】さらに、本発明の半導体ウェハのマクロ検
査装置において、正規化相関を算出する際に、与えられ
た領域についてのみ演算するのではなく、周辺8近傍に
1画素ずらした領域についても演算を行い、合計9つの
正規化相関値の中から最大値(最も一致度の高い領域で
の値)を選出し、これを代表値として採用するようにす
れば、画像の水平分解能の量子化誤差の影響を受け難く
した、誤検出の少ないより正確なマクロ異常検査が可能
になる。
Further, in the semiconductor wafer macro inspection apparatus according to the present invention, when calculating the normalized correlation, the calculation is performed not only on the given area but also on the area shifted by one pixel to the vicinity of the periphery 8. Then, the maximum value (the value in the region with the highest degree of coincidence) is selected from a total of nine normalized correlation values, and this is adopted as a representative value, so that the quantization error of the horizontal resolution of the image can be obtained. It is possible to perform more accurate macro abnormality inspection with less erroneous detection, which is hardly affected.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面と
ともに説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の実施形態の概略構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【0013】画像入力手段1は、エリアセンサあるいは
ラインセンサ等であって、検査対象となる半導体ウェハ
の全域もしくは一部分を撮像する。その撮像原画像は画
像処理装置2に入力され、図3に示すようなM×Nの2
次元配列濃淡データとして画像フレームメモリ等に格納
される。
The image input means 1 is an area sensor, a line sensor, or the like, and captures an image of the whole or a part of a semiconductor wafer to be inspected. The picked-up original image is input to the image processing device 2 and is an M × N 2 as shown in FIG.
It is stored in an image frame memory or the like as dimensional array density data.

【0014】画像処理装置2は、検査領域分割手段2
1、検査領域関連付け手段22、濃淡比較手段23及び
判定手段24などによって構成されており、後述する処
理により、半導体ウェハのマクロ異常を検出するように
構成されている。
The image processing apparatus 2 includes an inspection area dividing unit 2
1. It is composed of an inspection area associating unit 22, a gray scale comparing unit 23, a determining unit 24, and the like, and is configured to detect a macro abnormality of a semiconductor wafer by a process described later.

【0015】次に、本実施形態をより具体的に説明す
る。
Next, the present embodiment will be described more specifically.

【0016】半導体ウェハを撮像した場合、図3に示す
ように水平垂直方向に規則的に並んだダイD・・Dととも
に、濃淡ムラとしてマクロ異常Eが観察されることがあ
る。ここで述べるマクロ異常とは、ウェハ製造プロセス
における膜厚異常や、露光現像不良などによってできる
不良で、顕微鏡を用いたいわゆるミクロ検査では発見で
きない種類の不良のことであり、本実施形態では、この
マクロ異常Eの検出を行うものとする。そのマクロ異常
検出の主な処理の流れは、図2の処理フローに示す通り
である。
When an image of a semiconductor wafer is taken, as shown in FIG. 3, macro abnormalities E may be observed as shading unevenness along with dies D,... D regularly arranged in the horizontal and vertical directions. The macro abnormality described here is a defect caused by a film thickness abnormality in a wafer manufacturing process, an exposure and development defect, and the like, and is a type of defect that cannot be found by a so-called micro inspection using a microscope. It is assumed that macro abnormality E is detected. The main processing flow of the macro abnormality detection is as shown in the processing flow of FIG.

【0017】まず、画像入力手段1からの撮像原画像を
採り込み(S1 )、半導体ウェハ上のダイを検査領域単
位として領域分割する(S2 )。次いで互いに隣接する
検査領域同士を関連付け、相互に比較し合うダイの関連
付けを設定した後(S3 )、相互に関連付けされた検査
領域間の濃淡比較、つまり関連付けされた検査領域間の
正規化相関値を算出し(S4 )、その正規化相関値の演
算値が閾値を下回るか否かを判定し(S5 )、正規化相
関値の演算値が閾値を下回っている場合、その領域を異
常箇所として出力する(S6 )。そして、以上のステッ
プS4 及びS5の各処理(ステップS6 の処理も含む)
を半導体ウェハの各検査領域について実行し(S7 )、
全ての検査領域の検査が完了した時点で処理を終了す
る。
First, an original image taken from the image input means 1 is fetched (S1), and a die on a semiconductor wafer is divided into inspection areas in units of inspection areas (S2). Next, the inspection areas adjacent to each other are associated with each other, and the association of the dies to be compared with each other is set (S3). Then, the grayscale comparison between the inspection areas mutually associated, that is, the normalized correlation value between the associated inspection areas is performed. Is calculated (S4), and it is determined whether or not the calculated value of the normalized correlation value is below the threshold value (S5). If the calculated value of the normalized correlation value is below the threshold value, the area is regarded as an abnormal point. Output (S6). Then, each processing of the above steps S4 and S5 (including the processing of step S6)
Is performed for each inspection area of the semiconductor wafer (S7),
When the inspection of all the inspection areas is completed, the process ends.

【0018】次に、図3に示すような撮像画像に対する
検査領域の設定方法と、濃淡比較のための関連付け方法
について説明する。
Next, a description will be given of a method of setting an inspection area for a captured image as shown in FIG.

【0019】まず、検査対象は完全な形で画像の中に入
ってくるダイのみを対象とし、相互に濃淡比較する検査
領域の関連付けを設定する。この関連付けの規則は、照
明ムラの影響を極力避けるために、なるべく隣接してい
る方が望ましい。その例として、図4(a)のような横
方向主体の場合や、図4(b)のような縦方向主体の場
合を挙げておく。なお、図4(a)及び(b)において
矢印は関連付けを意味し、その両端の検査領域が相互に
濃淡比較される対象となる。
First, the inspection target is targeted only to the dies which completely enter the image, and the association of the inspection areas to be compared with each other is set. It is desirable that the association rules are adjacent to each other as much as possible in order to minimize the influence of illumination unevenness. As an example, a case of a main body in the horizontal direction as shown in FIG. 4A and a case of a main body in the vertical direction as shown in FIG. In FIGS. 4A and 4B, the arrows indicate the association, and the inspection areas at both ends of the arrows are to be compared with each other.

【0020】次に、相互に関連付けされた検査領域間の
濃淡比較方法、つまり正規化相関について説明する。
Next, a description will be given of a method for comparing gray levels between inspection areas associated with each other, that is, a normalized correlation.

【0021】まず、図5に示すように、検査領域Rn,R
n+1 から1画素内側に狭めた領域を、基本とする正規化
相関演算対象領域とする。検査領域Rn の中の演算対象
領域に含まれる画素濃淡値の配列ベクトルをPn 、同様
に検査領域Rn+1 に対する配列ベクトルをPn+1 とし、
これらの配列間の正規化相関値をNRとすれば、正規化
相関は次の式(1)によって算出される。
First, as shown in FIG. 5, the inspection regions Rn, R
An area narrowed by one pixel from n + 1 is set as a basic normalized correlation operation target area. An array vector of the pixel grayscale values included in the calculation target area in the inspection area Rn is Pn, and similarly, an array vector for the inspection area Rn + 1 is Pn + 1.
Assuming that the normalized correlation value between these arrays is NR, the normalized correlation is calculated by the following equation (1).

【0022】[0022]

【数1】 (Equation 1)

【0023】この式(1)の左辺:NRは2つの配列ベ
クトル間の余弦を意味し、一致度が高いほど大きな値
(最大値で1)をとる。
The left side of this equation (1): NR means the cosine between two array vectors, and the larger the degree of coincidence, the larger the value (1 at maximum).

【0024】以下、正規化相関演算について更に詳しく
説明する。
Hereinafter, the normalized correlation calculation will be described in more detail.

【0025】まず、2つの検査領域Rn,Rn+1 が、例え
ば図6に示すように、8×5=40画素の画素配列から
なる場合、図6の太線で囲まれた領域に対する正規化相
関演算は、具体的には次のようになる。
First, when the two inspection areas Rn and Rn + 1 have a pixel array of 8 × 5 = 40 pixels as shown in FIG. 6, for example, the normalized correlation with respect to the area surrounded by the thick line in FIG. The operation is specifically as follows.

【0026】まず、Rn を構成する40画素の濃淡値を Ii (i=1,2,3・・40) 同様にRn+1 を構成する40個画素の濃淡値を Ji (i=1,2,3・・40) とすると、正規化相関演算対象領域に含まれる6×3=
18個の画素濃淡値を要素とする配列ベクトルPn,Pn+
1 は
First, the gray value of the 40 pixels constituting Rn is represented by Ii (i = 1, 2, 3,..., 40). Similarly, the gray value of the 40 pixels constituting Rn + 1 is represented by Ji (i = 1, 2). , 3... 40), then 6 × 3 =
Array vectors Pn, Pn + using 18 pixel gray values
1 is

【0027】[0027]

【数2】 (Equation 2)

【0028】となる。## EQU1 ##

【0029】また、この例の場合、式(1)の左辺NR
の数学的な意味は、18次元空間における2つの配列ベ
クトルPn とPn+1 のなす角θの余弦(COSθ)とな
る。従って、2つの正規化相関演算対象領域の濃淡パタ
ーンが酷似している場合、θ≒0つまりNR≒1とな
る。さらに、照明ムラ等によって、領域内全体の濃淡パ
ターンが定数倍される場合には、配列ベクトルの大きさ
が定数倍されるだけであるので、θは不変つまり照明ム
ラによる影響は受けなくなる。
In the case of this example, the left side NR of the equation (1)
Is the cosine (COS θ) of the angle θ between two array vectors Pn and Pn + 1 in an 18-dimensional space. Therefore, when the grayscale patterns of the two normalized correlation calculation target regions are very similar, θ ≒ 0, that is, NR ≒ 1. Further, when the density pattern of the entire area is multiplied by a constant due to illumination unevenness or the like, since the size of the array vector is simply multiplied by a constant, θ is unchanged, that is, is not affected by the illumination unevenness.

【0030】ここで、ダイサイズと画素サイズを元にし
て正規化相関演算対象領域を自動生成する場合、対象領
域のサイズと位置は、ダイサイズが画素サイズの定数倍
になっていないと、量子化誤差により図7の様にずれる
場合がある。この状態で、そのまま正規化相関値を算出
すると、対象領域の濃淡パターンのコントラストが大き
い場合は一致度が低く出て、不良として誤検査される可
能性がある。
Here, in the case where the normalized correlation calculation target area is automatically generated based on the die size and the pixel size, the size and the position of the target area are determined if the die size is not a constant multiple of the pixel size. It may be shifted as shown in FIG. In this state, if the normalized correlation value is calculated as it is, if the contrast of the light and shade pattern in the target area is large, the degree of coincidence will be low, and there is a possibility that the pattern will be erroneously inspected as defective.

【0031】これを防止するため、Rn+1 側の対象領域
については周辺8近傍に対する正規化相関値を算出した
上で、合計9つの正規化相関値の中から、最も大きな
(一致度の高い)場合を代表値として判定に用いる方法
を採る。具体的には、図7に示す例の場合、図8に示す
ように、左上近傍を1画素ずらした場合(近傍1:図9
参照)の正規化相関値が最も高くなり、これを代表値と
する。
To prevent this, for the target area on the Rn + 1 side, a normalized correlation value is calculated for eight neighboring areas, and the largest (highest degree of coincidence) is selected from a total of nine normalized correlation values. ) The method of using the case as a representative value for the judgment is adopted. Specifically, in the case of the example shown in FIG. 7, as shown in FIG.
) Has the highest normalized correlation value, which is used as a representative value.

【0032】なお、以上のような量子化誤差防止処理を
行う場合、Rn+1 の周辺8近傍の取り方は図9に示す要
領にて行う。
When the above-described quantization error prevention processing is performed, the vicinity of the periphery 8 of Rn + 1 is taken as shown in FIG.

【0033】以上の正規化相関を行った後、図2に示す
ように、あらかじめ設定したおいた閾値と正規化相関値
とを比較し、正規化相関値が閾値を下回る場合、上記2
つの検査領域Rn 、Rn+1 はマクロ異常を含む領域とし
て出力する。
After performing the above-described normalized correlation, as shown in FIG. 2, a preset threshold value is compared with the normalized correlation value, and if the normalized correlation value falls below the threshold value,
The two inspection areas Rn and Rn + 1 are output as areas containing macro abnormalities.

【0034】そして、上記した処理を画像内のすべての
関連付けに対して行うことにより、マクロ異常を検出す
ることが可能となる。例えば、図3のような画像に対し
て、図4(a)の関連付けを用いた場合、マクロ異常は
図10のような形で検出されることになる。
By performing the above-described processing for all the associations in the image, it is possible to detect a macro error. For example, when the association shown in FIG. 4A is used for an image as shown in FIG. 3, a macro abnormality is detected in a form as shown in FIG.

【0035】[0035]

【発明の効果】以上説明したように、本発明の半導体ウ
ェハのマクロ検査装置によれば、エリアセンサやライン
センサ等を使って半導体ウェハ全域もしくは一部の撮像
原画像を採取し、ウェハ上のダイを検査領域単位とした
領域分割を行った上で、互いに隣接するダイ同士の濃淡
比較を行っているので、ウェハ上の広い範囲にまたがっ
て濃淡ムラとして発生するマクロ異常を抽出することが
できる。しかも、ダイ同士の濃淡比較において正規化相
関を用いているので、照明ムラの影響を受けにくい自動
マクロ異常検査が可能となる。
As described above, according to the semiconductor wafer macro inspection apparatus of the present invention, the whole or a part of the original image of the semiconductor wafer is sampled using the area sensor, the line sensor, etc. Since the density comparison is performed between the dies adjacent to each other after the area division is performed with the die as a unit of the inspection area, it is possible to extract the macro abnormality that occurs as the density unevenness over a wide range on the wafer. . Moreover, since the normalized correlation is used in the density comparison between the dies, it is possible to perform an automatic macro abnormality inspection that is not easily affected by illumination unevenness.

【0036】また、本発明の半導体ウェハのマクロ検査
装置において、正規化相関を算出する際に、与えられた
領域についてのみ演算するのではなく、周辺8近傍に1
画素ずらした領域についても演算を行い、合計9つの正
規化相関値の中から最大値(最も一致度の高い領域での
値)を選出し、これを代表値として判定を行うようにす
れば、画像の水平分解能の量子化誤差の影響を受け難く
した、誤検出の少ないより正確なマクロ異常検査が可能
になる。
Further, in the semiconductor wafer macro inspection apparatus of the present invention, when calculating the normalized correlation, it is not necessary to calculate only for a given area, but to calculate 1 in the vicinity of the periphery 8.
The calculation is also performed for the pixel-shifted region, and the maximum value (the value in the region with the highest degree of coincidence) is selected from a total of nine normalized correlation values, and this is used as a representative value for determination. A more accurate macro abnormality inspection with less erroneous detection, which is less affected by the quantization error of the horizontal resolution of the image, can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の概略構成を示すブロック図
である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【図2】マクロ異常検出の処理フローを示す図である。FIG. 2 is a diagram showing a processing flow of macro abnormality detection.

【図3】マクロ対象画像の例を示す図である。FIG. 3 is a diagram illustrating an example of a macro target image.

【図4】検査領域関連付け処理の例を示す図である。FIG. 4 is a diagram illustrating an example of an inspection area association process.

【図5】正規化領域の演算対象領域を示す図である。FIG. 5 is a diagram illustrating a calculation target region of a normalization region.

【図6】正規化領域の演算対象領域の具体例を示す図で
ある。
FIG. 6 is a diagram illustrating a specific example of a calculation target area of a normalized area.

【図7】正規化相関演算の際に発生する量子化誤差の説
明図である。
FIG. 7 is an explanatory diagram of a quantization error generated at the time of a normalized correlation operation.

【図8】量子化誤差を防止する処理の説明図である。FIG. 8 is an explanatory diagram of a process for preventing a quantization error.

【図9】周辺8近傍の取り方の要領を示す図である。FIG. 9 is a diagram showing the outline of how to take the vicinity of the periphery 8;

【図10】マクロ異常検出例を示す図である。FIG. 10 is a diagram illustrating an example of macro abnormality detection.

【図11】従来のマクロ検査方法の問題点の説明図であ
る。
FIG. 11 is an explanatory diagram of a problem of a conventional macro inspection method.

【符号の説明】[Explanation of symbols]

1 画像入力手段 2 画像処理装置 21 検査領域分割手段 22 検査領域関連付け手段 23 濃淡比較手段 24 判定手段 D ダイ E マクロ異常 DESCRIPTION OF SYMBOLS 1 Image input means 2 Image processing apparatus 21 Inspection area division means 22 Inspection area association means 23 Shade comparison means 24 Judgment means D Die E Macro abnormality

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA49 BB02 CC19 FF42 JJ02 JJ03 JJ25 JJ26 QQ00 QQ24 QQ25 QQ26 QQ41 QQ42 RR01 2G051 AA51 AB20 CA03 CA04 EA14 EA20 EB01 EB02 EC03 EC06 ED07 4M106 AA01 AA02 CA48 CA55 DA14 DH01 DJ17 DJ18 DJ20  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 2F065 AA49 BB02 CC19 FF42 JJ02 JJ03 JJ25 JJ26 QQ00 QQ24 QQ25 QQ26 QQ41 QQ42 RR01 2G051 AA51 AB20 CA03 CA04 EA14 EA20 EB01 EB02 EC03 EC06 DJ01 A14 DJ01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウェハの全域もしくは一部の撮像
原画像を採取し、ウェハ上のダイを検査領域単位として
領域分割する検査領域分割手段と、互いに隣接する検査
領域同士を関連付け、相互に比較し合うダイの関連付け
を設定する検査領域関連付け手段と、相互に関連付けさ
れた検査領域同士の濃淡比較において正規化相関を用い
る濃淡比較手段と、その正規化相関値が所定の閾値を下
回るか否かを判定する判定手段を備え、正規化相関値が
所定の閾値を下回る領域を異常箇所として出力するよう
に構成されていることを特徴とする半導体ウェハのマク
ロ検査装置。
1. An inspection area dividing means for collecting an entire or a part of an original image of a semiconductor wafer and dividing a die on the wafer into inspection area units, and associating adjacent inspection areas with each other and comparing them with each other. Inspection area association means for setting association of mutually associated dies, density comparison means using normalized correlation in density comparison between mutually associated inspection areas, and whether or not the normalized correlation value falls below a predetermined threshold value A macro-inspecting apparatus for a semiconductor wafer, characterized in that it is provided with a judging means for judging a value, and is configured to output a region where the normalized correlation value is smaller than a predetermined threshold value as an abnormal point.
【請求項2】 正規化相関の演算を、与えられた領域に
加えて、周辺8近傍に1画素ずらした領域についても行
い、合計9つの正規化相関値の中から最大値を選出し、
これを代表値として判定を行うように構成されているこ
とを特徴とする請求項1記載の半導体ウェハのマクロ検
査装置。
2. A normalization correlation operation is performed on a region shifted by one pixel in the vicinity of the periphery 8 in addition to a given region, and a maximum value is selected from a total of nine normalized correlation values.
2. The semiconductor wafer macro inspection apparatus according to claim 1, wherein the apparatus is configured to make a determination using the value as a representative value.
JP2000018991A 2000-01-27 2000-01-27 Semiconductor wafer macro inspection system Expired - Fee Related JP3654501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018991A JP3654501B2 (en) 2000-01-27 2000-01-27 Semiconductor wafer macro inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018991A JP3654501B2 (en) 2000-01-27 2000-01-27 Semiconductor wafer macro inspection system

Publications (2)

Publication Number Publication Date
JP2001210690A true JP2001210690A (en) 2001-08-03
JP3654501B2 JP3654501B2 (en) 2005-06-02

Family

ID=18545767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018991A Expired - Fee Related JP3654501B2 (en) 2000-01-27 2000-01-27 Semiconductor wafer macro inspection system

Country Status (1)

Country Link
JP (1) JP3654501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539485A (en) * 2007-09-14 2010-12-16 ケーエルエー−テンカー・コーポレーション Computer-implemented method, carrier medium and system for displaying an image of at least a portion of a wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539485A (en) * 2007-09-14 2010-12-16 ケーエルエー−テンカー・コーポレーション Computer-implemented method, carrier medium and system for displaying an image of at least a portion of a wafer

Also Published As

Publication number Publication date
JP3654501B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
KR101604005B1 (en) Inspection method
KR101674698B1 (en) Detecting defects on a wafer
JP4169573B2 (en) Pattern inspection method and inspection apparatus
US20070053580A1 (en) Image defect inspection apparatus, image defect inspection system, defect classifying apparatus, and image defect inspection method
JP4229767B2 (en) Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus
JP4711570B2 (en) Pattern inspection method and inspection apparatus
JP2010520622A (en) Method for accurately identifying the edge of an inspection area for an array area formed on a wafer, and a method for binning detected defects in an array area formed on a wafer
TW201504622A (en) Pattern-measuring apparatus and semiconductor-measuring system
WO2020105319A1 (en) Defect inspection device and defect inspection method
JP2016145887A (en) Inspection device and method
CN112033965A (en) 3D arc surface defect detection method based on differential image analysis
US7526119B2 (en) Pattern inspection apparatus
JPH04107946A (en) Automatic visual inspector
CN112635346A (en) Wafer detection method, semiconductor detection device and storage medium
CN109585325B (en) Method for detecting crystal edge washing boundary
JP3907874B2 (en) Defect inspection method
EP1104915B1 (en) Defect detection using gray level signatures
JP2009139133A (en) Flaw detection method and flaw detector
JP2009097959A (en) Defect detecting device and defect detection method
KR100774826B1 (en) Method for detecting the defect of wafer
JP2009250937A (en) Pattern inspection device and method
JP2647051B2 (en) Appearance inspection device
JP3654501B2 (en) Semiconductor wafer macro inspection system
JP2009097958A (en) Apparatus and method for defect detection
JP2006242681A (en) Visual inspection apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees