JP2001208001A - Accumulator - Google Patents
AccumulatorInfo
- Publication number
- JP2001208001A JP2001208001A JP2000012531A JP2000012531A JP2001208001A JP 2001208001 A JP2001208001 A JP 2001208001A JP 2000012531 A JP2000012531 A JP 2000012531A JP 2000012531 A JP2000012531 A JP 2000012531A JP 2001208001 A JP2001208001 A JP 2001208001A
- Authority
- JP
- Japan
- Prior art keywords
- pressurized
- pressure receiving
- receiving
- hole
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
- F15B1/04—Accumulators
- F15B1/08—Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
- F15B1/22—Liquid port constructions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/20—Accumulator cushioning means
- F15B2201/205—Accumulator cushioning means using gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/30—Accumulator separating means
- F15B2201/315—Accumulator separating means having flexible separating means
- F15B2201/3152—Accumulator separating means having flexible separating means the flexible separating means being bladders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/40—Constructional details of accumulators not otherwise provided for
- F15B2201/41—Liquid ports
- F15B2201/411—Liquid ports having valve means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/40—Constructional details of accumulators not otherwise provided for
- F15B2201/415—Gas ports
- F15B2201/4155—Gas ports having valve means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/40—Constructional details of accumulators not otherwise provided for
- F15B2201/43—Anti-extrusion means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/60—Assembling or methods for making accumulators
- F15B2201/605—Assembling or methods for making housings therefor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、アキュムレータ
に関するもので、特に、疲労破壊をしてはいけないアキ
ュムレータに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accumulator, and more particularly to an accumulator which must not be damaged by fatigue.
【0002】[0002]
【従来の技術】アキュムレータの容器本体の底部には、
圧力液体が出入りする給排筒が設けられている。この給
排筒は、前記底部の貫通穴に嵌着されそのフランジ部は
貫通穴に形成した段状受部に係止されている。2. Description of the Related Art At the bottom of an accumulator container body,
A supply / discharge cylinder through which the pressure liquid enters and exits is provided. The supply / discharge cylinder is fitted in a through hole in the bottom portion, and a flange portion thereof is locked by a step-shaped receiving portion formed in the through hole.
【0003】[0003]
【発明が解決しようとする課題】アキュムレータに圧力
液体を加えると、該給排筒のフランジ部に大きな力が加
わる。そのため、該フランジ部と係止している段状受部
は大きな力を受ける。When pressurized liquid is applied to the accumulator, a large force is applied to the flange portion of the supply / discharge cylinder. Therefore, the step-shaped receiving portion locked with the flange portion receives a large force.
【0004】ところが、該フランジ部に当接する段状受
部の受圧面は、ほぼ平面状に形成され、フランジ部から
の荷重はこの平面状の受圧面で受けている。そのため、
引っ張り力が働くフランジ部の内側下面角部及び段状受
部の外側角部には、大きな表面引張応力が働くので、疲
労破壊が発生する。[0004] However, the pressure receiving surface of the stepped receiving portion abutting on the flange portion is formed in a substantially flat shape, and the load from the flange portion is received by the flat pressure receiving surface. for that reason,
A large surface tensile stress acts on the inner lower surface corner of the flange portion and the outer corner of the stepped receiving portion on which a tensile force acts, so that fatigue fracture occurs.
【0005】この発明は、上記事情に鑑み、疲労破壊が
発生しないようにすることを目的とする。[0005] In view of the above circumstances, an object of the present invention is to prevent the occurrence of fatigue failure.
【0006】[0006]
【課題を解決するための手段】この発明は、容器本体の
底部に貫通穴を設け、該貫通穴に給排筒を嵌着して該貫
通穴の段状受部に該給排筒のフランジ部を圧接せしめた
アキュムレータにおいて;前記貫通穴の段状受部の受圧
面は、直径方向に沿って形成された内側受圧R面と外側
受圧R面とを備えており、前記給排筒のフランジ部の加
圧面は、前記内側受圧R面に対向する内側加圧R面と、
前記外側受圧R面に対向する外側加圧R面と、を備えて
おり、前記フランジ部にかかる負荷により前記両部のい
ずれか一方を変形させて一方の面を他方の面に一致させ
ることを特徴とする。According to the present invention, a through hole is provided in a bottom portion of a container body, and a supply / discharge cylinder is fitted into the through hole, and a flange of the supply / discharge cylinder is fitted to a stepped receiving portion of the through hole. A pressure receiving surface of the stepped receiving portion of the through hole includes an inner pressure receiving R surface and an outer pressure receiving R surface formed along a diametrical direction, and a flange of the supply / discharge cylinder. The pressurizing surface of the portion, an inner pressurized R surface facing the inner pressurized R surface,
An outer pressurized R surface facing the outer pressurized R surface, wherein one of the two portions is deformed by a load applied to the flange portion so that one surface coincides with the other surface. Features.
【0007】この発明は、容器本体の底部に貫通穴を設
け、該貫通穴に給排筒を嵌着して該貫通穴の段状受部に
該給排筒のフランジ部を圧接せしめたアキュムレータに
おいて;前記貫通穴の段状受部の受圧面は、直径方向に
沿って順次連続する内側受圧R面と中央受圧斜面と外側
受圧R面とを備えており、前記給排筒のフランジ部の加
圧面は、前記内側受圧R面に対向する内側加圧R面と、
前記中央受圧斜面に対向する中央加圧斜面と、前記外側
受圧R面に対向する外側加圧R面と、を備えており、前
記フランジ部にかかる負荷により前記両部のいずれか一
方を変形させて一方の面を他方の面に一致させることを
特徴とする。According to the present invention, there is provided an accumulator in which a through hole is provided in a bottom portion of a container body, a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole. Wherein the pressure receiving surface of the stepped receiving portion of the through hole has an inner pressure receiving R surface, a central pressure receiving slope, and an outer pressure receiving R surface that are successively arranged in a diametrical direction. A pressurizing surface, an inner pressurized R surface facing the inner pressurized R surface,
A central pressurized slope facing the central pressure-receiving slope, and an outer pressurized R-face opposed to the outer pressure-receiving R-face, wherein one of the two portions is deformed by a load applied to the flange portion. In this case, one surface is made to coincide with the other surface.
【0008】この発明は、容器本体の底部に貫通穴を設
け、該貫通穴に給排筒を嵌着して該貫通穴の段状受部に
該給排筒のフランジ部を圧接せしめたアキュムレータに
おいて;前記貫通穴の段状受部の受圧面は、直径方向に
沿って順次連続する内側受圧R面と中央受圧平面と外側
受圧R面とを備えており、前記給排筒のフランジ部の加
圧面は、前記内側受圧R面と間隙を介して対向する内側
加圧R面と、前記中央受圧平面と間隙を介して対向する
中央加圧平面と、前記外側受圧R面と間隙を介して対向
する外側加圧R面と、を備えており、前記フランジ部に
かかる負荷により前記両部のいずれか一方を変形させて
一方の面を他方の面に一致させ、前記両部の内側のR面
同志の接触中心角及び前記両部の外側のR面同志の接触
中心角は、それぞれ70゜未満にし、50%以上の荷重
をR面で受けることを特徴とする。According to the present invention, there is provided an accumulator in which a through hole is provided in a bottom portion of a container body, a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole. Wherein the pressure receiving surface of the stepped receiving portion of the through hole includes an inner pressure receiving surface, a central pressure receiving surface, and an outer pressure receiving surface that are successively arranged in a diametrical direction. The pressurizing surface is an inner pressurized R surface opposed to the inner pressure receiving R surface via a gap, a central pressurized plane opposed to the central pressure receiving plane via a gap, and a pressurized surface facing the outer pressure receiving R surface. An opposing outer pressurized R surface, wherein one of the two portions is deformed by a load applied to the flange portion so that one surface coincides with the other surface. The center angle of contact between the surfaces and the center angle of contact between the R surfaces outside the both parts are respectively Be less than 70 °, characterized in that for receiving a load of 50% or more in the R-plane.
【0009】[0009]
【発明の実施の態様】従来のアキュムレータでは、面圧
を計算して塑性変形を起こさない面積で受圧面を計算し
て設計している。また、応力集中を防止する為互いに当
接する加圧面と受圧面とをR面にすることが考えられる
が、このR面を設計とおりに精密に加工することは困難
である。DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional accumulator, a pressure receiving surface is calculated and a pressure receiving surface is calculated by an area which does not cause plastic deformation. Further, in order to prevent stress concentration, it is conceivable to make the pressurized surface and the pressure-receiving surface that are in contact with each other an R surface, but it is difficult to precisely process the R surface as designed.
【0010】そこで、本発明者は、互いに対向し、か
つ、R面を有する加圧面と受圧面とを互いに異なる硬度
の素材で形成し、フランジ部が荷重を受けたとき、硬度
の小さい方の素材を塑性変形又は弾性変形させてその面
を硬度の大きい他の素材の面に一致させるようにした。Therefore, the inventor of the present invention has formed a pressing face and a pressure receiving face which face each other and have an R surface with materials having different hardnesses, and when a load is applied to the flange portion, the smaller hardness is used. The material is plastically or elastically deformed so that its surface matches the surface of another material having high hardness.
【0011】互いに圧接する加圧面と受圧面の表面は、
高い圧縮荷重と高い引張荷重を受け、疲労破壊の原因と
なる。しかし、この疲労破壊は圧縮荷重が高い値でも発
生しないが、高い引張荷重が繰り返しかかるとそれが発
生する。本発明は、前記性質を利用するものであり、圧
縮荷重が大きく、引張荷重が小さくなるようにして疲労
破壊を抑制するものである。[0011] The surfaces of the pressure surface and the pressure receiving surface that are pressed against each other are:
High compressive load and high tensile load cause fatigue fracture. However, this fatigue fracture does not occur even when the compression load is high, but it occurs when a high tensile load is repeatedly applied. The present invention utilizes the above-mentioned properties, and suppresses fatigue fracture by reducing a compressive load and a tensile load.
【0012】本発明は、容器本体の底部の貫通穴に段状
受部を形成し、該段状受部に直径方向に沿って順次連続
する内側受圧R面、中央受圧平面及び外側受圧R面を形
成し、給排筒のフランジ部に前記内側受圧R面と圧接す
る内側加圧R面、前記中央受圧平面と圧接する中央加圧
平面、及び該外側受圧R面と圧接する外側加圧R面を形
成する。According to the present invention, a stepped receiving portion is formed in a through hole in a bottom portion of a container body, and an inner pressure receiving surface, a central pressure receiving surface, and an outer pressure receiving R surface which are successively successive in the stepwise receiving portion along a diametrical direction. And an inner pressurized R surface that presses against the flange portion of the supply / discharge cylinder with the inner pressure receiving R surface, a central pressurizing surface that presses against the central pressure receiving surface, and an outer pressurizing R that presses against the outer pressure receiving R surface. Form a surface.
【0013】前記両部の内側のR面同志及び前記両部の
外側のR面同志の接触中心角は、例えば、30度に形成
されるが、必要に応じて70゜未満の範囲で適宜選択さ
れる。 この様にすると、従来例に比べR半径が大きく
とれるので、形状の変形が緩やかになり、応力分散がで
きる。また、力を受ける腕長さが短くできるので、曲げ
モーメントも小さくなる。The center angle of contact between the inner R-faces of the two portions and the outer R-face of the two portions is formed, for example, at 30 degrees, but is appropriately selected within a range of less than 70 ° as necessary. Is done. In this case, the radius of curvature can be made larger than that of the conventional example, so that the shape deformation becomes gentle and the stress can be dispersed. In addition, since the length of the arm receiving the force can be shortened, the bending moment is also reduced.
【0014】なお、前記中央加圧平面及び中央受圧平面
の代わりに、中央加圧斜面及び中央受圧斜面にしても良
い。The central pressure plane and the central pressure receiving plane may be replaced with a central pressure slope and a central pressure receiving slope.
【0015】また、前記中央加圧平面及び中央受圧平面
を省略してもよい。即ち、段状受部の受圧面を、直径方
向に沿って連続する内側受圧R面と外側受圧R面とから
構成し、フランジ部の加圧面を、前記内側受圧R面と間
隙を介して対向する内側加圧R面と、前記外側受圧R面
と間隙を介して対向する外側加圧R面とから構成し、前
記両部の内側のR面同志の接触中心角及び前記両部の外
側のR面同志の接触中心角は、それぞれ70゜未満の面
積にして全荷重を受ける様にしても良い。この様に全て
の荷重をR面で受けると、形状変形が緩やかになり応力
が分散されるので、より疲労に強いアキュムレータとな
る。Further, the central pressure plane and the central pressure receiving plane may be omitted. That is, the pressure receiving surface of the stepped receiving portion is constituted by an inner pressure receiving R surface and an outer pressure receiving R surface that are continuous in a diametrical direction, and the pressing surface of the flange portion is opposed to the inner pressure receiving R surface via a gap. An inner pressurized R surface, and an outer pressurized R surface opposed to the outer pressure receiving R surface via a gap, and a contact center angle between the inner R surfaces inside the both portions and an outer pressurized surface outside the both portions. The contact center angles of the R-planes may each be set to an area of less than 70 ° to receive the entire load. When all the loads are received on the R-plane as described above, the shape deformation becomes gentle and the stress is dispersed, so that the accumulator becomes more resistant to fatigue.
【0016】[0016]
【実施例】この発明の実施例を図1〜図5により説明す
る。アキュムレータACCは、容器本体1内にブラダ2
を内蔵している。このブラダ2は、所定形状に折り畳ま
れるように折りぐせを付けた、所謂プリーツブラダであ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. The accumulator ACC has a bladder 2 in the container body 1.
Built-in. The bladder 2 is a so-called pleated bladder which is folded so as to be folded into a predetermined shape.
【0017】このブラダ2のフランジ3は、容器本体1
の上部1aに係止され、蓋体5により固定されている。こ
の蓋体5には、ブラダ2内に連通する給排気口6が設け
られている。The flange 3 of the bladder 2 is
And is fixed by the lid 5. The lid 5 is provided with a supply / exhaust port 6 communicating with the inside of the bladder 2.
【0018】容器本体1の底部1bには、貫通穴10が設
けられ、この貫通穴10には給排筒13が挿着されてい
る。この給排筒13のフランジ部14は、貫通穴10の
段状受部11に圧接されている。A through hole 10 is provided in the bottom 1b of the container body 1, and a supply / discharge cylinder 13 is inserted into the through hole 10. The flange portion 14 of the supply / discharge cylinder 13 is pressed against the stepped receiving portion 11 of the through hole 10.
【0019】段状受部11の受圧面11Aは、直径方向
に沿って順次連続する内側受圧R面11a、中央受圧平
面11b、外側受圧R面11c、を備えている。内側受
圧R面11aの半径R1は、例えば、3.2mm、外側受圧
R面11cの半径R2は、例えば1.8mmに形成されてい
る。内側受圧R面11aに連続する傾斜面11dは、貫
通穴10の中心線10cに対しα、例えば、20゜傾斜し
ている。The pressure receiving surface 11A of the stepped receiving portion 11 has an inner pressure receiving surface 11a, a central pressure receiving surface 11b, and an outer pressure receiving R surface 11c that are successively arranged in the diametrical direction. Radius R 1 of the inner pressure-receiving R surface 11a, for example, 3.2 mm, the radius R 2 of the outer pressure-receiving R surface 11c is formed, for example, to 1.8 mm. The inclined surface 11d continuous with the inner pressure receiving R surface 11a is inclined by α, for example, 20 ° with respect to the center line 10c of the through hole 10.
【0020】給排筒13は前記段状受部11の素材より
硬度の小さい素材で形成されており、該給排筒13のフ
ランジ部14の加圧面14Pは、前記内側受圧R面11
aと隙間tを介して対向する内側加圧R面14aと、前
記中央受圧平面11bに圧接する中央加圧平面14b
と、前記外側受圧R面11cと隙間tを介して対向する
外側加圧R面14c、とを備えている。The supply / discharge cylinder 13 is formed of a material having a lower hardness than the material of the stepped receiving portion 11. The pressing surface 14 P of the flange portion 14 of the supply / discharge cylinder 13 is
a and an inner pressurized R surface 14a opposed to the central pressurizing surface 11b via a gap t,
And an outer pressurized R surface 14c opposed to the outer pressure receiving R surface 11c via a gap t.
【0021】内側加圧R面14aの半径R3は、例え
ば、3mm、外側加圧R面14cの半径R4は、例えば、
2mmに形成されている。前記半径R1、R3の中心は、そ
れぞれ貫通穴10の中心線10Cと平行な直線L3上に位置
し、又、前記半径R2、R4の中心は、それぞれ貫通穴1
0の中心線10Cと平行な直線L4上に位置している。The radius R 3 of the inner pressing R surface 14a is, for example, 3 mm, and the radius R 4 of the outer pressing R surface 14c is, for example,
It is formed to 2 mm. The centers of the radii R 1 and R 3 are located on a straight line L3 parallel to the center line 10C of the through hole 10, and the centers of the radii R 2 and R 4 are respectively
0 is located on a straight line L4 parallel to the center line 10C.
【0022】給排筒13には、クッションカップ15の
付いたポペット弁16が摺動自在に支持されている。こ
の給排筒13は、ナット17により容器本体1に固定さ
れている。A poppet valve 16 with a cushion cup 15 is slidably supported on the supply / discharge cylinder 13. The supply / discharge cylinder 13 is fixed to the container body 1 by a nut 17.
【0023】次に、本実施例の作動につき説明する。ア
キュムレータに接続されている液圧回路の液圧が変化し
アキュムレータが加圧されると、給排筒13は、矢印A
13方向に押圧され、図3、図4に示すように、中央加
圧平面14bは中央受圧平面11bに圧接して弾性変形
しながら塑性変形する。Next, the operation of this embodiment will be described. When the hydraulic pressure of the hydraulic circuit connected to the accumulator changes and the accumulator is pressurized, the supply / discharge cylinder 13 moves to the direction indicated by the arrow A.
As shown in FIGS. 3 and 4, the central pressing plane 14b is pressed against the central pressure receiving plane 11b and plastically deforms while being elastically deformed.
【0024】次に、内側加圧R面14a及び外側加圧R
面14cもぞれ対向する内側受圧R面11a及び外側受
圧R面11cに圧接し、弾性変形しながら塑性変形す
る。Next, the inner pressurized R surface 14a and the outer pressurized R
The surface 14c also comes into pressure contact with the opposing inner pressure receiving R surface 11a and outer pressure receiving R surface 11c, and undergoes plastic deformation while being elastically deformed.
【0025】そして、加圧力と変形力とのバランスがと
れると、それぞれ変形は進行しなくなる。この時、前記
両部の内側の両R面11a、14aの接触中心角θ1、
前記両部の外側の両R面11c、14cの接触中心角θ
2、は70゜未満であり、例えば、該中心角θ1、θ2は
それぞれ30゜である。また、このR面では50%以上
の荷重を受けられる。なお、内側加圧R面14aの半径
は、図4に示すように、ハッチング部分が変形してR3
aに変化する。When the pressing force and the deforming force are balanced, the deformation does not progress. At this time, the contact center angle θ 1 between the two R surfaces 11a and 14a inside the two portions,
The contact center angle θ between the two R surfaces 11c and 14c outside the both portions
2 is less than 70 °, for example, the central angles θ 1 and θ 2 are each 30 °. Also, a load of 50% or more can be received on this R surface. As shown in FIG. 4, the radius of the inner pressurized R surface 14a is R 3
changes to a.
【0026】前記のように、中央加圧平面14b、内側
及び外側加圧R面14a,14cは簡単に中央受圧平面
11b、内側及び外側受圧R面11a、11cに合致
し、プリンとされる。フランジ部14にかかる全荷重
は、中央受圧平面11b、内側受圧R面11a、外側受
圧R面11c、により分担される。この時、フランジ部
14の内側加圧R面14a及び段状受部11の外側受圧
R面11cには引っ張り荷重がかかる。As described above, the central pressure plane 14b and the inner and outer pressure receiving R-faces 14a, 14c easily conform to the central pressure receiving plane 11b, the inner and outer pressure-receiving R faces 11a, 11c, and are made pudding. The total load applied to the flange portion 14 is shared by the central pressure receiving flat surface 11b, the inner pressure receiving R surface 11a, and the outer pressure receiving R surface 11c. At this time, a tensile load is applied to the inner pressurized R surface 14a of the flange portion 14 and the outer pressurized R surface 11c of the stepped receiving portion 11.
【0027】この実施例のアキュムレータについて、有
限要素法で引っ張り荷重の計算を行うと、フランジ部1
4にかかる全荷重を332、620Nとした場合、フラ
ンジ部14の内側加圧R面14aの最大引張荷重は、4
05N/mm2であり、又、段状受部11の外側受圧R面
11cの最大引張荷重は481N/mm2であった。When the tensile load of the accumulator of this embodiment is calculated by the finite element method, the flange 1
Assuming that the total load applied to No. 4 is 332 and 620 N, the maximum tensile load of the inner pressurized R surface 14 a of the flange portion 14 is 4
05N / mm 2 , and the maximum tensile load of the outer pressure receiving R surface 11c of the stepped receiving portion 11 was 481 N / mm 2 .
【0028】これに対し、図5に示すような比較例のア
キュムレータを形成し、このアキュムレータのフランジ
部14に前記と同一の荷重をかけた場合について有限要
素法で分析した。この比較例では、外側受圧R面11c
の半径R2は0.8mm、外側加圧R面14cの半径R4は0.8
mmに形成され、内側加圧R面14aの半径R3ハ1.2mm、
内側受圧R面11aの半径R1ハ0.4mm、傾斜面11dの
傾斜角度α は15゜、に形成されている。On the other hand, an accumulator of a comparative example as shown in FIG. 5 was formed, and the case where the same load was applied to the flange portion 14 of this accumulator was analyzed by the finite element method. In this comparative example, the outer pressure receiving R surface 11c
Radius R2 of the outer pressurized R surface 14c is 0.8 mm.
formed in mm, the radius R 3 Ha 1.2mm of the inner pressure R surfaces 14a,
The radius R 1 of the inner pressure receiving R surface 11a is 0.4 mm, and the inclination angle α of the inclined surface 11d is 15 °.
【0029】その結果、フランジ部14の内側加圧R面
14aの最大引張荷重は790N/mm2、外側受圧R面
11cの最大引張荷重は871N/mm2であった。As a result, the maximum tensile load on the inner pressurized R surface 14a of the flange portion 14 was 790 N / mm 2 , and the maximum tensile load on the outer pressurized R surface 11c was 871 N / mm 2 .
【0030】また、前記両アキュムレータに1/3HZ、最
大化圧力47.9〜48.3MPa、最低加圧力0.1〜0.3MPa、の
圧力を加えたところ、図2のアキュムレータでは1,000,
000回の作動試験でも破損しなかったが、図5のアキュ
ムレータは326,550回で疲労破壊が発生した。When a pressure of 1/3 HZ, a maximum pressure of 47.9-48.3 MPa, and a minimum pressure of 0.1-0.3 MPa was applied to both accumulators, the accumulator of FIG.
The accumulator in FIG. 5 failed in 326,550 cycles, although it did not break in 000 operation tests.
【0031】これからも明らかな様に、R面を接触させ
50%以上の荷重を受けると、R面での接触面圧は高く
なるが、引っ張り応力を小さくできるので、疲労破壊の
発生を防止することができる。As is clear from this, when the R surface is brought into contact and receives a load of 50% or more, the contact surface pressure on the R surface increases, but the tensile stress can be reduced, thereby preventing the occurrence of fatigue fracture. be able to.
【0032】この発明の第2実施例を図6により説明す
る。この実施例と第1実施例(図1〜図5)との相違点
は、中央加圧平面部及び中央受圧平面が省略されている
ことである。即ち、内側加圧R面14aと外側加圧R面
14cとが直接連続しており、また、内側受圧R面11
aと外側受圧R面11cとが直接接続されており、この
R面でフランジ部14にかかる全荷重を受けていること
である。なお、半径R1〜R4の中心は貫通穴10の中心
線10cと平行な同一直線L上に位置している。A second embodiment of the present invention will be described with reference to FIG. The difference between this embodiment and the first embodiment (FIGS. 1 to 5) is that the central pressing plane portion and the central pressure receiving plane are omitted. That is, the inner pressurized R surface 14a and the outer pressurized R surface 14c are directly continuous, and
a and the outer pressure receiving R surface 11c are directly connected, and the entire load applied to the flange portion 14 is received on the R surface. The centers of the radii R 1 to R 4 are located on the same straight line L parallel to the center line 10 c of the through hole 10.
【0033】この発明の第3実施例を図7により説明す
る。この実施例と第1実施例(図1〜図5)との相違点
は、中央加圧平面部及び中央受圧平面の代わりに、中央
加圧斜面14d及び中央受圧斜面11dが設けられてい
ることである。即ち、内側加圧R面14aと外側加圧R
面14cとは中央加圧斜面14dを介して連続してお
り、また、内側受圧R面11aと外側受圧R面11cと
は中央受圧斜面11dを介して接続されている。なお、半
径R1、R3の中心は貫通穴10の中心線10cと平行な
同一直線L1上に位置し、また、半径R2、R4の中心は貫
通穴10の中心線10cと平行な同一直線L2上に位置
している。A third embodiment of the present invention will be described with reference to FIG. The difference between this embodiment and the first embodiment (FIGS. 1 to 5) is that a center pressurizing slope 14d and a central pressure receiving slope 11d are provided instead of the center pressurizing plane portion and the center pressure receiving plane. It is. That is, the inner pressure R surface 14a and the outer pressure R
The surface 14c is continuous through a central pressure slope 14d, and the inner pressure receiving surface 11a and the outer pressure receiving surface 11c are connected via a central pressure receiving surface 11d. The centers of the radii R 1 and R 3 are located on the same straight line L 1 parallel to the center line 10 c of the through hole 10, and the centers of the radii R 2 and R 4 are parallel to the center line 10 c of the through hole 10. It is located on the same straight line L 2 a.
【0034】[0034]
【発明の効果】この発明は、次のような効果を奏する。 (1)フランジ部にかかる負荷により前記フランジ部又は
段状受部のいずれか一方を変形させて一方の面を他方の
面に一致させるので、簡単に両面を密着させることがで
きる。そのため、R面の加工を精密に加工しなくとも、
対向するR面同志を容易に密着させることができる。The present invention has the following effects. (1) Since one of the flange portion and the stepped receiving portion is deformed by the load applied to the flange portion to make one surface thereof coincide with the other surface, both surfaces can be easily brought into close contact with each other. Therefore, even if the R surface is not precisely machined,
Opposing R surfaces can be easily brought into close contact with each other.
【0035】(2)前記両部の内側のR面同志の接触中心
角及び前記両部の外側のR面同志の接触中心角は、それ
ぞれ70゜未満の面積にしたので、従来例に比べ受圧面
積が小さくなり単位面積当たりの圧縮応力が大きくなり
弾性変形や塑性変形する。この時、R面でも高い圧縮荷
重を受けるが、大きなR面で受けるため肉厚変化が緩や
かにできるので、変形は広い部分で発生する。従って、
引っ張り応力は分散し、該引っ張り応力は小さくなるの
で、疲労破壊が発生しにくい。そのため、使用寿命を延
ばすことができる。(2) The contact center angle between the inner R surfaces inside the two portions and the contact center angle between the outer R surfaces outside the both portions are each smaller than 70 °. The area becomes smaller and the compressive stress per unit area becomes larger, causing elastic deformation or plastic deformation. At this time, a high compression load is also applied to the R surface, but the deformation is generated in a wide portion because the thickness change can be gradual due to the large R surface. Therefore,
Since the tensile stress is dispersed and the tensile stress is reduced, fatigue fracture hardly occurs. Therefore, the service life can be extended.
【図1】本発明の実施例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
【図2】図1の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG.
【図3】図2の他の状態を示す図である。FIG. 3 is a diagram showing another state of FIG. 2;
【図4】図3の要部拡大図である。FIG. 4 is an enlarged view of a main part of FIG. 3;
【図5】比較例を示す縦断面図で、図2に対応する図で
ある。FIG. 5 is a longitudinal sectional view showing a comparative example, and is a view corresponding to FIG. 2;
【図6】本発明の第2実施例を示す縦断面図で、図2に
対応する図である。FIG. 6 is a longitudinal sectional view showing a second embodiment of the present invention and is a view corresponding to FIG.
【図7】本発明の第3実施例を示す縦断面図で、図2に
対応する図である。FIG. 7 is a longitudinal sectional view showing a third embodiment of the present invention, and is a view corresponding to FIG.
1 容器本体 10 貫通穴 11 段状受部 11a 内側受圧R面 11b 中央受圧平面 11c 外側受圧R面 13 給排筒 14 フランジ部 14a 内側加圧R面 14b 中央加圧平面 14c 外側加圧R面 DESCRIPTION OF SYMBOLS 1 Container main body 10 Through-hole 11 Step-shaped receiving part 11a Inner pressure receiving R surface 11b Central pressure receiving surface 11c Outer pressure receiving R surface 13 Supply / discharge cylinder 14 Flange part 14a Inner pressurized R surface 14b Central pressurized flat surface 14c Outer pressurized R surface
Claims (5)
に給排筒を嵌着して該貫通穴の段状受部に該給排筒のフ
ランジ部を圧接せしめたアキュムレータにおいて;前記
貫通穴の段状受部の受圧面は、直径方向に沿って形成さ
れた内側受圧R面と外側受圧R面とを備えており、 前記給排筒のフランジ部の加圧面は、前記内側受圧R面
に対向する内側加圧R面と、前記外側受圧R面に対向す
る外側加圧R面と、を備えており、 前記フランジ部にかかる負荷により前記両部のいずれか
一方を変形させて一方の面を他方の面に一致させること
を特徴とするアキュムレータ。1. An accumulator wherein a through hole is provided in a bottom portion of a container body, a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole. The pressure receiving surface of the stepped receiving portion of the through hole includes an inner pressure receiving R surface and an outer pressure receiving R surface formed along a diametrical direction, and the pressing surface of the flange portion of the supply / discharge cylinder includes the inner pressure receiving surface. An inner pressurized R surface facing the pressure receiving R surface, and an outer pressurized R surface facing the outer pressure receiving R surface, wherein one of the two portions is deformed by a load applied to the flange portion. An accumulator characterized in that one surface coincides with the other surface.
に給排筒を嵌着して該貫通穴の段状受部に該給排筒のフ
ランジ部を圧接せしめたアキュムレータにおいて;前記
貫通穴の段状受部の受圧面は、直径方向に沿って順次連
続する内側受圧R面と中央受圧斜面と外側受圧R面とを
備えており、 前記給排筒のフランジ部の加圧面は、前記内側受圧R面
に対向する内側加圧R面と、前記中央受圧斜面に対向す
る中央加圧斜面と、前記外側受圧R面に対向する外側加
圧R面と、を備えており、 前記フランジ部にかかる負荷により前記両部のいずれか
一方を変形させて一方の面を他方の面に一致させること
を特徴とするアキュムレータ。2. An accumulator wherein a through hole is provided in a bottom portion of a container body, a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole. The pressure receiving surface of the stepped receiving portion of the through hole includes an inner pressure receiving R surface, a central pressure receiving slope, and an outer pressure receiving R surface that are successively arranged in a diametrical direction, and a pressing surface of the flange portion of the supply / discharge cylinder. Has an inner pressurized R surface facing the inner pressurized R surface, a central pressurized slope opposing the central pressurized slope, and an outer pressurized R surface opposing the outer pressurized R surface, An accumulator characterized in that one of the two portions is deformed by a load applied to the flange portion so that one surface coincides with the other surface.
に給排筒を嵌着して該貫通穴の段状受部に該給排筒のフ
ランジ部を圧接せしめたアキュムレータにおいて;前記
貫通穴の段状受部の受圧面は、直径方向に沿って順次連
続する内側受圧R面と中央受圧平面と外側受圧R面とを
備えており、 前記給排筒のフランジ部の加圧面は、前記内側受圧R面
と対向する内側加圧R面と、前記中央受圧平面と対向す
る中央加圧平面と、前記外側受圧R面と対向する外側加
圧R面と、を備えており、 前記フランジ部にかかる負荷により前記両部のいずれか
一方を変形させて一方の面を他方の面に一致させ、 前記両部の内側のR面同志の接触中心角及び前記両部の
外側のR面同志の接触中心角は、それぞれ70゜未満に
し、50%以上の荷重をR面で受けることを特徴とする
アキュムレータ。3. An accumulator in which a through hole is provided in a bottom portion of a container body, a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole. The pressure-receiving surface of the stepped receiving portion of the through hole includes an inner pressure-receiving surface, a center pressure-receiving surface, and an outer pressure-receiving surface that are successively arranged in a diametric direction, and a pressing surface of a flange portion of the supply / discharge cylinder. Has an inner pressurized R surface facing the inner pressurized R surface, a central pressurized plane facing the central pressurized plane, and an outer pressurized R surface facing the outer pressurized R surface, The load applied to the flange portion deforms one of the two portions so that one surface coincides with the other surface, and the contact center angle between the R surfaces inside the two portions and the R outside the two portions. The center angles of contact between the surfaces must be less than 70 °, and a load of 50% or more is received on the R surface. Accumulator, characterized in that.
を特徴とする請求項1、、2、又は、3記載のアキュム
レータ。4. The accumulator according to claim 1, wherein the deformation is plastic deformation or elastic deformation.
のそれより小さいことを特徴とする請求項1、2、又
は、3記載のアキュムレータ。5. The accumulator according to claim 1, wherein the radius of curvature of the inner pressure receiving R surface is smaller than that of the inner pressure receiving R surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000012531A JP2001208001A (en) | 2000-01-21 | 2000-01-21 | Accumulator |
PCT/JP2001/003199 WO2002084127A1 (en) | 2000-01-21 | 2001-04-13 | Accumulator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000012531A JP2001208001A (en) | 2000-01-21 | 2000-01-21 | Accumulator |
PCT/JP2001/003199 WO2002084127A1 (en) | 2000-01-21 | 2001-04-13 | Accumulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001208001A true JP2001208001A (en) | 2001-08-03 |
Family
ID=26345065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000012531A Pending JP2001208001A (en) | 2000-01-21 | 2000-01-21 | Accumulator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2001208001A (en) |
WO (1) | WO2002084127A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003010447A1 (en) * | 2001-07-24 | 2003-02-06 | Nobuyuki Sugimura | Pressurized container |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS491459Y1 (en) * | 1969-02-03 | 1974-01-16 | ||
BE795498A (en) * | 1972-03-15 | 1973-05-29 | Mercier Jacques H | PRESSURE TANK |
EP0258712B1 (en) * | 1986-09-02 | 1992-01-29 | AlliedSignal Inc. | Lightweight linear hydraulic actuator |
JP2620587B2 (en) * | 1992-10-14 | 1997-06-18 | 宣行 杉村 | Double diaphragm accumulator |
-
2000
- 2000-01-21 JP JP2000012531A patent/JP2001208001A/en active Pending
-
2001
- 2001-04-13 WO PCT/JP2001/003199 patent/WO2002084127A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2002084127A1 (en) | 2002-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03113179A (en) | O-ring installation groove and back-up ring | |
WO2020000417A1 (en) | Anti-eccentric wear plunger and slipper assembly, plunger pump and plunger motor | |
JP2002168158A (en) | Fuel high pressure accumulator for fuel injection system for internal combustion engine | |
JP2001208001A (en) | Accumulator | |
JPH01242808A (en) | Female thread for inner pressure | |
US20050118042A1 (en) | Diaphragm unit | |
US20040218991A1 (en) | Pitch diameter displaced screw | |
JPH0640389U (en) | Discharge valve device of compressor | |
US20050118041A1 (en) | Diaphragm pump | |
JPWO2003010447A1 (en) | Internal pressure vessel | |
EP1564413A1 (en) | Accumulator using internal and external threads | |
JP4239487B2 (en) | Self-tightening method for ultra-high pressure vessel | |
JP2003074706A (en) | O-ring groove and accumulator with same | |
JP2001208024A (en) | Joint | |
JP6957618B2 (en) | accumulator | |
WO1990010901A1 (en) | Variable pressure control valve | |
JPH0875003A (en) | Groove structure on seal ring | |
JP2002372001A (en) | Accumulator | |
JP2003113757A (en) | Fuel supply device | |
JP3558705B2 (en) | Hermetic compressor | |
WO2022113749A1 (en) | Fuel distribution pipe | |
JP4475731B2 (en) | Diaphragm pump | |
JPH0811968B2 (en) | Hydraulic fixed flange | |
JP2004138061A (en) | Component to be loaded under internal pressure, and method for manufacturing the component loaded under internal pressure having non-cylindrical cross section | |
JPH07332390A (en) | Pulsation absorbing device |