JP2001205290A - Method and apparatus for wastewater treatment - Google Patents

Method and apparatus for wastewater treatment

Info

Publication number
JP2001205290A
JP2001205290A JP2000348941A JP2000348941A JP2001205290A JP 2001205290 A JP2001205290 A JP 2001205290A JP 2000348941 A JP2000348941 A JP 2000348941A JP 2000348941 A JP2000348941 A JP 2000348941A JP 2001205290 A JP2001205290 A JP 2001205290A
Authority
JP
Japan
Prior art keywords
carrier
wastewater treatment
sludge
tank
complete oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000348941A
Other languages
Japanese (ja)
Other versions
JP4667583B2 (en
Inventor
Yasuhiro Baba
泰弘 馬場
Hiroaki Fujii
弘明 藤井
Tadao Shiotani
唯夫 塩谷
Kiichirou Oka
樹一郎 岡
Tsutomu Miura
勤 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2000348941A priority Critical patent/JP4667583B2/en
Publication of JP2001205290A publication Critical patent/JP2001205290A/en
Application granted granted Critical
Publication of JP4667583B2 publication Critical patent/JP4667583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method or wastewater treatment which can miniaturize a tank and prevent the generation of excess sludge. SOLUTION: This apparatus is provided with an aeration tank in which wastewater is brought into contact with carrier particles under aerobic conditions and a complete oxidation tank, liquid in the complete oxidation tank is filtered by passing through a separation membrane, and the filtrate is discharged. Preferably, an s-BOD sludge load in the complete oxidation tank is 0.1 kg-BOD/kg-MLSS.day or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は余剰汚泥を発生させ
ない排水の処理装置および排水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment apparatus and a wastewater treatment method that do not generate excess sludge.

【0002】[0002]

【従来の技術】従来、排水処理には主として活性汚泥法
が用いられてきた。活性汚泥法によれば、沈殿槽で汚泥
を沈降させ、一部を曝気槽に返送し、一部を余剰汚泥と
して引抜くことによって、BOD容積負荷が0.3〜
0.8kg/m3・日程度の条件で定常的な運転を行う
ことが可能である。一方で、微生物を高濃度で保持する
ことができる担体の開発が進んでおり、これを用いれ
ば、2〜5kg/m3・日という高いBOD容積負荷を
かけることができ、曝気槽を小型化することができる。
2. Description of the Related Art Conventionally, activated sludge method has been mainly used for wastewater treatment. According to the activated sludge method, the sludge is settled in a sedimentation tank, a part of the sludge is returned to the aeration tank, and a part of the sludge is withdrawn as excess sludge.
It is possible to perform a steady operation under the condition of about 0.8 kg / m 3 · day. On the other hand, a carrier capable of holding microorganisms at a high concentration has been developed. If this is used, a high BOD volume load of 2 to 5 kg / m 3 · day can be applied, and the size of the aeration tank can be reduced. can do.

【0003】[0003]

【発明が解決しようとする課題】従来の活性汚泥法で
は、BOD容積負荷が0.3〜0.8kg/m3・日程
度の条件で運転しなければならず、大きな曝気槽を用い
なければならない。また、従来の活性汚泥法では、余剰
汚泥を引抜く必要が生じ、これを処分しなければならな
いという問題が生じる。活性汚泥法により、高いBOD
容積負荷で排水を処理しようとしても不十分な処理にな
ったり、汚泥の沈降性が低下して運転を続けることが不
可能となる。また、汚泥を引抜かず、汚泥の増殖の速度
と汚泥の自己酸化の速度とがつりあう完全酸化の状態を
活性汚泥槽で作ろうとすると、曝気槽でのMLSSが非
常に高くなるため。このため、非常に大きな活性汚泥槽
を設けなければならないという不都合が生じる。また、
汚泥が微細化して自然沈降による汚泥分離ができなくな
るという問題も生じる。
In the conventional activated sludge method, the operation must be performed under the condition that the BOD volume load is about 0.3 to 0.8 kg / m 3 · day, and a large aeration tank must be used. No. Further, in the conventional activated sludge method, there is a need to pull out excess sludge, and there is a problem that the sludge must be disposed. High BOD by activated sludge method
Even if an attempt is made to treat wastewater with a volumetric load, the treatment will be insufficient, or the sedimentation of sludge will be reduced, making it impossible to continue operation. Also, if the activated sludge tank is used to create a completely oxidized state in which the sludge growth rate and the sludge auto-oxidation rate are balanced without sludge being extracted, the MLSS in the aeration tank becomes extremely high. For this reason, there is a disadvantage that a very large activated sludge tank must be provided. Also,
There is also a problem that the sludge becomes finer and the sludge cannot be separated by natural sedimentation.

【0004】これに対し、担体を用いる方法(以下、こ
れを「担体法」と記す。)では、高負荷をかけることが
可能であることから、曝気槽を小型化することができる
反面、沈降分離しない微細汚泥が発生し、凝集沈殿法を
併用しなければならない。この場合、凝集剤のランニン
グコストがかかる上、凝集沈殿した沈殿物を処分しなけ
ればならないという問題が生じる。
On the other hand, in a method using a carrier (hereinafter, referred to as a “carrier method”), a high load can be applied, so that the size of the aeration tank can be reduced. Fine sludge that does not separate is generated, and the coagulation sedimentation method must be used together. In this case, there is a problem that running cost of the coagulant is increased and that the sediment that has coagulated and settled must be disposed of.

【0005】上記の課題に鑑みてなされた本発明は、槽
を小型化することが可能で、しかも余剰汚泥を発生させ
ない排水の処理装置および排水処理方法を提供すること
を目的とする。
An object of the present invention, which has been made in view of the above problems, is to provide a wastewater treatment apparatus and a wastewater treatment method that can reduce the size of a tank and that does not generate excess sludge.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決する本
発明の排水処理装置は、好気性条件下で排水と担体粒子
とが接触される曝気槽と、完全酸化槽とを備え、完全酸
化槽内の液を分離膜を通して濾過し、濾液を排出するこ
とを特徴とする。
The wastewater treatment apparatus according to the present invention for solving the above-mentioned problems comprises an aeration tank in which wastewater and carrier particles are brought into contact under aerobic conditions, and a complete oxidation tank. The liquid in the tank is filtered through a separation membrane, and the filtrate is discharged.

【0007】完全酸化槽において、低い汚泥負荷で曝気
することによって、汚泥の増殖と汚泥の自己酸化との速
度をつりあわせ、汚泥の増加を防ぐことができる。その
ためには、完全酸化槽におけるs−BOD汚泥負荷が
0.1kg−BOD/kg−MLSS・日以下であるこ
とが好ましく、0.05kg−BOD/kg−MLSS
・日以下であることがより好ましい。通常、このような
低い汚泥負荷で運転した場合には、汚泥が分散化し自然
沈降しなくなり、汚泥の分離が困難になるという問題が
生じる。そこで、本発明の排水処理装置では、分離膜を
併用することによって、固形分(汚泥)と処理水(濾過
水)との分離を行う。これにより、本発明の排水処理装
置では、余剰汚泥を発生させないで運転を継続すること
が可能となる。通常の活性汚泥法で完全酸化の状態を作
ろうとすると、前述のとおり、非常に大きな活性汚泥槽
を設けなければならない。しかし、本発明の排水処理装
置では、担体法を用いていることから、曝気槽をコンパ
クトにすることができる。そして、曝気槽で排水中の大
部分のBODを除去することができることから、大きな
完全酸化槽が不要であり、低い汚泥濃度で汚泥の増殖と
汚泥の自己酸化との速度をつりあわせるこことができ、
余剰汚泥の引き抜きを不要とすることができる。
[0007] By performing aeration with a low sludge load in a complete oxidation tank, it is possible to balance the rate of sludge growth and the auto-oxidation of sludge, thereby preventing an increase in sludge. For this purpose, the s-BOD sludge load in the complete oxidation tank is preferably 0.1 kg-BOD / kg-MLSS · day or less, and 0.05 kg-BOD / kg-MLSS.
-It is more preferable that it is less than or equal to days. Normally, when operating at such a low sludge load, there is a problem that the sludge is dispersed and does not settle down spontaneously, making it difficult to separate sludge. Therefore, in the wastewater treatment apparatus of the present invention, separation of the solid matter (sludge) and the treated water (filtrated water) is performed by using a separation membrane in combination. Thereby, in the wastewater treatment apparatus of the present invention, the operation can be continued without generating excess sludge. In order to make a completely oxidized state by the ordinary activated sludge method, as described above, a very large activated sludge tank must be provided. However, in the wastewater treatment apparatus of the present invention, since the carrier method is used, the aeration tank can be made compact. And since a large amount of BOD in the wastewater can be removed in the aeration tank, a large complete oxidation tank is not required, and it is possible to balance the speed of sludge growth and sludge auto-oxidation at low sludge concentration. Can,
It is not necessary to remove excess sludge.

【0008】[0008]

【発明の実施の形態】本発明の排水処理装置のフローの
一例を図1に示す。このシステムにおいて、曝気槽を可
能な限り小型化するために、曝気槽における溶解性BO
D容積負荷は1kg/m3・日以上であることが好まし
い。ここで、溶解性BODとは、0.45μのフィルタ
でろ過した後に測定したBODのことであり、微生物を
除いたBODを意味する(以下、これを「s−BOD」
と略記する。)。s−BOD容積負荷が高いほど、曝気
槽を小型化することができる。担体の種類や充填率を適
宜選択することにより、2kg/m3・日以上あるいは
5kg/m3・日以上で運転することも可能である。
FIG. 1 shows an example of a flow of a wastewater treatment apparatus according to the present invention. In this system, in order to make the aeration tank as small as possible, the soluble BO
The D volume load is preferably 1 kg / m 3 · day or more. Here, the soluble BOD is a BOD measured after filtering through a 0.45 μ filter, and means a BOD excluding microorganisms (hereinafter referred to as “s-BOD”).
Abbreviated. ). The higher the s-BOD volume load, the smaller the aeration tank can be. The operation can be performed at 2 kg / m 3 · day or more or 5 kg / m 3 · day or more by appropriately selecting the type and the filling rate of the carrier.

【0009】本発明で使用される分離膜の形状としては
特に限定されることはなく、中空糸膜、管状膜、平膜な
どから適宜選択して使用することができるが、中空糸膜
を使用した場合、膜の単位容積あたりの膜面積を多く取
ることができ、濾過装置全体を小型化できることから特
に好ましい。
The shape of the separation membrane used in the present invention is not particularly limited, and can be appropriately selected from hollow fiber membranes, tubular membranes, flat membranes and the like. This is particularly preferable because a large membrane area per unit volume of the membrane can be obtained, and the size of the entire filtration device can be reduced.

【0010】また、分離膜を構成する素材も特に限定さ
れることはなく、例えばポリオレフィン系、ポリスルホ
ン系、ポリエーテルスルホン系、エチレン−ビニルアル
コール共重合体系、ポリアクリロニトリル系、酢酸セル
ロース系、ポリフッ化ビニリデン系、ポリパーフルオロ
エチレン系、ポリメタクリル酸エステル系、ポリエステ
ル系、ポリアミド系などの有機高分子系の素材で構成さ
れた膜、セラミック系などの無機系の素材で構成された
膜などを使用条件、所望する濾過性能などに応じて選択
することができる。ポリビニルアルコール系樹脂により
親水化処理されたポリスルホン系樹脂、親水性高分子が
添加されたポリスルホン系樹脂、ポリビニルアルコール
系樹脂、ポリアクリロニトリル系樹脂、酢酸セルロース
系樹脂、親水化処理されたポリエチレン系樹脂などの親
水性素材からなるものが、高い親水性を有するためにS
S成分の難付着性、付着したSS成分の剥離性に優れて
いる点で好ましいが、他の素材で構成された中空糸膜を
用いることもできる。有機高分子系の素材を使用する場
合、複数の成分を共重合したもの、または複数の素材を
ブレンドしたものであってもよい。
The material constituting the separation membrane is not particularly limited. Examples thereof include polyolefin, polysulfone, polyethersulfone, ethylene-vinyl alcohol copolymer, polyacrylonitrile, cellulose acetate, and polyfluoride. Uses films composed of organic polymer materials such as vinylidene, polyperfluoroethylene, polymethacrylate, polyester, and polyamide, and films composed of inorganic materials such as ceramic. It can be selected according to conditions, desired filtration performance, and the like. Polysulfone resin hydrophilized with polyvinyl alcohol resin, polysulfone resin added with hydrophilic polymer, polyvinyl alcohol resin, polyacrylonitrile resin, cellulose acetate resin, polyethylene resin hydrophilized, etc. Is made of a hydrophilic material having high hydrophilicity.
It is preferable in that it has excellent adhesion of the S component and excellent releasability of the attached SS component, but a hollow fiber membrane made of another material can also be used. When an organic polymer-based material is used, a material obtained by copolymerizing a plurality of components or a material obtained by blending a plurality of materials may be used.

【0011】本発明で使用される分離膜の孔径は、汚泥
と水との分離性能を考慮して1ミクロン以下であること
が好ましい。孔径が0.5ミクロン以下であることが高
い透水性を有し、目詰まりを抑制して濾過効率が低下す
るおそれが小さいことからより好ましく、0.1ミクロ
ン以下であることがさらに好ましい。なお、ここでいう
孔径とは、コロイダルシリカ、エマルジョン、ラテック
スなどの粒子径が既知の各種基準物質を分離膜で濾過し
た際に、その90%が排除される基準物質の粒子径をい
う。孔径は均一であることが好ましい。限外濾過膜であ
れば、上記のような基準物質の粒子径に基づいて、孔径
を求めることは不可能であるが、分子量が既知の蛋白質
を用いて同様の測定を行ったときに、分画分子量が30
00以上であるものが好ましい。
The pore size of the separation membrane used in the present invention is preferably 1 micron or less in consideration of the performance of separating sludge and water. It is more preferable that the pore size is 0.5 μm or less because it has high water permeability and the possibility that the clogging is suppressed and the filtration efficiency is reduced is small, and the pore size is 0.1 μm or less. Here, the pore size refers to a particle size of a reference material from which 90% of a reference material having a known particle size such as colloidal silica, emulsion, latex or the like is removed by filtration through a separation membrane. The pore diameter is preferably uniform. With an ultrafiltration membrane, it is impossible to determine the pore size based on the particle size of the reference substance as described above, but when the same measurement is performed using a protein having a known molecular weight, the Molecular weight of 30
A value of not less than 00 is preferable.

【0012】分離膜の設置例および膜濾過装置の構成例
を図2および図3に示す。濾過の方式としては、図2に
示すように分離膜を含む膜モジュール等を完全酸化槽の
外部に設置し、汚泥を含む原液を循環させながらその一
部を濾過する方式と、図3に示すように分離膜を含む膜
モジュール等を完全酸化槽の内部に浸漬し、吸引濾過す
る方式とに大別される。使用する分離膜の形状、特性
や、膜モジュールの設置スペースなどの諸条件に応じて
濾過の方式を選択して使用することが可能である。な
お、図2に示すような方式では、一般に高透過流束での
運転が可能であり、膜面積が少なくて済むという利点を
有するが、汚泥を含む原液を循環させるためのエネルギ
ーが大きいという欠点を有する。一方、図3に示すよう
な方式では、設置スペースおよびエネルギーが小さくて
済むという利点を有するが、透過流束が一般に低く、大
きい膜面積を必要とする欠点を有する。また、図3に示
すように分離膜を完全酸化槽内部に浸漬する方式を採用
する場合は、散気装置の上部に分離膜を含む膜モジュー
ル等を設置し、散気による膜表面洗浄の効果を利用して
膜目詰まりを抑制することができる点で好ましい。本発
明の実施のために排水処理設備を新設しても良いが、現
有の排水処理設備を改造しても良い。
FIGS. 2 and 3 show an example of installation of a separation membrane and an example of the configuration of a membrane filtration device. As a method of filtration, as shown in FIG. 2, a membrane module or the like including a separation membrane is installed outside a complete oxidation tank, and a part of the solution is circulated while circulating a stock solution containing sludge. As described above, the method is roughly divided into a method in which a membrane module or the like including a separation membrane is immersed in a complete oxidation tank and suction-filtered. It is possible to select and use a filtration method according to various conditions such as the shape and characteristics of the separation membrane to be used and the installation space of the membrane module. In addition, the system as shown in FIG. 2 generally has an advantage that operation at a high permeation flux is possible and requires a small membrane area, but has a disadvantage that a large amount of energy is required for circulating a stock solution containing sludge. Having. On the other hand, the method as shown in FIG. 3 has the advantage that the installation space and energy are small, but has the disadvantage that the permeation flux is generally low and a large membrane area is required. In the case of adopting a method in which the separation membrane is immersed in the complete oxidation tank as shown in FIG. 3, a membrane module or the like including the separation membrane is installed on the upper part of the aeration device, and the effect of the membrane surface cleaning by the aeration is provided. This is preferable in that film clogging can be suppressed by utilizing the above. Although a wastewater treatment facility may be newly installed for implementing the present invention, an existing wastewater treatment facility may be modified.

【0013】本発明における担体として、公知の各種の
担体を使用することができるが、ゲル状担体、プラスチ
ック担体および繊維状担体から選ばれた1種類の担体、
あるいはこれらの担体の2種類以上を組み合せた担体を
使用することが好ましい。中でも、処理性能の高さや流
動性の点から、アセタール化ポリビニルアルコール系ゲ
ル担体が好ましい。担体の充填率としては、処理効率と
流動性の点から、槽容積の5%以上50%以下であるこ
とが好ましく、さらに10%以上30%以下であること
がより好ましい。
As the carrier in the present invention, various known carriers can be used. One type of carrier selected from a gel-like carrier, a plastic carrier and a fibrous carrier can be used.
Alternatively, it is preferable to use a carrier obtained by combining two or more of these carriers. Among them, an acetalized polyvinyl alcohol-based gel carrier is preferable from the viewpoint of high processing performance and fluidity. The filling rate of the carrier is preferably 5% or more and 50% or less, more preferably 10% or more and 30% or less of the tank volume from the viewpoint of processing efficiency and fluidity.

【0014】[0014]

【実施例】以下、実施例により、本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to examples.

【0015】容量が20m3の原水調整槽、容量が20
3の担体流動曝気槽および容量が40m3の完全酸化槽
からなる排水試験装置を用いて本発明を実施した。上記
の担体流動曝気槽にはアセタール化ポリビニルアルコー
ル系ゲル担体(直径約4mm)を2m3投入した。ま
た、完全酸化槽の外部に、ポリスルホン系樹脂からな
り、膜面積20m2の中空糸膜モジュールを2本装着し
た膜濾過装置を設置し、内圧循環濾過方式、濾過速度2
0m3/日の条件で膜濾過を行い、膜濾過水を完全酸化
槽の外部に排出しながら汚泥の濃縮運転を行った。この
実施例におけるフローは図1のものである。本発明に基
づき、担体流動曝気槽におけるBOD容積負荷が3.5
kg/m3・日で運転したところ、完全酸化槽における
MLSSが徐々に増加したが、s−BOD汚泥負荷が
0.05kg−BOD/kg−MLSSになったときに
は、完全酸化槽におけるMLSSが約7000mg/L
でほぼ一定となり、完全酸化が実現した。その時の処理
水のBODは10mg/L以下、SSはゼロであり、汚
泥を引抜かずに運転を継続することができた。
A raw water regulating tank having a capacity of 20 m 3 , a capacity of 20
The invention was carried out using a drainage test apparatus consisting of an m 3 carrier flow aeration tank and a 40 m 3 complete oxidation tank. 2 m 3 of an acetalized polyvinyl alcohol gel carrier (about 4 mm in diameter) was charged into the carrier aeration tank. Further, a membrane filtration device, which is made of a polysulfone-based resin and is equipped with two hollow fiber membrane modules having a membrane area of 20 m 2 , is installed outside the complete oxidation tank.
The membrane filtration was performed under the condition of 0 m 3 / day, and the sludge concentration operation was performed while discharging the membrane filtration water to the outside of the complete oxidation tank. The flow in this embodiment is that of FIG. According to the present invention, the BOD volume load in the carrier flowing aeration tank is 3.5.
When operated at kg / m 3 · day, the MLSS in the complete oxidation tank gradually increased, but when the s-BOD sludge load reached 0.05 kg-BOD / kg-MLSS, the MLSS in the complete oxidation tank was about 7000mg / L
, And complete oxidation was realized. The BOD of the treated water at that time was 10 mg / L or less, and the SS was zero, so that the operation could be continued without removing the sludge.

【0016】[0016]

【発明の効果】本発明によれば、槽を小型化することが
可能であり、しかも余剰汚泥を発生させないで排水を処
理することができる。
According to the present invention, the size of the tank can be reduced, and the wastewater can be treated without generating excess sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例のフローを模式的に表した図である。FIG. 1 is a diagram schematically showing a flow of an embodiment.

【図2】分離膜の設置方法の一例である。FIG. 2 is an example of a method for installing a separation membrane.

【図3】分離膜の設置方法の他の一例である。FIG. 3 is another example of a method of installing a separation membrane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 樹一郎 岡山県岡山市海岸通1丁目2番1号 株式 会社クラレ内 (72)発明者 三浦 勤 岡山県倉敷市酒津1621 株式会社クラレ内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiichiro Oka 1-2-1, Kaigandori, Okayama City, Okayama Prefecture Inside Kuraray Co., Ltd. (72) Inventor Tsutomu Miura 1621 Sazu, Kurashiki-shi, Okayama Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 好気性条件下で排水と担体粒子とが接触
される曝気槽と、完全酸化槽とを備え、完全酸化槽内の
液を分離膜を通して濾過し、濾液を排出することを特徴
とする排水の処理装置。
An aeration tank in which waste water and carrier particles are brought into contact under aerobic conditions, and a complete oxidation tank, wherein the liquid in the complete oxidation tank is filtered through a separation membrane, and the filtrate is discharged. And wastewater treatment equipment.
【請求項2】 担体が、ゲル状担体、プラスチック担体
および繊維状担体からなる群から選ばれた1種類以上の
担体である請求項1に記載の排水の処理装置。
2. The wastewater treatment apparatus according to claim 1, wherein the carrier is at least one kind of carrier selected from the group consisting of a gel carrier, a plastic carrier, and a fibrous carrier.
【請求項3】 担体がアセタール化ポリビニルアルコー
ル系ゲルである請求項2に記載の排水の処理装置。
3. The wastewater treatment apparatus according to claim 2, wherein the carrier is an acetalized polyvinyl alcohol-based gel.
【請求項4】 分離膜の孔径が1ミクロン以下である請
求項1に記載の排水の処理装置。
4. The wastewater treatment device according to claim 1, wherein the pore size of the separation membrane is 1 μm or less.
【請求項5】 分離膜が中空糸膜である請求項4に記載
の排水の処理装置。
5. The wastewater treatment apparatus according to claim 4, wherein the separation membrane is a hollow fiber membrane.
【請求項6】 請求項1に記載の排水の処理装置を用
い、完全酸化槽における溶解性BOD汚泥負荷が0.1
kg−BOD/Kg−MLSS・日以下で運転する排水
処理方法。
6. The method for treating wastewater according to claim 1, wherein the soluble BOD sludge load in the complete oxidation tank is 0.1%.
A wastewater treatment method operated at kg-BOD / Kg-MLSS / day or less.
JP2000348941A 1999-11-19 2000-11-16 Waste water treatment apparatus and waste water treatment method Expired - Lifetime JP4667583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000348941A JP4667583B2 (en) 1999-11-19 2000-11-16 Waste water treatment apparatus and waste water treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-330167 1999-11-19
JP33016799 1999-11-19
JP2000348941A JP4667583B2 (en) 1999-11-19 2000-11-16 Waste water treatment apparatus and waste water treatment method

Publications (2)

Publication Number Publication Date
JP2001205290A true JP2001205290A (en) 2001-07-31
JP4667583B2 JP4667583B2 (en) 2011-04-13

Family

ID=26573430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000348941A Expired - Lifetime JP4667583B2 (en) 1999-11-19 2000-11-16 Waste water treatment apparatus and waste water treatment method

Country Status (1)

Country Link
JP (1) JP4667583B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009125A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP2007075723A (en) * 2005-09-14 2007-03-29 Sharp Corp Water treatment apparatus and water treatment method
WO2007086240A1 (en) 2006-01-25 2007-08-02 Kuraray Co., Ltd. Method of treating drainage water using fixation support
KR101298290B1 (en) * 2006-01-25 2013-08-20 가부시키가이샤 구라레 Advanced method for wastewater treatment and method for excessive sludge degradation treatment, using immobilized carrier
JP2016123920A (en) * 2014-12-26 2016-07-11 オルガノ株式会社 Wastewater treatment apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377595A (en) * 1986-09-17 1988-04-07 Kurita Water Ind Ltd Activated sludge treating device
JPS63115497U (en) * 1987-01-19 1988-07-25
JPH04247285A (en) * 1991-02-01 1992-09-03 Ebara Corp Method for filtering using hollow fiber filter module and production of hollow fiber filter module
JPH09294996A (en) * 1996-05-07 1997-11-18 Ebara Corp Method and apparatus for treating organic waste water
JPH1142497A (en) * 1997-02-28 1999-02-16 Kuraray Co Ltd Waste water treating device
JPH11309480A (en) * 1998-04-30 1999-11-09 Kurita Water Ind Ltd Operating method of immersion type membrane separation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377595A (en) * 1986-09-17 1988-04-07 Kurita Water Ind Ltd Activated sludge treating device
JPS63115497U (en) * 1987-01-19 1988-07-25
JPH04247285A (en) * 1991-02-01 1992-09-03 Ebara Corp Method for filtering using hollow fiber filter module and production of hollow fiber filter module
JPH09294996A (en) * 1996-05-07 1997-11-18 Ebara Corp Method and apparatus for treating organic waste water
JPH1142497A (en) * 1997-02-28 1999-02-16 Kuraray Co Ltd Waste water treating device
JPH11309480A (en) * 1998-04-30 1999-11-09 Kurita Water Ind Ltd Operating method of immersion type membrane separation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009125A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JPWO2006009125A1 (en) * 2004-07-16 2008-05-01 株式会社クラレ Wastewater treatment method with little excess sludge extraction
US7754081B2 (en) 2004-07-16 2010-07-13 Kuraray Co., Ltd. Method of wastewater treatment with excess sludge withdrawal reduced
JP4958551B2 (en) * 2004-07-16 2012-06-20 株式会社クラレ Wastewater treatment method with little excess sludge extraction
JP2007075723A (en) * 2005-09-14 2007-03-29 Sharp Corp Water treatment apparatus and water treatment method
US7914677B2 (en) 2005-09-14 2011-03-29 Sharp Kabushiki Kaisha Water treatment apparatus and water treatment method
WO2007086240A1 (en) 2006-01-25 2007-08-02 Kuraray Co., Ltd. Method of treating drainage water using fixation support
US7879239B2 (en) 2006-01-25 2011-02-01 Kuraray Co., Ltd. Wastewater treatment method using immobilized carrier
KR101298290B1 (en) * 2006-01-25 2013-08-20 가부시키가이샤 구라레 Advanced method for wastewater treatment and method for excessive sludge degradation treatment, using immobilized carrier
JP5390774B2 (en) * 2006-01-25 2014-01-15 株式会社クラレ Wastewater treatment method using immobilized carrier
JP2016123920A (en) * 2014-12-26 2016-07-11 オルガノ株式会社 Wastewater treatment apparatus and method

Also Published As

Publication number Publication date
JP4667583B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
KR100636577B1 (en) Apparatus and method for waste water treatment
JPH11165200A (en) Method for treating sludge
JPH07155758A (en) Waste water treating device
EP1440944A1 (en) Waste water treatment method
JP5850793B2 (en) Suspended water filtration apparatus and method
JP2001276844A (en) Water producing method and water producing system
JP2001205290A (en) Method and apparatus for wastewater treatment
JPWO2017135162A1 (en) Water treatment apparatus and water treatment method
JPH08332483A (en) Treatment of waste water
JP2001070758A (en) Operation method of membrane filtration apparatus
JP2002346347A (en) Method and apparatus for filtration
JPH10277599A (en) Sludge concentrating method and apparatus
JP2003103289A (en) Wastewater treatment method
JP5163152B2 (en) Wastewater treatment method
JPH07289864A (en) Microporous membrane
JPH09253647A (en) Water treatment system
JP3162339B2 (en) Sludge treatment method and treatment system
JPH06134265A (en) Throwing-in type solid-liquid separator
JP2002320828A (en) Filter membrane system solid-liquid separator and waste water treatment equipment with the same
JPH11207345A (en) Waste water treatment
JPH04244294A (en) Sewage treatment apparatus
JPH10277550A (en) Sludge thickening method and sludge thickening system
JP2938442B1 (en) Sludge treatment method and treatment system
KR940006405B1 (en) Biological filtering apparatus
JP2000117264A (en) Water purifying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term