JP2001205094A - Photocatalyst substance and photocatalyst body - Google Patents

Photocatalyst substance and photocatalyst body

Info

Publication number
JP2001205094A
JP2001205094A JP2000017625A JP2000017625A JP2001205094A JP 2001205094 A JP2001205094 A JP 2001205094A JP 2000017625 A JP2000017625 A JP 2000017625A JP 2000017625 A JP2000017625 A JP 2000017625A JP 2001205094 A JP2001205094 A JP 2001205094A
Authority
JP
Japan
Prior art keywords
oxide
substance
photocatalytic
film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000017625A
Other languages
Japanese (ja)
Other versions
JP4461546B2 (en
Inventor
Kenji Morikawa
健志 森川
Ryoji Asahi
良司 旭
Takeshi Owaki
健史 大脇
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000017625A priority Critical patent/JP4461546B2/en
Publication of JP2001205094A publication Critical patent/JP2001205094A/en
Application granted granted Critical
Publication of JP4461546B2 publication Critical patent/JP4461546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photocatalyst for which visible light is used as an operating light and which is more efficient. SOLUTION: A photocatalyst substance film 12 comprising Sn-O-N and Zn-O-N is formed on a base 10 by means of sputtering using SnO2 and ZnO as a target in nitrogen atmosphere. In addition, after sputtering, crystallization is performed by heat treatment. A nitride oxide film in which SnO2 and ZnO crystallines obtained like this are a base and N is incorporated exhibits good photocatalytic action using not only ultraviolet light, but also visible light as the operating light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光動作が可能
な光触媒物質および光触媒体に関する。
The present invention relates to a photocatalytic substance and a photocatalyst capable of operating with visible light.

【0002】[0002]

【従来の技術】従来より、光触媒作用を発現する材料と
して、酸化チタン(TiO2)、酸化鉄(Fe23)、
酸化タングステン(WO3)、酸化スズ(SnO2)、酸
化ビスマス(Bi23)、酸化ニオブ(Nb25)、酸
化ニッケル(NiO)、酸化銅(Cu2O)、酸化ジル
コニウム(ZrO2)、酸化亜鉛(ZnO)、チタン酸
ストロンチウム(SrTiO3)、チタン酸鉄(FeT
iO3)、酸化ケイ素(SiO2)等の酸化物半導体が知
られている。これらの光触媒材料は半導体であり、光を
吸収して電子と正孔を生成し、種々の化学反応(例え
ば、有害物質の分解)や殺菌作用を呈する。
2. Description of the Related Art Heretofore, as materials exhibiting photocatalysis, titanium oxide (TiO 2 ), iron oxide (Fe 2 O 3 ),
Tungsten oxide (WO 3 ), tin oxide (SnO 2 ), bismuth oxide (Bi 2 O 3 ), niobium oxide (Nb 2 O 5 ), nickel oxide (NiO), copper oxide (Cu 2 O), zirconium oxide (ZrO) 2 ), zinc oxide (ZnO), strontium titanate (SrTiO 3 ), iron titanate (FeT
Oxide semiconductors such as iO 3 ) and silicon oxide (SiO 2 ) are known. These photocatalytic materials are semiconductors, which absorb light to generate electrons and holes and exhibit various chemical reactions (for example, decomposition of harmful substances) and bactericidal action.

【0003】ところが、これら半導体が吸収して光反応
に使用できる光(触媒の動作光)は、それぞれの物質に
おけるバンドギャップEgの値により制限される。例え
ば、酸化タングステンでは、λ≦460nm(Eg=
2.7eV)、酸化亜鉛ではλ≦388nm(Eg=
3.2eV)である。
However, the light that can be absorbed by these semiconductors and used for photoreaction (operating light of the catalyst) is limited by the value of the band gap Eg of each substance. For example, in the case of tungsten oxide, λ ≦ 460 nm (Eg =
2.7 eV), and λ ≦ 388 nm (Eg =
3.2 eV).

【0004】[0004]

【発明が解決しようとする課題】ここで、図7に示すよ
うに、太陽光や蛍光灯光のスペクトルは、450〜60
0nmの波長域にピークを有しており、400nm以下
の成分は非常に少ない。一方、上述のような酸化物半導
体は、400nm以下の領域の光しか吸収しないものが
多い。従って、これら酸化物半導体からなる光触媒を太
陽光下あるいは室内の蛍光灯下で使用する場合、光の利
用効率が低く、十分な光反応を生起することができない
という問題点があった。
As shown in FIG. 7, the spectrum of sunlight or fluorescent light is 450 to 60.
It has a peak in the wavelength region of 0 nm, and the component of 400 nm or less is very small. On the other hand, many of the above oxide semiconductors absorb only light in a region of 400 nm or less. Therefore, when these photocatalysts composed of oxide semiconductors are used under sunlight or indoor fluorescent light, there is a problem that the light utilization efficiency is low and a sufficient photoreaction cannot be generated.

【0005】本発明の目的は、より長波長域の光も吸収
し、太陽光下、蛍光灯下での光利用効率を向上すること
ができる光触媒物質および光触媒体を提供することにあ
る。
An object of the present invention is to provide a photocatalyst substance and a photocatalyst that can absorb light in a longer wavelength range and improve the light use efficiency under sunlight and fluorescent light.

【0006】[0006]

【課題を解決するための手段】本発明に係る光触媒物質
は、光触媒作用を呈する金属酸化物の結晶の酸素サイト
の一部を窒素原子で置換、金属酸化物の結晶の格子間に
窒素原子をドーピング、あるいは金属酸化物の結晶の多
結晶集合体の粒界に窒素原子を配したことを特徴とす
る。
According to the photocatalytic substance of the present invention, a part of an oxygen site of a metal oxide crystal exhibiting a photocatalytic action is replaced with a nitrogen atom, and a nitrogen atom is inserted between lattices of the metal oxide crystal. It is characterized by doping or disposing nitrogen atoms at grain boundaries of a polycrystalline aggregate of metal oxide crystals.

【0007】このように、酸化物半導体に窒素原子Nを
配すると、酸素Oの特性を支配する半導体の価電子帯が
影響を受け、酸化物のバンドギャップの内側に新しいエ
ネルギー準位が形成され、バンドギャップが狭くなる。
その結果、窒素ドープ前の酸化物の場合より低エネルギ
ーの長波長光をも吸収して、電子と正孔を生成し、光触
媒作用を呈することが可能となる。また、窒素のドーピ
ングにより、生成した電子と正孔の寿命が長くなる。さ
らには、構造的に材料表面への有機物やガスの吸着性が
高くなるため、この相乗効果によって触媒活性が向上す
る。従って、太陽光、蛍光灯光を光源とした場合におけ
る光触媒効率、すなわち、有害ガス分解、水浄化、有機
物分解、抗菌などの効果を向上することができる。
As described above, when nitrogen atoms N are arranged in an oxide semiconductor, the valence band of the semiconductor that controls the characteristics of oxygen O is affected, and a new energy level is formed inside the band gap of the oxide. , The band gap becomes narrow.
As a result, an oxide before nitrogen doping can also absorb low-energy long-wavelength light, generate electrons and holes, and exhibit photocatalysis. Further, the life of generated electrons and holes is prolonged by doping with nitrogen. Further, structurally, the adsorptivity of organic substances and gas to the surface of the material is increased, and the catalytic activity is improved by this synergistic effect. Therefore, it is possible to improve the photocatalytic efficiency when using sunlight or fluorescent light as a light source, that is, effects such as harmful gas decomposition, water purification, organic matter decomposition, and antibacterial effect.

【0008】また、可視光照射による物体表面の濡れ性
や、防曇性能の発現を可能にし、かつその特性の長時間
保持を可能とする。
[0008] Further, it is possible to exhibit wettability of the object surface by irradiation with visible light and anti-fogging performance, and to maintain its properties for a long time.

【0009】また、前記光触媒作用を呈する金属酸化物
は、酸化スズ、酸化亜鉛、チタン酸ストロンチウム、酸
化タングステン、酸化ジルコニウム、酸化ニオブ、酸化
鉄、酸化銅、チタン酸鉄、酸化ニッケル、酸化ビスマ
ス、酸化ケイ素のうちの少なくとも1種であることが好
適である。
The metal oxide exhibiting the photocatalytic action includes tin oxide, zinc oxide, strontium titanate, tungsten oxide, zirconium oxide, niobium oxide, iron oxide, copper oxide, iron titanate, nickel oxide, bismuth oxide, Preferably, it is at least one of silicon oxides.

【0010】また、上述の窒素原子を配した酸化物半導
体(窒酸化物)の光触媒物質を内部物質とし、この内部
物質の表面に外部物質として酸化チタン(TiO2)ま
たは酸化チタンに窒素を含有させたTi−O−N層を形
成することを特徴とすることが好適である。このよう
に、窒酸化物より安定なTiO2や、Ti−O−Nを最
表面に配置することで、窒酸化物単体の場合と比較して
安定性を向上することができる。また、内部の窒酸化物
が可視光を吸収して電子と正孔を生成し、これが表面の
TiO2やTi−O−Nへ移動してこれらの表面におい
て、優れた親水性、防汚性、有機物分解性を実現するこ
とができる。
Further, the above-mentioned photocatalytic substance of an oxide semiconductor (nitride oxide) having nitrogen atoms is used as an internal substance, and titanium oxide (TiO 2 ) or titanium oxide contains nitrogen as an external substance on the surface of the internal substance. It is preferable that a Ti-ON layer formed is formed. By arranging TiO 2 or Ti—O—N, which is more stable than the nitride oxide, on the outermost surface, the stability can be improved as compared with the case of the nitride oxide alone. In addition, the internal nitric oxide absorbs visible light to generate electrons and holes, which migrate to TiO 2 and Ti-ON on the surface and have excellent hydrophilicity and antifouling properties on these surfaces. , Organic matter decomposability can be realized.

【0011】なお、Ti−O−Nは、酸化チタン等の金
属酸化物の酸素サイトの一部を窒素原子(N)で置換、
格子間に窒素原子をドーピング、あるいは多結晶集合体
の粒界に窒素原子を配してなるチタン化合物である。こ
のTi−O−Nは、TiO2に比べ可視光領域において
光触媒作用を発現する。従って、この層においても可視
光を動作光として光触媒作用を得ることができる。
In Ti-ON, a part of oxygen sites of a metal oxide such as titanium oxide is replaced by a nitrogen atom (N).
A titanium compound in which nitrogen atoms are doped between lattices or nitrogen atoms are arranged at grain boundaries of a polycrystalline aggregate. The TiO-N expresses a photocatalytic action in a visible light region compared to TiO 2. Therefore, also in this layer, a photocatalytic action can be obtained using visible light as operating light.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0013】「実施形態1」図1は、実施形態の構成を
示す図であり、SiO2等の基板10上に、光触媒物質
膜12が形成されているこの光触媒物質膜12は、酸化
スズ(SnO2)、酸化亜鉛(ZnO)、チタン酸スト
ロンチウム(SrTiO3)、酸化タングステン(W
3)、酸化ジルコニウム(ZrO2)、酸化ニオブ(N
25)、酸化鉄(Fe23)、酸化銅(Cu2O)、
チタン酸鉄(FeTiO3)、酸化ニッケル(Ni
O)、酸化ビスマス(Bi23)、酸化ケイ素(SiO
2)のうちの少なくとも1種の結晶に、窒素原子(N)
を配したものである。
[Embodiment 1] FIG. 1 is a view showing a configuration of an embodiment, in which a photocatalyst material film 12 is formed on a substrate 10 of SiO 2 or the like. SnO 2 ), zinc oxide (ZnO), strontium titanate (SrTiO 3 ), tungsten oxide (W
O 3 ), zirconium oxide (ZrO 2 ), niobium oxide (N
b 2 O 5 ), iron oxide (Fe 2 O 3 ), copper oxide (Cu 2 O),
Iron titanate (FeTiO 3 ), nickel oxide (Ni
O), bismuth oxide (Bi 2 O 3 ), silicon oxide (SiO
2 ) at least one type of crystal has a nitrogen atom (N)
Is arranged.

【0014】ここで、Nは、上述の酸化物結晶の中でそ
の金属原子と化学結合を有している。例えば、SnO2
であれば、Sn−Nの化学結合を含む。これによって、
バンドギャップを狭くし、長波長側の可視光の吸収が可
能となる。
Here, N has a chemical bond with its metal atom in the above oxide crystal. For example, SnO 2
If it is, a chemical bond of Sn-N is included. by this,
By narrowing the band gap, it becomes possible to absorb visible light on the long wavelength side.

【0015】このような光触媒物質膜12は、上述の酸
化物をターゲットとして窒素ガス雰囲気でスパッタする
ことなどによって得ることができる。
Such a photocatalytic substance film 12 can be obtained by, for example, sputtering the above-described oxide as a target in a nitrogen gas atmosphere.

【0016】「実施形態2」さらに、図2に、実施形態
2の構成を示す。図2(a)において、SiO2の基板
10上に光触媒物質膜12形成し、その上にチタン化合
物膜14を形成している。光触媒物質膜12は、上述の
第1実施形態と同様の膜である。一方、チタン化合物膜
14は、TiO2膜またはTiO2結晶に窒素原子をドー
プしたもので、TiO2結晶の酸素(O)サイトの一部
を窒素原子(N)で置換、格子間にNをドーピング、あ
るいは多結晶集合体の粒界にNを配してなるチタン化合
物である。
Second Embodiment FIG. 2 shows the configuration of a second embodiment. In FIG. 2A, a photocatalytic substance film 12 is formed on a SiO 2 substrate 10, and a titanium compound film 14 is formed thereon. The photocatalyst material film 12 is a film similar to the first embodiment described above. On the other hand, the titanium compound film 14 is obtained by doping a TiO 2 film or a TiO 2 crystal with a nitrogen atom. A part of the oxygen (O) site of the TiO 2 crystal is replaced with a nitrogen atom (N), and N is inserted between lattices. This is a titanium compound obtained by doping or disposing N at the grain boundary of a polycrystalline aggregate.

【0017】なお、図2おいては、二層の積層構造とし
ているが、熱処理などの過程で両者の境界は必ずしも明
確ではなくなり、表面に向けてNが徐々に減少していく
構成となる場合もあり、またこの場合の方が、生成した
電子と正孔の長寿命化の観点から、より好ましい。
Although FIG. 2 shows a two-layer structure, the boundary between the two is not always clear during the heat treatment or the like, and the structure is such that N gradually decreases toward the surface. This case is more preferable from the viewpoint of prolonging the lifetime of the generated electrons and holes.

【0018】このような構成により、基板10に近い光
触媒物質膜12で可視光を吸収し、電子と正孔が生成さ
れる。これらは膜表面のチタン化合物膜(TiO2膜ま
たはTi−O−N膜)14に供給される。そこで、表面
においては、チタン化合物膜14として光触媒作用を発
現する。
With this configuration, visible light is absorbed by the photocatalytic substance film 12 close to the substrate 10, and electrons and holes are generated. These are supplied to a titanium compound film (TiO 2 film or Ti—O—N film) 14 on the film surface. Therefore, on the surface, the titanium compound film 14 exhibits a photocatalytic action.

【0019】これによって、Sn−O−NやZn−O−
N等より安定なTiO2や、Ti−O−Nを最表面に配
置することで、Sn−O−NやZn−O−N等単体の場
合と比較して安定性を向上することができる。なお、T
i−O−Nは、TiO2に比べ可視光領域において光触
媒作用を発現する。従って、この層においても可視光を
動作光として光触媒作用を得ることができる。
Thus, Sn-ON and Zn-O-
Stable and a TiO 2 than like N, by the TiO-N is disposed on the outermost surface, it is possible to improve the stability as compared with the case of Sn-O-N or Zn-O-N and the like alone . Note that T
i-O-N expresses a photocatalytic action in a visible light region compared to TiO 2. Therefore, also in this layer, a photocatalytic action can be obtained using visible light as operating light.

【0020】なお、上述のような傾斜組成の窒酸化物の
光触媒物質/チタン化合物からなる光触媒体は、図2
(b)に示すように、内部に光触媒物質部分22、外側
にチタン化合物部分24を有する粒子状とすることも好
適である。このような粒子状の光触媒は、塗料用のバイ
ンダー中に混入させておき、塗料のようにして利用する
ことが好適である。
The photocatalyst composed of a photocatalytic substance of a nitric oxide and a titanium compound having a gradient composition as described above is shown in FIG.
As shown in (b), it is also preferable to form particles having a photocatalytic substance portion 22 inside and a titanium compound portion 24 outside. It is preferable that such a particulate photocatalyst is mixed in a binder for a paint and used like a paint.

【0021】[0021]

【実施例】「実施例1」この実施例では、SnO2結晶
に、NをドープしたSn−O−N構造の光触媒物質につ
いて述べる。
EXAMPLES Example 1 In this example, a photocatalytic substance having a Sn-ON structure in which SnO 2 crystal is doped with N will be described.

【0022】この実施例では、光触媒物質をRFマグネ
トロンスパッタリングで作成した。ターゲットには、3
インチの径のSnO2焼結ターゲットを用いた。このタ
ーゲットを40%N2−Ar雰囲気中で、0.5Paの
圧力下でスパッタリングを行い、550℃、N2雰囲気
中で90分間熱処理することにより結晶化させ、Sn−
O−N膜を作成した。投入電力は、600W×2とし
た。
In this embodiment, the photocatalytic substance was prepared by RF magnetron sputtering. The target is 3
An inch diameter SnO 2 sintered target was used. The target is sputtered in a 40% N 2 -Ar atmosphere under a pressure of 0.5 Pa, and is crystallized by heat treatment at 550 ° C. for 90 minutes in an N 2 atmosphere.
An ON film was formed. The input power was 600 W × 2.

【0023】一方、比較対象としてSnO2膜も形成し
た。この場合、ターゲットを20%O2−Ar雰囲気中
でスパッタし、550℃、O2雰囲気中で90分間熱処
理することにより結晶化させた。
On the other hand, a SnO 2 film was also formed for comparison. In this case, the target was sputtered in a 20% O 2 -Ar atmosphere and crystallized by heat treatment at 550 ° C. in an O 2 atmosphere for 90 minutes.

【0024】X線回折によりSn−O−N膜の結晶性を
見たところ、正方晶SnO2の(110)、(10
1)、(211)回折線が観察された。しかし、これら
はSnO 2膜と比較して、いずれもやや低角度側へシフ
トしている。このことから、窒素Nのドープによって、
格子間隔がSnO2より広がっていると考えられる。
The crystallinity of the Sn-ON film is determined by X-ray diffraction.
Apparently, tetragonal SnOTwo(110), (10
1), (211) diffraction lines were observed. But these
Is SnO TwoShift to a slightly lower angle compared to the film
I'm From this, by doping with nitrogen N,
Lattice spacing is SnOTwoIt is thought to be more widespread.

【0025】またXPS(X−ray Photoem
ission Spectroscopy)による窒素
N1s殻の測定結果から窒素原子の化学的な結合状態を
判断したところ、本発明のSn−O−N中の窒素原子
は、Sn−N結合に由来するピークを示した。
Also, XPS (X-ray Photoem)
When the chemical bonding state of the nitrogen atom was determined from the measurement result of the nitrogen N1s shell by the issue Spectroscopy, the nitrogen atom in the Sn-ON of the present invention showed a peak derived from the Sn-N bond.

【0026】この膜の光吸収スペクトルを図3に示す。
Sn−O−N膜は、SnO2膜と比べて、吸収端が長波
長側にシフトしている。これは、Nのドープにより、S
nO 2のバンドギャップ内に新たな準位が形成され、実
効的なバンドギャップが狭くなったことに起因する。
FIG. 3 shows the light absorption spectrum of this film.
The Sn-ON film is made of SnOTwoLonger absorption edge compared to membrane
It has shifted to the long side. This is because of the N doping,
nO TwoA new level is formed in the band gap of
This is due to the narrow effective band gap.

【0027】この膜の光触媒機能をメチレンブルーの分
解性能から評価した。この評価は、Sn−O−N膜の表
面に塗布したメチレンブルーの分解性能を波長600n
mにおける膜の吸光度(ΔABS)の変化として測定し
た。照射光源に500WのXeランプを用い波長λ≧2
00nmの紫外線を含む光を照射した場合と、光学フィ
ルタにより照射波長域を制限することにより波長λ≧3
80nmの可視光を照射した場合について試験した。
The photocatalytic function of this film was evaluated from the decomposition performance of methylene blue. In this evaluation, the decomposition performance of methylene blue applied to the surface of the Sn-ON film was measured at a wavelength of 600 nm.
It was measured as the change in the absorbance (ΔABS) of the membrane at m. Using a 500 W Xe lamp as the irradiation light source, wavelength λ ≧ 2
The wavelength λ ≧ 3 is obtained by irradiating light containing ultraviolet light of 00 nm and by limiting the irradiation wavelength range by an optical filter.
The test was performed for the case where visible light of 80 nm was irradiated.

【0028】その結果を図4に示す。このように、Sn
−O−N膜では、紫外光から可視光に渡る照射(λ≧2
00nm)において大きな触媒活性が得られることがわ
かる。この要因は、λ≧380nmの可視光における触
媒活性が向上していることによる。これはNドープの効
果である。この結果は、図3における光吸収スペクトル
特性を反映しているといえる。
FIG. 4 shows the result. Thus, Sn
In the -ON film, irradiation ranging from ultraviolet light to visible light (λ ≧ 2
00 nm), a large catalytic activity can be obtained. This is because the catalytic activity in visible light of λ ≧ 380 nm is improved. This is the effect of N doping. It can be said that this result reflects the light absorption spectrum characteristics in FIG.

【0029】「実施例2」この実施例では、ZnO結晶
に、NをドープしたZn−O−N構造の光触媒物質につ
いて述べる。
Embodiment 2 In this embodiment, a photocatalytic substance having a Zn—ON structure in which ZnO crystal is doped with N will be described.

【0030】この実施例においても、上述の実施例1と
同様に、光触媒物質をRFマグネトロンスパッタリング
で作成した。ターゲットには、3インチの径のZnO焼
結ターゲットを用い、その他の条件は実施例1と同様と
した。すなわち、ターゲットを40%N2−Ar雰囲気
中で、0.5Paの圧力下でスパッタリングを行い、5
50℃、N2雰囲気中で90分間熱処理することにより
結晶化させ、Zn−O−N膜を作成した。なお、投入電
力は、300W×2とした。
Also in this example, a photocatalytic substance was prepared by RF magnetron sputtering, as in Example 1 described above. As the target, a ZnO sintered target having a diameter of 3 inches was used, and other conditions were the same as in Example 1. That is, the target is sputtered under a pressure of 0.5 Pa in a 40% N 2 -Ar atmosphere to perform sputtering.
Crystallization was performed by heat treatment at 50 ° C. in an N 2 atmosphere for 90 minutes to form a Zn—O—N film. Note that the input power was 300 W × 2.

【0031】一方、比較対象としてZnO膜も形成し
た。この場合、ターゲットをAr雰囲気中でスパッタ
し、550℃、O2雰囲気中で90分間熱処理すること
により結晶化させた。
On the other hand, a ZnO film was also formed for comparison. In this case, the target was sputtered in an Ar atmosphere and crystallized by heat treatment at 550 ° C. in an O 2 atmosphere for 90 minutes.

【0032】X線回折によりZn−O−N膜の結晶性を
見たところ、六方晶ZnOの(002)回折線が観察さ
れた。しかし、この回折線はZnO膜と比較して、やや
低角度側へシフトしている。このことから、窒素Nのド
ープによって、格子間隔がZnOより広がっていると考
えられる。
When the crystallinity of the Zn-ON film was examined by X-ray diffraction, a (002) diffraction line of hexagonal ZnO was observed. However, this diffraction line is slightly shifted to the lower angle side as compared with the ZnO film. From this, it is considered that the lattice spacing is wider than that of ZnO by doping with nitrogen N.

【0033】またXPS(X−ray Photoem
ission Spectroscopy)による窒素
N1s殻の測定結果から窒素原子の化学的な結合状態を
判断したところ、本発明のZn−O−N中の窒素原子
は、Zn−N結合に由来するピークを示した。
Also, XPS (X-ray Photoem)
When the chemical bonding state of the nitrogen atom was determined from the measurement result of the nitrogen N1s shell by the issue Spectroscopy, the nitrogen atom in the Zn-ON of the present invention showed a peak derived from the Zn-N bond.

【0034】この膜の光吸収スペクトルを図5に示す。
Zn−O−N膜は、ZnO膜と比べて、吸収端が長波長
側にシフトしている。これは、Nのドープにより、Zn
Oのバンドギャップ内に新たな準位が形成され、実効的
なバンドギャップが狭くなったことに起因する。
FIG. 5 shows the light absorption spectrum of this film.
The absorption edge of the Zn—O—N film is shifted to the longer wavelength side as compared with the ZnO film. This is because Zn doping causes Zn
This is because a new level is formed in the band gap of O and the effective band gap is narrowed.

【0035】この膜の光触媒機能をメチレンブルーの分
解性能から評価した。この評価は、Zn−O−N膜の表
面に塗布したメチレンブルーの分解性能を波長600n
mにおける膜の吸光度(ΔABS)の変化として測定し
た。照射光源に500WのXeランプを用い波長λ≧2
00nmの紫外線を含む光を照射した場合と、光学フィ
ルタにより照射波長域を制限することにより波長λ≧3
80nmの可視光を照射した場合について試験した。
The photocatalytic function of this film was evaluated from the decomposition performance of methylene blue. In this evaluation, the decomposition performance of methylene blue applied to the surface of the Zn-ON film was measured at a wavelength of 600 n.
It was measured as the change in the absorbance (ΔABS) of the membrane at m. Using a 500 W Xe lamp as the irradiation light source, wavelength λ ≧ 2
The wavelength λ ≧ 3 is obtained by irradiating with light containing ultraviolet light of 00 nm and by limiting the irradiation wavelength range with an optical filter.
The test was performed for the case where visible light of 80 nm was irradiated.

【0036】その結果を図6に示す。このように、Zn
−O−N膜では、紫外光から可視光に渡る照射(λ≧2
00nm)において大きな触媒活性が得られることがわ
かる。この要因は、λ≧380nmの可視光における触
媒活性が向上していることによる。これはNドープの効
果である。この結果は、図5における光吸収スペクトル
特性を反映しているといえる。
FIG. 6 shows the result. Thus, Zn
In the -ON film, irradiation ranging from ultraviolet light to visible light (λ ≧ 2
00 nm), a large catalytic activity can be obtained. This is because the catalytic activity in visible light of λ ≧ 380 nm is improved. This is the effect of N doping. It can be said that this result reflects the light absorption spectrum characteristics in FIG.

【0037】「その他」上記酸化スズ(SnO2)、酸
化亜鉛(ZnO)の2つの実施例の他、チタン酸ストロ
ンチウム(SrTiO3)、酸化タングステン(W
3)、酸化ジルコニウム(ZrO2)、酸化ニオブ(N
25)、酸化鉄(Fe23)、酸化銅(Cu2O)、
チタン酸鉄(FeTiO3)、酸化ニッケル(Ni
O)、酸化ビスマス(Bi23)、酸化ケイ素(SiO
2)のうちの少なくとも1種の結晶に、窒素原子(N)
を配したものが利用できる。
"Others" In addition to the two embodiments of tin oxide (SnO 2 ) and zinc oxide (ZnO), strontium titanate (SrTiO 3 ) and tungsten oxide (W
O 3 ), zirconium oxide (ZrO 2 ), niobium oxide (N
b 2 O 5 ), iron oxide (Fe 2 O 3 ), copper oxide (Cu 2 O),
Iron titanate (FeTiO 3 ), nickel oxide (Ni
O), bismuth oxide (Bi 2 O 3 ), silicon oxide (SiO
2 ) at least one type of crystal has a nitrogen atom (N)
Can be used.

【0038】また、上述の説明では、酸化物ターゲット
を用いたスパッタにより、薄膜を形成する例について述
べた。しかし、これらの光触媒特性は、材料が本質的に
有するものであり、金属ターゲットを用いたスパッタ、
蒸着で作成した薄膜、ゾル・ゲル法により作成した薄
膜、あるいは微粉末の形態においても同様の特性を得る
ことができる。
In the above description, an example in which a thin film is formed by sputtering using an oxide target has been described. However, these photocatalytic properties are inherent to the material, such as sputtering using a metal target,
Similar characteristics can be obtained in the form of a thin film formed by vapor deposition, a thin film formed by a sol-gel method, or a fine powder.

【0039】[0039]

【発明の効果】以上説明したように、光触媒作用を呈す
る金属酸化物半導体に窒素原子を配することで、より低
エネルギーの長波長光をも吸収して、電子と正孔を生成
し、光触媒作用を呈することが可能となる。従って、太
陽光、蛍光灯光を光源とした場合における光触媒効率、
すなわち、有害ガス分解、水浄化、有機物分解、抗菌な
どの効果を向上することができる。
As described above, by arranging nitrogen atoms in a metal oxide semiconductor exhibiting a photocatalytic action, even low-energy long-wavelength light is absorbed, and electrons and holes are generated to generate photocatalysts. An effect can be exhibited. Therefore, the photocatalytic efficiency when sunlight, fluorescent light is used as the light source,
That is, effects such as harmful gas decomposition, water purification, organic matter decomposition, and antibacterial effect can be improved.

【0040】また、上述の窒酸化物の光触媒物質の表面
に、窒酸化物より安定なTiO2や、Ti−O−Nを最
表面に配置することで、窒酸化物単体の場合と比較して
安定性を向上することができる。また、内部の窒酸化物
が可視光を吸収して電子と正孔を生成し、これが表面の
TiO2やTi−O−Nへ移動してこれらの表面におい
て、優れた親水性、防汚性、有機物分解性を実現するこ
とができる。
In addition, by disposing TiO 2 or Ti—O—N, which is more stable than nitric oxide, on the surface of the above-mentioned photocatalytic substance of nitric oxide, compared with the case of nitric oxide alone. Stability can be improved. In addition, the internal nitric oxide absorbs visible light to generate electrons and holes, which migrate to TiO 2 and Ti-ON on the surface and have excellent hydrophilicity and antifouling properties on these surfaces. , Organic matter decomposability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態1の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first embodiment.

【図2】 実施形態2の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a second embodiment.

【図3】 実施例1の光吸収スペクトルを示す図であ
る。
FIG. 3 is a view showing a light absorption spectrum of Example 1.

【図4】 実施例1の光触媒機能を示す図である。FIG. 4 is a diagram showing a photocatalytic function of Example 1.

【図5】 実施例2の光吸収スペクトルを示す図であ
る。
FIG. 5 is a diagram showing a light absorption spectrum of Example 2.

【図6】 実施例2の光触媒機能を示す図である。FIG. 6 is a diagram showing a photocatalytic function of Example 2.

【図7】 太陽光および蛍光灯光の放射スペクトルを示
す図である。
FIG. 7 is a diagram showing emission spectra of sunlight and fluorescent light.

【符号の説明】[Explanation of symbols]

10 基板、12 光触媒物質膜、14 チタン化合物
膜。
10 substrate, 12 photocatalytic substance film, 14 titanium compound film.

フロントページの続き (72)発明者 大脇 健史 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 多賀 康訓 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 4G069 AA02 AA08 BA48A BA48C BC12A BC12B BC12C BC22A BC22B BC22C BC25A BC25B BC25C BC31A BC31B BC31C BC35A BC35B BC35C BC50A BC50B BC50C BC51A BC51B BC51C BC55A BC55B BC55C BC60A BC60B BC60C BC66A BC66B BC66C BC68A BC68B BC68C BD05A BD05B BD05C CA01 CA11 FB02 Continuing from the front page (72) Inventor Takeshi Owaki 41, Chukumi Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture 1 at Toyota Central Research Laboratory Co., Ltd. Address 1 Toyota Central R & D Co., Ltd. F-term (reference) 4G069 AA02 AA08 BA48A BA48C BC12A BC12B BC12C BC22A BC22B BC22C BC25A BC25B BC25C BC31A BC31B BC31C BC35A BC35B BC35C BC50A BC50B BC50C BCBC BCBC BCB BCBC BC68A BC68B BC68C BD05A BD05B BD05C CA01 CA11 FB02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光触媒作用を呈する金属酸化物の結晶の
酸素サイトの一部を窒素原子で置換、金属酸化物の結晶
の格子間に窒素原子をドーピング、あるいは金属酸化物
の結晶の多結晶集合体の粒界に窒素原子を配した光触媒
物質。
1. A method for substituting a part of an oxygen site of a crystal of a metal oxide exhibiting a photocatalytic action with a nitrogen atom, doping a nitrogen atom between lattices of a crystal of the metal oxide, or a polycrystalline assembly of a crystal of the metal oxide. Photocatalytic substance with nitrogen atoms arranged at the grain boundaries of the body.
【請求項2】 請求項1に記載の光触媒物質において、 前記光触媒作用を呈する金属酸化物は、酸化スズ、酸化
亜鉛、チタン酸ストロンチウム、酸化タングステン、酸
化ジルコニウム、酸化ニオブ、酸化鉄、酸化銅、チタン
酸鉄、酸化ニッケル、酸化ビスマス、酸化ケイ素のうち
の少なくとも1種である光触媒物質。
2. The photocatalytic substance according to claim 1, wherein the metal oxide exhibiting the photocatalytic action is tin oxide, zinc oxide, strontium titanate, tungsten oxide, zirconium oxide, niobium oxide, iron oxide, copper oxide, A photocatalytic substance that is at least one of iron titanate, nickel oxide, bismuth oxide, and silicon oxide.
【請求項3】 請求項1または2に記載の光触媒物質を
内部物質とし、この内部物質の表面に外部物質として酸
化チタンまたは酸化チタンに窒素を含有させたTi−O
−Nの層を形成した光触媒体。
3. A photocatalytic substance according to claim 1 or 2 as an internal substance, and titanium oxide or titanium oxide containing nitrogen in titanium oxide as an external substance on the surface of the internal substance.
A photocatalyst formed with a -N layer.
JP2000017625A 2000-01-26 2000-01-26 Photocatalytic substance and photocatalyst Expired - Fee Related JP4461546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017625A JP4461546B2 (en) 2000-01-26 2000-01-26 Photocatalytic substance and photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017625A JP4461546B2 (en) 2000-01-26 2000-01-26 Photocatalytic substance and photocatalyst

Publications (2)

Publication Number Publication Date
JP2001205094A true JP2001205094A (en) 2001-07-31
JP4461546B2 JP4461546B2 (en) 2010-05-12

Family

ID=18544596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017625A Expired - Fee Related JP4461546B2 (en) 2000-01-26 2000-01-26 Photocatalytic substance and photocatalyst

Country Status (1)

Country Link
JP (1) JP4461546B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053577A1 (en) 2001-12-21 2003-07-03 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
WO2004081130A1 (en) * 2003-03-11 2004-09-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Composition for photocatalyst coating and coating film
JP2006240333A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Rocket part
JP2006240320A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Flight unit
KR100835666B1 (en) 2007-01-02 2008-06-09 한국과학기술연구원 Method for preparing zno nano-crystal directly on the silicon substrate
US7524791B2 (en) 2003-12-09 2009-04-28 Central Research Institute Of Electric Power Industry Method for producing substrate having carbon-doped titanium oxide layer
US7666385B2 (en) 2004-02-20 2010-02-23 Industrial Technology Research Institute Nanostructured zinc oxide photocatalyst for visible light and manufacturing method of the same
US7718270B2 (en) 2005-02-24 2010-05-18 Central Research Institute Of Electric Power Industry Multifunctional material
US7838113B2 (en) 2003-12-09 2010-11-23 Central Research Institute Of Electric Power Industry Multifunctional material having carbon-doped titanium oxide layer
JP2011214138A (en) * 2010-03-16 2011-10-27 Central Glass Co Ltd Low radiation film and method for producing the same
JP2012124292A (en) * 2010-12-08 2012-06-28 Toyota Central R&D Labs Inc Light responsive material and manufacturing method therefor
DE102012200403A1 (en) 2011-01-14 2012-07-19 Denso Corporation air conditioning
JP2012250860A (en) * 2011-05-31 2012-12-20 Toyota Central R&D Labs Inc Semiconductor material and photocatalytic body, photoelectrode and solar cell therewith
JP2016527078A (en) * 2013-07-05 2016-09-08 日東電工株式会社 Transparent photocatalytic coating and method for producing the same
CN114210318A (en) * 2022-01-18 2022-03-22 长春理工大学 Novel BiSnSbO6-ZnO photocatalytic composite material and preparation method and application thereof
KR20230054090A (en) * 2021-10-15 2023-04-24 주식회사 팀즈 Method for Manufacturing Electrode Layer of Light-Emitting Diode Element using Ion Beam
JP7474395B2 (en) 2020-04-09 2024-04-25 株式会社Uacj Antibacterial sheet and its manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003053577A1 (en) 2001-12-21 2003-07-03 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
WO2004081130A1 (en) * 2003-03-11 2004-09-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Composition for photocatalyst coating and coating film
US7524791B2 (en) 2003-12-09 2009-04-28 Central Research Institute Of Electric Power Industry Method for producing substrate having carbon-doped titanium oxide layer
US7838113B2 (en) 2003-12-09 2010-11-23 Central Research Institute Of Electric Power Industry Multifunctional material having carbon-doped titanium oxide layer
US7666385B2 (en) 2004-02-20 2010-02-23 Industrial Technology Research Institute Nanostructured zinc oxide photocatalyst for visible light and manufacturing method of the same
US7718270B2 (en) 2005-02-24 2010-05-18 Central Research Institute Of Electric Power Industry Multifunctional material
JP2006240333A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Rocket part
JP2006240320A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Flight unit
JP4541929B2 (en) * 2005-02-28 2010-09-08 財団法人電力中央研究所 Flying object
KR100835666B1 (en) 2007-01-02 2008-06-09 한국과학기술연구원 Method for preparing zno nano-crystal directly on the silicon substrate
US7732054B2 (en) 2007-01-02 2010-06-08 Korea Institute Of Science And Technology Method for preparing ZnO nanocrystals directly on silicon substrate
JP2011214138A (en) * 2010-03-16 2011-10-27 Central Glass Co Ltd Low radiation film and method for producing the same
JP2012124292A (en) * 2010-12-08 2012-06-28 Toyota Central R&D Labs Inc Light responsive material and manufacturing method therefor
DE102012200403A1 (en) 2011-01-14 2012-07-19 Denso Corporation air conditioning
US8740420B2 (en) 2011-01-14 2014-06-03 Denso Corporation Air conditioner that enables deodorizing using a photocatalyst
JP2012250860A (en) * 2011-05-31 2012-12-20 Toyota Central R&D Labs Inc Semiconductor material and photocatalytic body, photoelectrode and solar cell therewith
JP2016527078A (en) * 2013-07-05 2016-09-08 日東電工株式会社 Transparent photocatalytic coating and method for producing the same
US10391482B2 (en) 2013-07-05 2019-08-27 Nitto Denko Corporation Transparent photocatalyst coating and methods of manufacturing the same
US10710063B2 (en) 2013-07-05 2020-07-14 Nitto Denko Corporation Transparent photocatalyst coating and methods of manufacturing the same
JP7474395B2 (en) 2020-04-09 2024-04-25 株式会社Uacj Antibacterial sheet and its manufacturing method
KR20230054090A (en) * 2021-10-15 2023-04-24 주식회사 팀즈 Method for Manufacturing Electrode Layer of Light-Emitting Diode Element using Ion Beam
KR102563458B1 (en) 2021-10-15 2023-08-04 주식회사 팀즈 Method for Manufacturing Electrode Layer of Light-Emitting Diode Element using Ion Beam
CN114210318A (en) * 2022-01-18 2022-03-22 长春理工大学 Novel BiSnSbO6-ZnO photocatalytic composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4461546B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US6743749B2 (en) Photocatalyst
JP4461546B2 (en) Photocatalytic substance and photocatalyst
JP4626099B2 (en) Photocatalyst
JP6170601B2 (en) Transparent photocatalytic coating
US6794065B1 (en) Photocatalytic material and photocatalytic article
KR100620076B1 (en) C and n-doped titaniumoxide-based photocatalytic and self-cleaning thin films and the process for production thereof
US10710063B2 (en) Transparent photocatalyst coating and methods of manufacturing the same
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JP2017528314A (en) Multivalent semiconductor photocatalytic material
US10835631B2 (en) Photocatalytic element
JP5252757B2 (en) Hydrophilic material
Kim et al. Photocatalytic characteristics of immobilized SrBi2Nb2O9 film for degradation of organic pollutants
JP4487362B2 (en) Photocatalytic substance
JP4729737B2 (en) Zinc-containing compounds
JP4883913B2 (en) Photocatalyst and method for producing the same
JP3518251B2 (en) Oxide photocatalytic thin film and article provided with the same
Lin et al. Fabricating TiO 2 photocatalysts by rf reactive magnetron sputtering at varied oxygen partial pressures
JP3933640B2 (en) photocatalyst
JP2000237598A (en) Production of visible ray response type photocatalyst
JP2003190809A (en) Method for manufacturing composite material formed with photocatalyst film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees