JP2001205029A - Chemical filter - Google Patents

Chemical filter

Info

Publication number
JP2001205029A
JP2001205029A JP2000021970A JP2000021970A JP2001205029A JP 2001205029 A JP2001205029 A JP 2001205029A JP 2000021970 A JP2000021970 A JP 2000021970A JP 2000021970 A JP2000021970 A JP 2000021970A JP 2001205029 A JP2001205029 A JP 2001205029A
Authority
JP
Japan
Prior art keywords
filter
filter medium
fibers
chemical
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000021970A
Other languages
Japanese (ja)
Inventor
Minoru Tanaka
実 田中
Takashi Taniguchi
隆志 谷口
Toshiaki Nakano
寿朗 中野
Haruko Sasaki
晴子 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2000021970A priority Critical patent/JP2001205029A/en
Priority to US09/767,224 priority patent/US20010029843A1/en
Priority to EP01101516A priority patent/EP1121968A3/en
Priority to EP07008645A priority patent/EP1820554B1/en
Priority to DE60138580T priority patent/DE60138580D1/en
Priority to KR10-2001-0004346A priority patent/KR100428259B1/en
Publication of JP2001205029A publication Critical patent/JP2001205029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical filter for removing a pollutant generated from the chemical filter itself to enhance the yield in the production of a semiconductor or a precise electronic part. SOLUTION: In a chemical filter having an adsorbing filter medium for removing gaseous impurities or a cohesive organic substance in air, the adsorbing filter medium has a corrugated honeycomb structure comprising a fibrous material and substantially containing no boron oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体製造
工場や精密電子製造工場のクリーンルームで使用される
空気清浄用のケミカルフィルタであって、半導体や精密
電子部品の被毒物質を除去して歩留りの向上が図れるケ
ミカルフィルタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical filter for cleaning air used in, for example, a clean room of a semiconductor manufacturing plant or a precision electronic manufacturing plant. The present invention relates to a chemical filter capable of improving the quality.

【0002】[0002]

【従来の技術】半導体製造工場や精密電子製造工場では
クリーンルームを使用して半導体や精密電子部品等が製
造されている。クリーンルームはHEPAフィルタやU
LPAフィルタで外気と隔離することによって、塵埃を
除去した雰囲気が形成される。しかし、外気の侵入は完
全に防止できない。また、クリーンルーム構成部材から
発生する酸、アルカリ及び有機物が気体や微粒子となっ
て空気中に発散し、これが不良品の原因となる。これら
の汚染物質は様々な手段で除去されるが、ppbオーダ
以下まで低濃度化する場合にはクリーンルーム内でケミ
カルフィルタを使用して、汚染物質を除去する方法が採
られている。この場合、ケミカルフィルタを使用するこ
とでクリーンルーム内の空気中の汚染物質を除去するこ
とができるが、ケミカルフィルタはそれ自体の構成材料
から発生する汚染物質のために、同時に汚染源となって
いるのが現状である。
2. Description of the Related Art Semiconductors and precision electronic parts are manufactured in semiconductor manufacturing plants and precision electronic manufacturing plants using a clean room. Clean room is HEPA filter or U
By separating from the outside air with the LPA filter, an atmosphere from which dust is removed is formed. However, invasion of outside air cannot be completely prevented. Further, acids, alkalis, and organic substances generated from the clean room components become gas or fine particles and diffuse into the air, which causes defective products. These contaminants are removed by various means. When the concentration is reduced to the order of ppb or less, a method of removing the contaminants by using a chemical filter in a clean room is adopted. In this case, the use of a chemical filter can remove contaminants in the air in the clean room, but the chemical filter is also a source of contaminants due to the contaminants generated from its own constituent materials. Is the current situation.

【0003】これを解決するものとして、気流中のガス
状不純物を除去する吸着濾材と、その吸着濾材の下流側
に、該吸着濾材から発生する微粒子を捕捉できるととも
にガス状不純物を発生しない素材からなるフィルタ濾材
を設置するケミカルフィルタ等が提案されている(特開
平9−220425号公報)。
[0003] To solve this problem, an adsorbing filter medium for removing gaseous impurities in an air stream, and a material that can capture fine particles generated from the adsorbing filter medium and generate no gaseous impurities downstream of the adsorbing filter medium. A chemical filter or the like in which a filter material is installed has been proposed (Japanese Patent Application Laid-Open No. 9-220425).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
のケミカルフィルタの設置にもかかわらず、ケミカルフ
ィルタ自身から発生する汚染物質は依然として十分には
除去できない場合があり、これが半導体や精密電子部品
製造における歩留りを低下させていた。
However, despite the installation of these chemical filters, the contaminants generated from the chemical filters themselves may still not be sufficiently removed, which may lead to a high yield in the production of semiconductors and precision electronic components. Had been lowered.

【0005】従って、本発明の目的は、ケミカルフィル
タ自身から発生する汚染物質を除去して、半導体や精密
電子部品製造における歩留りの向上が図れるケミカルフ
ィルタを提供することにある。
Accordingly, it is an object of the present invention to provide a chemical filter capable of removing contaminants generated from the chemical filter itself and improving the yield in manufacturing semiconductors and precision electronic components.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、空気中のガス状不純
物等を除去する吸着濾材を有するケミカルフィルタにお
いて、該吸着濾材を繊維質素材からなるコルゲート状ハ
ニカム構造体とし、且つ実質的に酸化ホウ素を含有しな
いもので構成するようにすれば、半導体や精密電子部品
に特に問題となるドーパトンと呼ばれるホウ素化合物の
排出を無くすことができ、半導体や精密電子部品製造に
おける歩留りの向上が図れることなどを見出し、本発明
を完成するに至った。
Under these circumstances, the present inventors have conducted intensive studies and as a result, have found that in a chemical filter having an adsorbing filter medium for removing gaseous impurities and the like in the air, the adsorbing filter medium is made of a fibrous material. By forming a corrugated honeycomb structure made of and containing substantially no boron oxide, it is possible to eliminate the emission of a boron compound called dopatone, which is particularly problematic in semiconductors and precision electronic components, The present inventors have found that the yield can be improved in the production of semiconductors and precision electronic components, and have completed the present invention.

【0007】すなわち、本発明(1)は、空気中のガス
状不純物及び凝集性有機物質を除去する吸着濾材を有す
るケミカルフィルタであって、前記吸着濾材は繊維質素
材からなるコルゲート状ハニカム構造体であり、且つ実
質的に酸化ホウ素を含有しないものであることを特徴と
するケミカルフィルタを提供するものである。
That is, the present invention (1) is a chemical filter having an adsorbing filter for removing gaseous impurities and aggregating organic substances in the air, wherein the adsorbing filter is a corrugated honeycomb structure made of a fibrous material. And a chemical filter substantially not containing boron oxide.

【0008】また、本発明(2)は、前記吸着濾材は、
ガラス繊維、セラミック繊維、アルミナ繊維、ムライト
繊維、シリカ繊維及び有機繊維から選ばれる1種又は2
種以上の素材からなり、且つ実質的に酸化ホウ素を含有
しないものであることを特徴とする前記(1)記載のケ
ミカルフィルタを提供するものである。また、本発明
(3)は、前記吸着濾材は、フッ化水素濃度1ppm のガ
スを面速0.5m/秒で前記吸着濾材に1時間流通させた
時、流通後のガス中のホウ素濃度が前記吸着濾材1g当
たり1μg 以下のものであることを特徴とする前記
(1)又は(2)記載のケミカルフィルタを提供するも
のである。また、本発明(4)は、更に、前記吸着濾材
の下流側に、少なくとも前記吸着濾材から発生する微粒
子を捕捉するフィルタ材を設置したことを特徴とする前
記(1)〜(3)のケミカルフィルタを提供するもので
ある。
Further, the present invention (2) is characterized in that the above-mentioned adsorption filter medium comprises:
One or two selected from glass fiber, ceramic fiber, alumina fiber, mullite fiber, silica fiber and organic fiber
The present invention provides the chemical filter according to (1), wherein the chemical filter is made of at least one kind of material and does not substantially contain boron oxide. Further, in the present invention (3), when the gas having a hydrogen fluoride concentration of 1 ppm is passed through the adsorptive filter medium at a surface velocity of 0.5 m / sec for 1 hour, the concentration of boron in the gas after the flow is reduced. The present invention provides the chemical filter according to the above (1) or (2), wherein the content of the chemical filter is 1 μg or less per 1 g of the adsorption filter material. Further, the present invention (4) is characterized in that a filter material for capturing at least fine particles generated from the adsorptive filter medium is provided downstream of the adsorptive filter medium, wherein the chemicals of the above (1) to (3) are further provided. It provides a filter.

【0009】本発明は、上記構成を採ることにより、半
導体や精密電子部品の被毒物質として特に問題となるド
ーパトンと呼ばれるホウ素化合物の排出を無くすことが
でき、半導体や精密電子部品製造における歩留りの低下
を抑制することができる。
The present invention can eliminate the emission of a boron compound called dopaton, which is a particular problem as a poisoning substance for semiconductors and precision electronic parts, by adopting the above configuration, and can reduce the yield in the production of semiconductors and precision electronic parts. The decrease can be suppressed.

【0010】[0010]

【発明の実施の形態】本発明のケミカルフィルタは、空
気中の酸性ガスやアルカリ性ガス等のガス状不純物や凝
集性有機物質を除去する目的で使用される。該ケミカル
フィルタはこれらガス状不純物や凝集性有機物質を除去
する吸着濾材を有するものであれば特に制限されず、通
常、吸着濾材及びこの吸着濾材を支持する部材とからな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical filter of the present invention is used for the purpose of removing gaseous impurities such as acidic gas and alkaline gas and cohesive organic substances in the air. The chemical filter is not particularly limited as long as it has an adsorptive filter material for removing these gaseous impurities and cohesive organic substances, and usually comprises an adsorptive filter material and a member supporting the adsorptive filter material.

【0011】本発明において、吸着濾材は実質的に酸化
ホウ素を含有しない繊維質素材からなるコルゲート状ハ
ニカム構造体であれば、特に制限されない。実質的に酸
化ホウ素を含有しない繊維質素材としては、ARG繊
維、ECG繊維、Sガラス繊維、Aガラス繊維などのガ
ラス繊維、チョップドストランド、セラミック繊維、ア
ルミナ繊維、ムライト繊維、シリカ繊維、ロックウール
繊維、炭素繊維及び有機繊維等が挙げられる。また、有
機繊維は、アラミド繊維、ナイロン繊維、ポリエチレン
テレフタレート繊維が使用できる。これらの繊維の形状
等は特に制限されず、繊維長10μm 〜5mmの短繊維、
繊維長1mm〜5cmの長繊維のいずれも使用できる。ま
た、繊維径は1〜50μm のものが使用できる。これら
の繊維は1種又は2種以上を組み合わせて使用できる。
これら実質的に酸化ホウ素を含有しない繊維質素材から
なる吸着濾材を使用するため、酸化ホウ素が空気中に含
まれる微量のふっ酸などの酸や水分等によって溶出して
ホウ素化合物となり吸着濾材から排出されることがな
い。このため、該吸着濾材を使用したケミカルフィルタ
を例えば半導体製造工場のクリーンルーム内に設置した
場合、半導体製品の製造歩留りの低下を抑制することが
できる。
In the present invention, the adsorptive filter medium is not particularly limited as long as it is a corrugated honeycomb structure made of a fibrous material substantially containing no boron oxide. Examples of the fibrous material which does not substantially contain boron oxide include glass fibers such as ARG fiber, ECG fiber, S glass fiber, A glass fiber, chopped strand, ceramic fiber, alumina fiber, mullite fiber, silica fiber, rock wool fiber , Carbon fiber and organic fiber. Further, as the organic fibers, aramid fibers, nylon fibers, and polyethylene terephthalate fibers can be used. The shape and the like of these fibers are not particularly limited, and short fibers having a fiber length of 10 μm to 5 mm,
Any of long fibers having a fiber length of 1 mm to 5 cm can be used. Further, a fiber having a fiber diameter of 1 to 50 μm can be used. These fibers can be used alone or in combination of two or more.
Since these adsorbing filter media made of fibrous materials that do not substantially contain boron oxide are used, boron oxide is eluted by a small amount of acid such as hydrofluoric acid or water contained in the air and becomes a boron compound, which is discharged from the adsorbing filter media. Never be. For this reason, when a chemical filter using the adsorptive filter material is installed in, for example, a clean room of a semiconductor manufacturing plant, a reduction in the manufacturing yield of semiconductor products can be suppressed.

【0012】吸着濾材は用途に応じて、活性炭繊維とし
たもの及びこれらに酸やアルカリなどの物質を添着した
もの、ゼオライトやイオン交換体を担持したものなどが
使用される。これら吸着剤の種類及び添着、担持方法と
しては、公知の方法が適用され、例えば活性炭を含む吸
着濾材は、上記繊維を抄造法により得られる不織布に球
状又は粒状活性炭を塗布、乾燥した後、ハニカム構造体
を作製して得ることができる。また、酸を含む吸着濾材
は、例えば上記繊維を抄造法により得られる不織布に球
状又は粒状活性炭を塗布、乾燥した後、ハニカム構造体
を作製し、該ハニカム構造体を硫酸濃度数%〜十数%の
水溶液に数時間浸漬した後、取り出し乾燥して得られ
る。
Depending on the application, the adsorbing filter medium may be made of activated carbon fibers, those impregnated with a substance such as acid or alkali, or those carrying zeolite or an ion exchanger. Known methods are applied as the type of the adsorbent and the method of adhering and supporting the adsorbent. For example, an adsorption filter medium containing activated carbon is coated with a spherical or granular activated carbon on a non-woven fabric obtained by a papermaking method using the above fibers, dried, and then dried by a honeycomb. It can be obtained by manufacturing a structure. The acid-containing adsorptive filter medium is prepared, for example, by applying spherical or granular activated carbon to a nonwoven fabric obtained by papermaking the above-mentioned fiber and drying it, and then producing a honeycomb structure. % Of an aqueous solution for several hours, then taken out and dried.

【0013】本発明の吸着濾材は、実質的に酸化ホウ素
を含有しないものである。ここで「実質的に酸化ホウ素
を含有しない」とは、吸着濾材を酸や水分を含む気流中
で処理した場合、溶出したホウ素化合物がICP発光分
析で検出されないコンタミ程度の含有を許容する意味で
ある。具体的には、吸着濾材中、酸化ホウ素の含有量は
1g当たり1μg以下、好ましくは1g当たり0.5μ
g以下、特に好ましくはゼロである。
The adsorption filter medium of the present invention does not substantially contain boron oxide. Here, "substantially contains no boron oxide" means that when the adsorption filter medium is treated in an air stream containing acid or moisture, the boron compound eluted is allowed to contain contaminants that are not detected by ICP emission analysis. is there. Specifically, the content of boron oxide in the adsorption filter medium is 1 μg or less per g, preferably 0.5 μg / g.
g or less, particularly preferably zero.

【0014】また、吸着濾材は、フッ化水素濃度1ppm
のガスを面速0.5m/秒で前記吸着濾材に1時間流通さ
せた時、流通後のガス中のホウ素濃度が前記吸着濾材1
g当たり1μg 以下、好ましくは0.5μg 以下のもの
である(以下、「酸性ガス暴露試験」とも言う。)。こ
の酸性ガス暴露試験は具体的には、ハニカム構造体状の
吸着濾材を直径20mmに型抜きし、重量測定を行う。次
いで、型抜きした吸着濾材を内径20mmのテフロンチュ
ーブ内に設置し、該テフロンチューブ内にフッ化水素と
ドライ空気との混合物(フッ化水素濃度1ppm に調整し
たガス)を面速0.5m/秒で導入し、1時間流通させた
後、流通後の混合ガスを10〜数十ミリリットルの純水
中に通気して溶液捕集し、濃縮した後、ICP発光分析
を行いホウ素化合物(フッ化ホウ素)濃度を測定する。
また、酸性ガス暴露試験は上記フッ化水素ガスに代え
て、塩化水素とドライ空気との混合物で塩化水素濃度1
ppmに調整したガスを使用してもよく、この場合、捕集
液は1%のフッ酸水液を使用すればよい。また、酸性ガ
ス暴露試験はアルカリ性ガス暴露試験であってもよい。
すなわち、上記フッ化水素ガスに代えて、アンモニアガ
スとドライ空気との混合物でアンモニア濃度1ppm に調
整したガスを使用してもよく、この場合、捕集液は1%
のフッ酸水液を使用すればよい。本発明で使用する吸着
濾材は上記の塩化水素ガス又はアンモニアガスを使用し
た場合、いずれも吸着濾材流通後のガス中のホウ素濃度
が前記吸着濾材1g当たり1μg 以下、好ましくは0.
5μg 以下のものである。このホウ素濃度が吸着濾材1
g当たり1μg を越えるものは、該吸着濾材を使用した
ケミカルフィルタを例えば半導体製造工場のクリーンル
ーム内に設置した場合、吸着濾材処理ガス中の極微量の
ホウ素化合物が空気中に放散され、この影響で半導体製
品を汚染し、製品の歩留りが低下するようになり、好ま
しくない。
The adsorption filter medium has a hydrogen fluoride concentration of 1 ppm.
Is passed through the adsorbing filter medium for 1 hour at a surface velocity of 0.5 m / sec.
The amount is 1 μg or less, preferably 0.5 μg or less per g (hereinafter, also referred to as “acid gas exposure test”). Specifically, in this acid gas exposure test, the adsorption filter medium in the form of a honeycomb structure is die-cut to a diameter of 20 mm, and the weight is measured. Next, the die-cut adsorption filter medium was placed in a Teflon tube having an inner diameter of 20 mm, and a mixture of hydrogen fluoride and dry air (gas adjusted to a hydrogen fluoride concentration of 1 ppm) was fed into the Teflon tube at a surface velocity of 0.5 m / m2. After flowing for 1 hour, the mixed gas after the circulation was passed through 10 to several tens of milliliters of pure water to collect the solution, concentrated, and then subjected to ICP emission analysis to perform boron compound (fluorination). Measure the boron) concentration.
The acid gas exposure test was conducted using a mixture of hydrogen chloride and dry air instead of the above hydrogen fluoride gas.
A gas adjusted to ppm may be used, and in this case, a 1% hydrofluoric acid aqueous solution may be used as the collection liquid. The acid gas exposure test may be an alkaline gas exposure test.
That is, instead of the hydrogen fluoride gas, a gas adjusted to an ammonia concentration of 1 ppm with a mixture of ammonia gas and dry air may be used. In this case, the collected liquid is 1%
What is necessary is just to use the hydrofluoric acid aqueous solution. When the above-mentioned hydrogen chloride gas or ammonia gas is used for the adsorption filter medium used in the present invention, the concentration of boron in the gas after the circulation of the adsorption filter medium is 1 μg or less, preferably 0.1 g / g of the adsorption filter medium.
It is less than 5 μg. This concentration of boron is
If the chemical filter using the adsorptive filter medium exceeds 1 μg per g, when a chemical filter using the adsorptive filter medium is installed, for example, in a clean room of a semiconductor manufacturing plant, a trace amount of boron compounds in the adsorptive filter medium processing gas is diffused into the air. It is not preferable because the semiconductor product is contaminated and the product yield is reduced.

【0015】次に、繊維質素材からなるコルゲート状ハ
ニカム構造体の製造例について説明する。先ず、ARG
繊維、ECR繊維、Sガラス繊維、Aガラス繊維などの
ガラス繊維、チョップドストランド、セラミック繊維、
アルミナ繊維、ムライト繊維、シリカ繊維、ロックウー
ル繊維、炭素繊維及び有機繊維等から選ばれる1種又は
2種以上の繊維をポリビニルアルコール、アクリル塩化
ビニリデンセルロースなどの有機バインダが添加された
溶液中に分散してスラリーを形成する。このスラリーを
形成する際、有機バインダの配合量は繊維100重量部
に対して、0.1〜10重量部好ましくは0.5〜5重
量部、また、繊維の配合量はスラリー中、0.01〜5
重量%、好ましくは0.1〜1重量%とするのが、繊維
の強度と分散性をよくする点から好ましい。次いで、該
スラリーを例えば丸網抄造機などの抄造機を使用する公
知の抄造法で不織布を作製する。該不織布に活性炭を5
0〜200g/m2、好ましくは80〜120g/m2となるよ
うに塗布し、乾燥して活性炭塗工不織布を作製する。
Next, an example of manufacturing a corrugated honeycomb structure made of a fibrous material will be described. First, ARG
Glass fiber such as fiber, ECR fiber, S glass fiber, A glass fiber, chopped strand, ceramic fiber,
One or two or more fibers selected from alumina fibers, mullite fibers, silica fibers, rock wool fibers, carbon fibers, organic fibers, and the like are dispersed in a solution containing an organic binder such as polyvinyl alcohol and acrylic vinylidene chloride. To form a slurry. When forming this slurry, the compounding amount of the organic binder is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the fiber. 01-5
%, Preferably 0.1 to 1% by weight, from the viewpoint of improving fiber strength and dispersibility. Next, a nonwoven fabric is prepared from the slurry by a known papermaking method using a papermaking machine such as a round mesh papermaking machine. Activated carbon in the non-woven fabric
The coating is performed so as to be 0 to 200 g / m 2 , preferably 80 to 120 g / m 2, and dried to prepare an activated carbon coated nonwoven fabric.

【0016】この活性炭塗工不織布をコルゲート加工す
るものと、コルゲート加工しないものとに分ける。コル
ゲート加工するものは、上下一対の波形段ロールの間を
通してコルゲート状物とする。このコルゲート状物の山
部に接着剤を付け、コルゲート加工していない平坦状物
を重ね合わせ、コルゲート状物の山部と平坦状物との接
触する部分で接着を図る。この接着を複数のコルゲート
状物と平坦状物との間で交互に行うことで積層を行う。
接着に使用する接着剤としては、特に制限されないが、
酢酸ビニル系、アクリル系などの有機接着剤、コロイダ
ルシリカ、珪酸ソーダ等の無機接着剤が使用できる。ハ
ニカム構造体の断面形状としては、特に制限されず、三
角状、円形状、四角状などが挙げられる。
The activated carbon coated non-woven fabric is divided into a non-corrugated one and a non-corrugated one. What is to be corrugated is a corrugated material passing between a pair of upper and lower corrugated rolls. An adhesive is applied to the ridges of the corrugated material, and a flat material that has not been corrugated is overlapped, and bonding is performed at a portion where the ridges of the corrugated material come into contact with the flat material. The bonding is performed by alternately performing the bonding between the plurality of corrugated objects and the flat objects.
The adhesive used for bonding is not particularly limited,
Organic adhesives such as vinyl acetate and acrylic can be used, and inorganic adhesives such as colloidal silica and sodium silicate can be used. The cross-sectional shape of the honeycomb structure is not particularly limited, and examples include a triangular shape, a circular shape, and a square shape.

【0017】本発明のケミカルフィルタは、吸着濾材で
あるコルゲート状ハニカム構造体と、該吸着濾材を支持
する支持部材(ケーシング)とで構成される。該支持部
材はコルゲート状ハニカム構造体を支持すると共に、既
存設備(設置場所)との接合を司る機能を有する。支持
部材の処理空気流通部分は、脱ガスのないステンレス、
アルミニウム、プラスチックなどの素材からなる。
The chemical filter of the present invention comprises a corrugated honeycomb structure, which is an adsorption filter, and a support member (casing) for supporting the adsorption filter. The support member has a function of supporting the corrugated honeycomb structure and a function of joining with existing equipment (installation place). The processing air circulation part of the support member is stainless steel without degassing,
It is made of materials such as aluminum and plastic.

【0018】本発明のケミカルフィルタは、更に、前記
吸着濾材の下流側に、少なくとも前記吸着濾材から発生
する微粒子を捕捉するフィルタ材を設置することができ
る。これにより、前段の吸着濾材で、半導体や精密電子
部品に特に問題となるドーパトンと呼ばれるホウ素化合
物の排出を無くすことができ、また、後段のフィルタ材
で吸着濾材から発生する粒子状不純物を除去することが
できる。従って、このケミカルフィルタを例えば半導体
製造工場のクリーンルーム内に設置した場合、半導体や
精密電子部品製造における歩留りの向上が図れる。
[0018] In the chemical filter of the present invention, a filter material for capturing at least fine particles generated from the adsorption filter material may be provided downstream of the adsorption filter material. This makes it possible to eliminate the emission of a boron compound called dopatone, which is particularly problematic for semiconductors and precision electronic components, in the former filter medium, and to remove particulate impurities generated from the adsorptive filter medium in the latter filter medium. be able to. Therefore, when this chemical filter is installed, for example, in a clean room of a semiconductor manufacturing plant, the yield in the manufacture of semiconductors and precision electronic components can be improved.

【0019】フィルタ材としては、少なくとも前記吸着
濾材から発生する微粒子を捕捉するものであれば特に制
限されないが、例えば、実質的に酸化ホウ素を含有しな
いフィルタ材としては、ARG繊維、ECG繊維、Sガ
ラス繊維、Aガラス繊維などのガラス繊維、チョップド
ストランド、セラミック繊維、アルミナ繊維、ムライト
繊維、シリカ繊維、ロックウール繊維、炭素繊維及び有
機繊維等が挙げられる。また、有機繊維は、アラミド繊
維、ナイロン繊維、ポリエチレンテレフタレート繊維が
使用できる。これらのフィルタ材は1種又は2種以上を
組み合わせて使用できる。フィルタ材の形態は特に制限
されず、例えば有機膜のようなフィルム状であってもよ
い。フィルタ材は通常、フレーム、ガスケット等と共に
フィルタ部を構成して設置される。
The filter material is not particularly limited as long as it captures at least the fine particles generated from the adsorption filter material. Examples of the filter material which does not substantially contain boron oxide include ARG fiber, ECG fiber, and S Glass fiber, glass fiber such as A glass fiber, chopped strand, ceramic fiber, alumina fiber, mullite fiber, silica fiber, rock wool fiber, carbon fiber, organic fiber and the like. Further, as the organic fibers, aramid fibers, nylon fibers, and polyethylene terephthalate fibers can be used. These filter materials can be used alone or in combination of two or more. The form of the filter material is not particularly limited, and may be in the form of a film such as an organic film. The filter material is usually installed together with a frame, a gasket and the like to constitute a filter portion.

【0020】本発明のケミカルフィルタの設置場所とし
ては、特に制限されないが、例えば、半導体製造工場や
精密電子製造工場のクリーンルームで使用される空気清
浄用として使用すれば、半導体や精密電子部品の被毒物
質を除去して歩留りの向上が図れる点で好適である。
The installation location of the chemical filter of the present invention is not particularly limited. For example, if the chemical filter is used for cleaning air used in a clean room of a semiconductor manufacturing plant or a precision electronic manufacturing plant, it can be used to cover semiconductors and precision electronic components. This is preferable in that the yield can be improved by removing toxic substances.

【0021】[0021]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって本発明を制限する
ものではない。 実施例1 (吸着濾材(ハニカム構造体)の製造)ガラス繊維であ
るARG繊維(酸化ホウ素含有量0.08ppm )を、バ
インダとしてのポリビニルアルコールがスラリー中、2
重量%で添加された溶液中に分散し、丸網抄造機で常法
により抄造し、ガラスペーパーを得た。次いで、該ガラ
スペーパーに(球状)活性炭を100g/m2となるように
塗布し、乾燥して活性炭塗工ガラスペーパーを作製し
た。この活性炭塗工ガラスペーパーはコルゲート加工す
るものと、コルゲート加工しないものとに分け、コルゲ
ート加工するものは、上下一対の波形段ロールの間を通
してコルゲート状物とした。このコルゲート状物の山部
に酢酸ビニル系接着剤を付け、コルゲート加工していな
い平坦状物を重ね合わせ積層し、これを繰り返して行
い、波状コルゲートのピッチ2.8mm、山高さ1.3mm
の積層体である平板状ハニカム構造体Aを得た。平板状
ハニカム構造体Aは下記条件のフッ化水素ガス暴露試験
を実施し、吸着濾材処理ガス中に含まれるドーパントと
呼ばれるホウ素化合物の含有量を測定した。その結果、
吸着濾材処理ガス中のホウ素化合物濃度は分析機器の測
定限界以下であり、フッ化水素ガスに暴露しても、フッ
化ホウ素ガスの発生がないことが確認された。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Example 1 (Manufacture of adsorption filter medium (honeycomb structure)) ARG fiber (boron oxide content: 0.08 ppm) as glass fiber was mixed with polyvinyl alcohol as a binder in a slurry.
It was dispersed in the solution added at% by weight and paper-formed by a conventional method using a round-mesh paper-making machine to obtain glass paper. Subsequently, (spherical) activated carbon was applied to the glass paper so as to have a concentration of 100 g / m 2, and dried to prepare an activated carbon-coated glass paper. This activated carbon coated glass paper was divided into a corrugated one and a non-corrugated one, and the corrugated one was formed into a corrugated material by passing between a pair of upper and lower corrugated rolls. A vinyl acetate-based adhesive is applied to the peaks of the corrugated material, and a flat material that is not corrugated is overlapped and laminated. This is repeated, and the pitch of the corrugated corrugated material is 2.8 mm and the peak height is 1.3 mm.
To obtain a flat honeycomb structure A as a laminate. The flat honeycomb structure A was subjected to a hydrogen fluoride gas exposure test under the following conditions, and the content of a boron compound called a dopant contained in the adsorption filter material treatment gas was measured. as a result,
The boron compound concentration in the adsorption filter material processing gas was below the measurement limit of the analytical instrument, and it was confirmed that no boron fluoride gas was generated even when exposed to hydrogen fluoride gas.

【0022】(フッ化水素ガス暴露試験)ハニカム構造
体状の吸着濾材を直径20mmに型抜きし、重量測定を行
う。次いで、型抜きした吸着濾材を内径20mmのテフロ
ンチューブ内に設置し、該テフロンチューブ内にフッ化
水素とドライ空気との混合物(フッ化水素濃度1ppm に
調整したガス)を面速0.5m/秒で導入し、1時間流通
させる。その後、流通後の混合ガスを10ミリリットル
の純水中に通気して溶液捕集し、濃縮した後、ICP発
光分析を行いフッ化ホウ素の含有量(μg)を測定す
る。評価は測定値を吸着濾材の重量で割り、吸着濾材1
g当たりのホウ素量で行う。
(Hydrogen Fluoride Gas Exposure Test) The adsorption filter medium in the form of a honeycomb structure is die-cut to a diameter of 20 mm, and the weight is measured. Next, the die-cut adsorption filter medium was placed in a Teflon tube having an inner diameter of 20 mm, and a mixture of hydrogen fluoride and dry air (gas adjusted to a hydrogen fluoride concentration of 1 ppm) was fed into the Teflon tube at a surface velocity of 0.5 m / m2. Introduced in seconds and allowed to flow for one hour. Thereafter, the mixed gas after the circulation is passed through 10 ml of pure water to collect the solution, and after concentrating the solution, ICP emission analysis is performed to measure the content (μg) of boron fluoride. For the evaluation, the measured value was divided by the weight of the adsorption filter medium,
It is performed in the amount of boron per g.

【0023】実施例2 ARG繊維の代わりに、セラミック繊維(酸化ホウ素含
有量0.1ppm )を使用した以外は、実施例1と同様の
方法で平板状ハニカム構造体Bを作製し、同様のフッ化
水素ガス暴露試験を実施した。その結果、吸着濾材処理
ガス中のホウ素化合物濃度は分析機器の測定限界以下で
あり、フッ化水素ガスに暴露しても、フッ化ホウ素ガス
の発生がないことが確認された。
Example 2 A flat honeycomb structure B was prepared in the same manner as in Example 1 except that ceramic fibers (boron oxide content: 0.1 ppm) were used in place of the ARG fibers. A hydrogen hydride gas exposure test was performed. As a result, it was confirmed that the concentration of the boron compound in the gas for treating the adsorptive filter material was below the measurement limit of the analytical instrument, and no boron fluoride gas was generated even when exposed to hydrogen fluoride gas.

【0024】実施例3 ARG繊維の代わりに、Sガラス繊維(酸化ホウ素含有
量0.07ppm )を使用した以外は、実施例1と同様の
方法で平板状ハニカム構造体Cを作製し、同様のフッ化
水素ガス暴露試験を実施した。その結果、吸着濾材処理
ガス中のホウ素化合物濃度は分析機器の測定限界以下で
あり、フッ化水素ガスに暴露しても、フッ化ホウ素ガス
の発生がないことが確認された。
Example 3 A flat honeycomb structure C was prepared in the same manner as in Example 1, except that S glass fiber (boron oxide content: 0.07 ppm) was used instead of the ARG fiber. A hydrogen fluoride gas exposure test was performed. As a result, it was confirmed that the concentration of the boron compound in the gas for treating the adsorptive filter material was below the measurement limit of the analytical instrument, and no boron fluoride gas was generated even when exposed to hydrogen fluoride gas.

【0025】比較例1 ARG繊維の代わりに、Eガラス繊維(酸化ホウ素含有
量7.6%)を使用した以外は、実施例1と同様の方法
で平板状ハニカム構造体Dを作製し、同様のフッ化水素
ガス暴露試験を実施した。その結果、吸着濾材処理ガス
中のホウ素濃度は吸着濾材1g当たり7.9mgであっ
た。
Comparative Example 1 A flat honeycomb structure D was prepared in the same manner as in Example 1 except that E glass fiber (boron oxide content: 7.6%) was used instead of the ARG fiber. Was subjected to a hydrogen fluoride gas exposure test. As a result, the boron concentration in the adsorption filter material processing gas was 7.9 mg / g of the adsorption filter material.

【0026】実施例4 (吸着濾材(ハニカム構造体)の製造)ガラス繊維であ
るECR繊維(酸化ホウ素含有量0.1ppm )を、バイ
ンダとしてのポリビニルアルコールがスラリー中3重量
%で添加された溶液中に分散し、丸網抄造機で常法によ
り抄造し、ガラスペーパーを得た。次いで、該ガラスペ
ーパーに(球状)活性炭を100g/m2となるように塗布
し、乾燥して活性炭塗工ガラスペーパーを作製した。こ
の活性炭塗工ガラスペーパーはコルゲート加工するもの
と、コルゲート加工しないものとに分け、コルゲート加
工するものは、上下一対の波形段ロールの間を通してコ
ルゲート状物とした。このコルゲート状物の山部に酢酸
ビニル系接着剤を付け、コルゲート加工していない平坦
状物を重ね合わせ積層し、これを繰り返して行い、波状
コルゲートのピッチ2.2mm、山高さ1.0mmの積層体
である平板状ハニカム構造体を得た。一方、ゼオライト
含有量がスラリー中、18重量%、シリカゾル(SiO
2 含有量20%)含有量がスラリー中、60重量%及び
残部が水のスラリーを調製した。このスラリーに平板状
ハニカム構造体を浸漬した後、取り出し、250℃で乾
燥後、積層体中の有機成分を除去してゼオライトが80
g/m2担持されたハニカム構造体Eを得た。ハニカム構造
体Eは下記条件の塩化水素ガス暴露試験を実施し、吸着
濾材処理ガス中に含まれるホウ素の含有量を測定した。
その結果、吸着濾材処理ガス中のホウ素濃度は分析機器
の測定限界以下であり、塩化水素ガスに暴露しても、酸
化ホウ素の発塵がないことが確認された。
Example 4 (Production of adsorption filter medium (honeycomb structure)) A solution in which ECR fiber (boron oxide content: 0.1 ppm) as a glass fiber was added to polyvinyl alcohol as a binder at 3% by weight in a slurry. The resulting mixture was dispersed in a papermaking machine and formed into a paper by a conventional method using a round-mesh papermaking machine to obtain a glass paper. Subsequently, (spherical) activated carbon was applied to the glass paper so as to have a concentration of 100 g / m 2, and dried to prepare an activated carbon-coated glass paper. This activated carbon coated glass paper was divided into a corrugated one and a non-corrugated one, and the corrugated one was formed into a corrugated material by passing between a pair of upper and lower corrugated rolls. A vinyl acetate-based adhesive was applied to the peaks of the corrugated material, and a flat material that had not been corrugated was overlapped and laminated. This was repeated, and the pitch of corrugated corrugations was 2.2 mm and the peak height was 1.0 mm. A flat honeycomb structure as a laminate was obtained. On the other hand, the zeolite content was 18% by weight in the slurry, and the silica sol (SiO 2
(2 content 20%) A slurry having a content of 60% by weight in the slurry and a balance of water was prepared. After the flat honeycomb structure is immersed in the slurry, taken out and dried at 250 ° C., the organic component in the laminate is removed, and the zeolite becomes 80%.
Thus, a honeycomb structure E supporting g / m 2 was obtained. The honeycomb structure E was subjected to a hydrogen chloride gas exposure test under the following conditions, and the content of boron contained in the adsorption filter material treatment gas was measured.
As a result, it was confirmed that the boron concentration in the adsorption filter material processing gas was below the measurement limit of the analytical instrument, and that no boron oxide dust was generated even when exposed to hydrogen chloride gas.

【0027】(塩化水素ガス暴露試験)ハニカム構造体
状の吸着濾材を直径20mmに型抜きし、重量測定を行
う。次いで、型抜きした吸着濾材を内径20mmのテフロ
ンチューブ内に設置し、該テフロンチューブ内に塩化水
素とドライ空気との混合物(塩化水素濃度1ppm に調整
したガス)を面速0.5m/秒で導入し、1時間流通させ
る。その後、流通後の混合ガスを10ミリリットルの1
%フッ酸中に通気して溶液捕集し、濃縮した後、ICP
発光分析を行いホウ素の含有量を測定する。表示方法は
フッ化水素ガス暴露試験と同様である。
(Hydrogen Chloride Gas Exposure Test) The honeycomb structured adsorbent filter material is die-cut to a diameter of 20 mm, and the weight is measured. Subsequently, the die-cut adsorption filter medium was placed in a Teflon tube having an inner diameter of 20 mm, and a mixture of hydrogen chloride and dry air (gas adjusted to a hydrogen chloride concentration of 1 ppm) was fed into the Teflon tube at a surface velocity of 0.5 m / sec. Introduce and distribute for 1 hour. Then, the mixed gas after the circulation was added to 10 ml of 1
The solution was collected by aeration in a hydrofluoric acid solution, and concentrated.
Emission analysis is performed to measure the boron content. The indication method is the same as in the hydrogen fluoride gas exposure test.

【0028】実施例5 ECR繊維の代わりに、アルミナ繊維(酸化ホウ素含有
量0.1ppm )を使用した以外は、実施例4と同様の方
法で平板状ハニカム構造体Fを作製し、同様の塩化水素
ガス暴露試験を実施した。その結果、吸着濾材処理ガス
中のホウ素化合物濃度は分析機器の測定限界以下であ
り、塩化水素ガスに暴露しても、酸化ホウ素の発塵がな
いことが確認された。
Example 5 A flat honeycomb structure F was prepared in the same manner as in Example 4 except that alumina fibers (boron oxide content: 0.1 ppm) were used instead of ECR fibers. A hydrogen gas exposure test was performed. As a result, it was confirmed that the concentration of the boron compound in the gas for treating the adsorption filter medium was lower than the measurement limit of the analytical instrument, and that no dust of boron oxide was generated even when exposed to hydrogen chloride gas.

【0029】比較例2 ECR繊維の代わりに、Eガラス繊維(酸化ホウ素含有
量6.5%)を使用した以外は、実施例4と同様の方法
で平板状ハニカム構造体Gを作製し、同様の塩化水素ガ
ス暴露試験を実施した。その結果、吸着濾材処理ガス中
のホウ素濃度は吸着濾材1g当たり0.18mgであっ
た。
Comparative Example 2 A flat honeycomb structure G was produced in the same manner as in Example 4 except that E glass fiber (boron oxide content: 6.5%) was used instead of ECR fiber. Was subjected to a hydrogen chloride gas exposure test. As a result, the boron concentration in the adsorption filter material processing gas was 0.18 mg / g of the adsorption filter material.

【0030】実施例6 (吸着濾材(ハニカム構造体)の製造)アラミド繊維
(酸化ホウ素含有量0ppm )を、バインダとしてのポリ
ビニルアルコールがスラリー中3重量%で添加された溶
液中に分散し、丸網抄造機で常法により抄造し、有機質
ペーパーを得た。次いで、該有機質ペーパーに(球状)
活性炭を70g/m2となるように塗布し、乾燥して活性炭
塗工有機質ペーパーを作製した。この活性炭塗工有機質
ペーパーはコルゲート加工するものと、コルゲート加工
しないものとに分け、コルゲート加工するものは、上下
一対の波形段ロールの間を通してコルゲート状物とし
た。このコルゲート状物の山部に酢酸ビニル系接着剤を
付け、コルゲート加工していない平坦状物を重ね合わせ
積層し、これを繰り返して行い、波状コルゲートのピッ
チ2.0mm、山高さ0.9mmの積層体である平板状ハニ
カム構造体を得た。この平板状ハニカム構造体を10%
硫酸水溶液中に1時間浸漬した後、取り出し、120℃
で乾燥後、積層体中の有機成分を除去して硫酸が添着さ
れたハニカム構造体Hを得た。ハニカム構造体Hは下記
条件のアンモニアガス暴露試験を実施し、吸着濾材処理
ガス中に含まれるホウ素の含有量を測定した。その結
果、吸着濾材処理ガス中のホウ素濃度は分析機器の測定
限界以下であり、アンモニアガスに暴露しても、ホウ素
化合物の発生がないことが確認された。
Example 6 (Production of adsorption filter medium (honeycomb structure)) Aramid fiber (boron oxide content: 0 ppm) was dispersed in a solution in which polyvinyl alcohol as a binder was added at 3% by weight in a slurry. Paper was formed by a conventional method using a net paper machine to obtain an organic paper. Then, the organic paper (spherical)
Activated carbon was applied so as to be 70 g / m 2 and dried to prepare an activated carbon-coated organic paper. The activated carbon coated organic paper was divided into a corrugated one and a non-corrugated one, and the corrugated one was formed into a corrugated material by passing between a pair of upper and lower corrugated rolls. A vinyl acetate-based adhesive was applied to the peaks of the corrugated material, and a flat material that had not been corrugated was overlapped and laminated. This was repeated, and the pitch of the corrugated corrugated material was 2.0 mm and the peak height was 0.9 mm. A flat honeycomb structure as a laminate was obtained. 10% of this flat honeycomb structure
After immersion in sulfuric acid aqueous solution for 1 hour, take out and
After drying, the organic component in the laminate was removed to obtain a honeycomb structure H to which sulfuric acid was attached. The honeycomb structure H was subjected to an ammonia gas exposure test under the following conditions, and the content of boron contained in the adsorption filter material treatment gas was measured. As a result, the boron concentration in the adsorption filter material processing gas was below the measurement limit of the analytical instrument, and it was confirmed that no boron compound was generated even when exposed to ammonia gas.

【0031】(アンモニアガス暴露試験)ハニカム構造
体状の吸着濾材を直径20mmに型抜きし、重量測定を行
う。次いで、型抜きした吸着濾材を内径20mmのテフロ
ンチューブ内に設置し、該テフロンチューブ内にアンモ
ニアガスとドライ空気との混合物(アンモニア濃度1pp
mに調整したガス)を面速0.5m/秒で導入し、1時間
流通させる。その後、流通後の混合ガスを10ミリリッ
トルの1%フッ酸水中に通気して溶液捕集し、濃縮した
後、ICP発光分析を行いホウ素の含有量を測定する。
表示方法はフッ化水素ガス暴露試験と同様である。
(Ammonia Gas Exposure Test) The adsorption filter medium in the form of a honeycomb structure is die-cut to a diameter of 20 mm, and the weight is measured. Next, the die-cut adsorption filter medium was placed in a Teflon tube having an inner diameter of 20 mm, and a mixture of ammonia gas and dry air (ammonia concentration of 1 pp) was placed in the Teflon tube.
(a gas adjusted to m) is introduced at a surface velocity of 0.5 m / sec and allowed to flow for one hour. Thereafter, the mixed gas after the circulation is passed through 10 ml of 1% hydrofluoric acid water to collect the solution, which is then concentrated, and then subjected to ICP emission analysis to measure the boron content.
The indication method is the same as in the hydrogen fluoride gas exposure test.

【0032】比較例3 アラミド繊維の代わりに、Eガラス繊維(酸化ホウ素含
有量8.1%)を使用した以外は、実施例6と同様の方
法で平板状ハニカム構造体Iを作製し、同様のアンモニ
アガス暴露試験を実施した。その結果、吸着濾材処理ガ
ス中のホウ素濃度は吸着濾材1g当たり0.37mgであ
った。
Comparative Example 3 A flat honeycomb structure I was prepared in the same manner as in Example 6 except that E glass fiber (boron oxide content: 8.1%) was used instead of aramid fiber. Was subjected to an ammonia gas exposure test. As a result, the boron concentration in the adsorption filter material processing gas was 0.37 mg / g of the adsorption filter material.

【0033】実施例7 (ハニカム構造体状ケミカルフィルタとフィルタ材の組
み合わせ)実施例1の吸着濾材(ハニカム構造体)を
(直径10mm×厚さ10mm) の円筒形状に切断し、円筒
周面にケーシングとなるステンレス板を接着して円筒状
ケミカルフィルタを作製した。一方、平均細孔径0.3
μm 粒子の補集効率99.7%のPTFE膜を前記吸着
濾材の下流側に、吸着濾材処理ガスが漏洩することなく
該PTFE膜に流通するように配置し、複合ケミカルフ
ィルタを作製した。
Example 7 (Combination of Chemical Filter with Honeycomb Structure and Filter Material) The adsorption filter medium (honeycomb structure) of Example 1 was cut into a cylindrical shape (diameter 10 mm × thickness 10 mm), and the cylindrical peripheral surface was cut. A stainless steel plate serving as a casing was bonded to produce a cylindrical chemical filter. On the other hand, the average pore diameter 0.3
A composite chemical filter was prepared by disposing a PTFE membrane having a collection efficiency of 99.7% of μm particles downstream of the adsorptive filter medium so that the gas for treating the adsorptive filter medium would flow through the PTFE membrane without leaking.

【0034】[0034]

【発明の効果】本発明は、空気中のガス状不純物等を除
去する吸着濾材を有するケミカルフィルタにおいて、吸
着濾材を繊維質素材からなるコルゲート状ハニカム構造
体とし、且つ実質的に酸化ホウ素を含有しないもので構
成するため、半導体や精密電子部品の被毒物質として特
に問題となるドーパトンと呼ばれるホウ素化合物の排出
を無くすことができ、半導体や精密電子部品製造におけ
る歩留りの向上を図ることができる。
According to the present invention, there is provided a chemical filter having an adsorbing filter material for removing gaseous impurities and the like in the air, wherein the adsorbing filter material is a corrugated honeycomb structure made of a fibrous material and contains substantially boron oxide. Therefore, it is possible to eliminate the emission of a boron compound called dopaton, which is a particular problem as a poisoning substance for semiconductors and precision electronic components, and to improve the yield in the production of semiconductors and precision electronic components.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 寿朗 神奈川県横浜市鶴見区大黒町1−70 ニチ アス株式会社内 (72)発明者 佐々木 晴子 神奈川県横浜市鶴見区大黒町1−70 ニチ アス株式会社内 Fターム(参考) 4D012 CA10 CB02 CE03 CF02 CF05 CG01 CG04 CK05 4G066 AA04B AA05B AA20B AA22B AA61B AA71B AA72B AC02D AC12D AC23B AC26B AC27B BA07 BA09 BA16 BA20 CA02 CA29 CA31 CA32  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiro Nakano 1-70 Ogurocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Nichiasu Corporation (72) Inventor Haruko Sasaki 1-70 Ogurocho, Tsurumi-ku, Yokohama-shi, Kanagawa Nichiasu F term in the company (reference) 4D012 CA10 CB02 CE03 CF02 CF05 CG01 CG04 CK05 4G066 AA04B AA05B AA20B AA22B AA61B AA71B AA72B AC02D AC12D AC23B AC26B AC27B BA07 BA09 BA16 BA20 CA02 CA29 CA31 CA32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 空気中のガス状不純物及び凝集性有機物
質を除去する吸着濾材を有するケミカルフィルタであっ
て、前記吸着濾材は繊維質素材からなるコルゲート状ハ
ニカム構造体であり、且つ実質的に酸化ホウ素を含有し
ないものであることを特徴とするケミカルフィルタ。
1. A chemical filter having an adsorbing filter medium for removing gaseous impurities and a coagulable organic substance in air, wherein the adsorbing filter medium is a corrugated honeycomb structure made of a fibrous material, and substantially. A chemical filter containing no boron oxide.
【請求項2】 前記吸着濾材は、ガラス繊維、セラミッ
ク繊維、アルミナ繊維、ムライト繊維、シリカ繊維及び
有機繊維から選ばれる1種又は2種以上の素材からな
り、且つ実質的に酸化ホウ素を含有しないものであるこ
とを特徴とする請求項1記載のケミカルフィルタ。
2. The adsorption filter medium is made of one or more materials selected from glass fibers, ceramic fibers, alumina fibers, mullite fibers, silica fibers, and organic fibers, and contains substantially no boron oxide. The chemical filter according to claim 1, wherein the chemical filter is a filter.
【請求項3】 前記吸着濾材は、フッ化水素濃度1ppm
のガスを面速0.5m/秒で前記吸着濾材に1時間流通さ
せた時、流通後のガス中のホウ素濃度が前記吸着濾材1
g当たり1μg 以下のものであることを特徴とする請求
項1又は2記載のケミカルフィルタ。
3. The adsorption filter medium has a hydrogen fluoride concentration of 1 ppm.
Is passed through the adsorbing filter medium for 1 hour at a surface velocity of 0.5 m / sec.
3. The chemical filter according to claim 1, wherein the amount is 1 μg or less per g.
【請求項4】 更に、前記吸着濾材の下流側に、少なく
とも前記吸着濾材から発生する微粒子を捕捉するフィル
タ材を設置したことを特徴とする請求項1〜3のいずれ
か1項に記載のケミカルフィルタ。
4. The chemical according to claim 1, wherein a filter material for capturing at least fine particles generated from the adsorption filter material is provided downstream of the adsorption filter material. filter.
JP2000021970A 2000-01-31 2000-01-31 Chemical filter Pending JP2001205029A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000021970A JP2001205029A (en) 2000-01-31 2000-01-31 Chemical filter
US09/767,224 US20010029843A1 (en) 2000-01-31 2001-01-23 Chemical filter and manufacturing method thereof
EP01101516A EP1121968A3 (en) 2000-01-31 2001-01-24 Chemical filter and manufacturing method thereof
EP07008645A EP1820554B1 (en) 2000-01-31 2001-01-24 Chemical filter and manufacturing method thereof
DE60138580T DE60138580D1 (en) 2000-01-31 2001-01-24 Chemical filter and related manufacturing process
KR10-2001-0004346A KR100428259B1 (en) 2000-01-31 2001-01-30 A chemical filter and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021970A JP2001205029A (en) 2000-01-31 2000-01-31 Chemical filter

Publications (1)

Publication Number Publication Date
JP2001205029A true JP2001205029A (en) 2001-07-31

Family

ID=18548320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021970A Pending JP2001205029A (en) 2000-01-31 2000-01-31 Chemical filter

Country Status (1)

Country Link
JP (1) JP2001205029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268441A (en) * 2006-03-31 2007-10-18 Toyobo Co Ltd Adsorption sheet, adsorption element, and method for preparing the same
WO2018079529A1 (en) * 2016-10-24 2018-05-03 王子ホールディングス株式会社 Inorganic fiber sheet, honeycomb molded body and honeycomb filter
CN115521158A (en) * 2022-10-11 2022-12-27 南京工业大学 Preparation method of high-air-permeability ceramic fiber filter tube

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268441A (en) * 2006-03-31 2007-10-18 Toyobo Co Ltd Adsorption sheet, adsorption element, and method for preparing the same
WO2018079529A1 (en) * 2016-10-24 2018-05-03 王子ホールディングス株式会社 Inorganic fiber sheet, honeycomb molded body and honeycomb filter
KR20190044121A (en) * 2016-10-24 2019-04-29 오지 홀딩스 가부시키가이샤 Inorganic fiber sheet, honeycomb formed body and honeycomb filter
CN109891015A (en) * 2016-10-24 2019-06-14 王子控股株式会社 Inorganic fiber sheet material, cellular formed body and honeycomb filter
JPWO2018079529A1 (en) * 2016-10-24 2019-09-19 王子ホールディングス株式会社 Inorganic fiber sheet, honeycomb molded body, and honeycomb filter
KR102193982B1 (en) * 2016-10-24 2020-12-23 오지 홀딩스 가부시키가이샤 Inorganic fiber sheet, honeycomb molded body and honeycomb filter
TWI788306B (en) * 2016-10-24 2023-01-01 日商王子控股股份有限公司 Inorganic fiber sheet, honeycomb molded body, and honeycomb filter
US11642652B2 (en) 2016-10-24 2023-05-09 Oji Holdings Corporation Inorganic fiber sheet, honeycomb molded body and honeycomb filter
CN115521158A (en) * 2022-10-11 2022-12-27 南京工业大学 Preparation method of high-air-permeability ceramic fiber filter tube
CN115521158B (en) * 2022-10-11 2023-08-18 南京工业大学 Preparation method of high-air-permeability ceramic fiber filter tube

Similar Documents

Publication Publication Date Title
KR100428259B1 (en) A chemical filter and a method for manufacturing the same
US20050148465A1 (en) Filter system
CN106076283A (en) A kind of nano-cellulose/poly-dopamine hydrogel adsorbent and preparation method and application
JPWO2003066193A1 (en) Fluid cleaning filter and filter device
US20050229562A1 (en) Chemical filtration unit incorporating air transportation device
JP2005313144A (en) Chemical filter and method for producing the same
JP2005279429A (en) Chemical filter and its manufacturing method
JP4954556B2 (en) Ozone-containing exhaust gas purification composition and ozone-containing exhaust gas purification filter
US20050022671A1 (en) Chemical filter and method for manufacturing same
JP2001205029A (en) Chemical filter
JP2004190235A (en) Water purifier using moisture in atmosphere
JP2002204928A (en) Photocatalyst carrying deodorizing sheet and filter for air cleaning
WO2019189638A1 (en) Multilayer filter material
WO2018110547A1 (en) Radioactive substance removal filter, radioactive substance removal filter unit in which said radioactive substance removal filter is used, and method for removing radioactive substance
JPH0360710A (en) Filter medium for purifying air
JP4233768B2 (en) Chemical filter and manufacturing method thereof
JP2000317243A (en) Chemical filter
JP2005034693A (en) Filtering medium for air filter and its production method
JP4100744B2 (en) Boron removal filter and contaminated gas purification method
JPH0360711A (en) Filter medium for purifying air
KR100470878B1 (en) Nano Composite Honeycomb Filter
JPH11128632A (en) Filter and air cleaning device
JPH08252414A (en) Filter paper and air filter using the same
TWI252775B (en) Method for manufacturing chemical filter
KR20170013624A (en) (Improved deodorant filter structure for air cleander

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613