JP2001204816A - Body fluid treatment device for direct blood perfusion - Google Patents

Body fluid treatment device for direct blood perfusion

Info

Publication number
JP2001204816A
JP2001204816A JP2000015433A JP2000015433A JP2001204816A JP 2001204816 A JP2001204816 A JP 2001204816A JP 2000015433 A JP2000015433 A JP 2000015433A JP 2000015433 A JP2000015433 A JP 2000015433A JP 2001204816 A JP2001204816 A JP 2001204816A
Authority
JP
Japan
Prior art keywords
body fluid
fluid treatment
particles
blood
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000015433A
Other languages
Japanese (ja)
Other versions
JP4156160B2 (en
Inventor
Tsutomu Okuyama
勉 奥山
Masaru Nakatani
勝 中谷
Akira Kobayashi
明 小林
Masanori Ichimura
昌紀 市村
Shigeo Furuyoshi
重雄 古吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2000015433A priority Critical patent/JP4156160B2/en
Publication of JP2001204816A publication Critical patent/JP2001204816A/en
Application granted granted Critical
Publication of JP4156160B2 publication Critical patent/JP4156160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a body fluid treatment device capable of directly supplying total blood to be stably sent without choking because there is no useless space in space where body fluid treatment granules are filled in extracorporeal circulation treatment conducted as cause substance is adsorbed from blood taken from a patient. SOLUTION: The body fluid treatment granules are filled by 100% or more and less than 110% in this body fluid treatment apparatus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、患者から取り出し
た血液を体液処理器に通し、血液中に存在する原因物質
を吸着して血液を処理した後、処理した血液を患者に戻
す体外循環治療において、全血を直接流しても目詰まり
無く安定して流すことができる体液処理器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extracorporeal circulation treatment in which blood taken out of a patient is passed through a body fluid processor, the causative substance present in the blood is adsorbed, the blood is processed, and the processed blood is returned to the patient. The present invention relates to a body fluid processor that can stably flow without clogging even when whole blood is directly flowed.

【0002】[0002]

【従来の技術】血液中に原因物質がある疾患で、薬剤で
は充分な改善が達成できない場合において、体外循環に
よる血液浄化法は有効な治療法として用いられている。
体外循環による血液浄化法は血液を体外に取り出し、血
液中から原因物質をはじめとする疾患関連物質を除去し
た後、血液を患者に戻す方法である。従来、原因物質の
分子量が大きい場合、血漿分離膜等で予め血液から血漿
を分離し、分離した血漿を処理する血漿灌流方式が多く
開発されてきた。原因物質を除去する方法には吸着、膜
分離、沈殿分離などいくつかの方法があるが、原因物質
に対する選択的な吸着体がある場合には、吸着体と接触
させるだけで原因物質を除去できるため吸着による方法
が最も単純であり、多くの吸着体が開発されてきた。し
かし、近年操作の簡便性から、血液を分離することなく
吸着体に血液を直接接触させる方式が注目されてきてい
る。
2. Description of the Related Art Blood purification by extracorporeal circulation is used as an effective treatment for diseases in which a causative substance is present in the blood and sufficient improvement cannot be achieved with drugs.
The blood purification method by extracorporeal circulation is a method in which blood is taken out of the body, disease-related substances such as causative substances are removed from the blood, and the blood is returned to the patient. Conventionally, when the molecular weight of the causative substance is large, many plasma perfusion methods have been developed in which plasma is separated from blood in advance using a plasma separation membrane or the like and the separated plasma is processed. There are several methods for removing the causative substance, such as adsorption, membrane separation, and sedimentation separation.If there is a selective adsorbent for the causative substance, the caustic substance can be removed simply by contacting the adsorbent Therefore, the adsorption method is the simplest, and many adsorbents have been developed. However, in recent years, due to the simplicity of operation, a method of directly contacting blood with an adsorbent without separating blood has attracted attention.

【0003】体液処理粒子と血液とを直接接触させる方
式としては、体液処理用粒子を容器などに充填してその
中に血液を通血させる方式(オンライン方式とも呼ばれ
る)と血液バッグなどに体液処理用粒子を疎に入れ血液
と混合して所定の処理を行ったのち、体液処理用粒子を
濾過し血液を患者に戻す方式(バッチ方式)があるが、
操作の簡便さからオンライン方式が好んで用いられ、一
般に、この方式は直接血液灌流方式と呼ばれている。
[0003] As a method of bringing the body fluid-treated particles into direct contact with blood, there are a method of filling the body fluid-treating particles into a container or the like and allowing blood to pass through the container (also called an online system), or a method of treating the body fluid into a blood bag or the like. There is a method (batch method) in which particles for body fluid treatment are sparsely mixed, mixed with blood and subjected to a predetermined treatment, and then the particles for body fluid treatment are filtered and blood is returned to the patient.
The on-line method is preferably used because of its simplicity of operation, and this method is generally called a direct blood perfusion method.

【0004】体外循環の治療において、患者から体外に
取り出した血液は所定の処理をした後、患者に戻され
る。粘度が低く血球細胞を含まない血漿成分のみを処理
する血漿灌流の場合やバッチ方式で血液を体液処理用粒
子と混合した後、血液を分離する場合はさほど困難もな
く実現できる。しかし、オンライン方式の場合、血球細
胞を含む血液を体液処理用粒子の間を安定的、確実に通
過させる必要があり、難しい。
[0004] In the treatment of extracorporeal circulation, blood taken out of the patient from the body is returned to the patient after a predetermined treatment. In the case of plasma perfusion in which only plasma components having low viscosity and containing no blood cells are processed, or in the case where blood is separated from the body fluid processing particles by mixing the blood in a batch system, the blood can be separated without much difficulty. However, in the case of the on-line system, it is necessary to allow blood containing blood cells to pass stably and reliably between particles for treating body fluid, which is difficult.

【0005】この血液を安定的に流すことに関して、主
要な要因(因子)の一つは粒径である。血液を直接灌流
できる吸着型の体液処理器としてはまず平均粒径500
μm以上の活性炭を用いたものが実用化された。一般
に、吸着や活性化の効率を高めるためには体液処理用粒
子の平均粒径を小さくし有効表面積を大きくすればよ
い。しかし、上記で説明したようにオンライン方式で血
液を直接灌流する場合、詰まりなどを回避する必要があ
り血漿灌流方式やバッチ方式に比べて技術的に難しくな
る。
[0005] One of the main factors (factors) regarding the stable flow of blood is the particle size. As an adsorption-type body fluid treatment device that can directly perfuse blood, first, it has an average particle diameter of 500.
Those using activated carbon of μm or more have been put to practical use. Generally, in order to increase the efficiency of adsorption and activation, it is sufficient to reduce the average particle size of the body fluid treatment particles and increase the effective surface area. However, when blood is directly perfused by the online method as described above, clogging or the like must be avoided, which is technically more difficult than the plasma perfusion method or the batch method.

【0006】これに対して、吸着体の物理的、化学的特
性の面から直接血液灌流方式に適した吸着体の研究がな
されてきた。特開昭63−115572では平均粒径と
粒径分布に着目し、「容積平均粒径が80〜400μm
であって、80容量%以上の粒子が容積平均粒径の±2
0%以内に分布し、粒径が74μm未満の粒子が5容量
%以上で、25μm未満の粒子が0.1容量%以下」に
することにより直接血液灌流用球状粒子として利用でき
ることが記載されている。また、特開平8−00532
9では「硫酸化多糖類および/またはその塩が水不溶性
担体に結合」することにより通血性が向上し、もとの水
不溶性担体に比べて平均粒径を小さくできることが記載
されている。
On the other hand, studies have been made on an adsorbent suitable for a direct blood perfusion method in view of the physical and chemical properties of the adsorbent. Japanese Patent Application Laid-Open No. 63-115572 focuses on the average particle size and the particle size distribution.
Wherein 80% by volume or more of the particles have a volume average particle size of ± 2%.
It is described that particles distributed within 0% and having a particle size of less than 74 μm are at least 5% by volume and particles having a particle size of less than 25 μm are at most 0.1% by volume can be directly used as spherical particles for blood perfusion. I have. Also, JP-A-8-00532
No. 9 describes that "sulfated polysaccharide and / or a salt thereof bind to a water-insoluble carrier" improves blood permeability and can reduce the average particle size as compared with the original water-insoluble carrier.

【0007】しかし、これらいずれの場合も、吸着体と
しての有用性の検討はなされているが、実用的な体液処
理器や血液の流速などに関しての詳しい検討はなされて
いない。実用に際しては吸着体として優れたものである
ことはもちろんであるが、さらに吸着体を充填した体液
処理器として優れた特性を有する必要がある。
[0007] In any of these cases, the usefulness as an adsorbent has been studied, but no detailed study has been made on a practical body fluid processor or blood flow rate. In practical use, it is needless to say that it is excellent as an adsorbent, but it also needs to have excellent characteristics as a body fluid treatment device filled with the adsorbent.

【0008】直接血液灌流用の吸着器としては、特許第
2660470号に直接血液灌流用に吸着体を充填する
容器および充填した吸着器が記載されている。明細書に
よれば該特許は、吸着体を充填した吸着器において、吸
着体が充填されている部分の上部に吸着体が存在しない
空間(明細書においてサブスペースと呼ばれる)が存在
することを特徴としている。サブスペースは乾燥させた
吸着体間の気泡除去を容易にすることをはじめとするい
くつかの有用な働きがあり、該特許において必須要件と
なっている。
[0008] As an adsorber for direct blood perfusion, Japanese Patent No. 2660470 describes a container for filling an adsorbent for direct blood perfusion and a filled adsorber. According to the specification, the patent is characterized in that in an adsorber filled with an adsorbent, there is a space (referred to as a subspace in the specification) in which the adsorbent does not exist above a portion filled with the adsorbent. And The subspace has several useful functions, including facilitating the removal of air bubbles between the dried adsorbents, and is an essential requirement in the patent.

【0009】体外循環治療は既に説明したように、血液
を体液処理粒子と接触させるため患者から血液を体外に
取り出す必要がある。しかしながら治療中に患者から血
液を体外に取り出すことは患者体内の血液量が減少する
ことになり患者の身体にとって負担になるため、取り出
す血液量(体外循環血液量)は少ない方が好ましい。体
液処理器および患者と体液処理器を連結し血液を循環さ
せるための回路などの血液が通る部分の容積が体外循環
血液量に対応するため、この容積は必要最低限に抑える
ことが望ましい。このような観点から、体液処理用粒子
を充填すべき空間において体液処理用粒子の存在しない
空間は無駄に体外循環血液量を増大させるため、必ずし
も好ましいとは言えない。
[0009] Extracorporeal circulatory therapy, as described above, requires the removal of blood from the patient to bring the blood into contact with the bodily fluid treatment particles. However, removing blood from the patient outside the body during treatment reduces the amount of blood in the patient and places a burden on the patient's body. Therefore, it is preferable that the amount of blood to be removed (extracorporeally circulating blood) is small. Since the volume of a portion through which blood passes, such as a body fluid processor and a circuit for connecting the patient to the body fluid processor and circulating blood, corresponds to the extracorporeal blood volume, it is desirable to minimize this volume. From such a viewpoint, a space in which the body fluid processing particles are not present in the space in which the body fluid processing particles are to be filled is not necessarily preferable because the space extracorporeally circulating blood is unnecessarily increased.

【0010】また、輸送などの振動を受けたとき、体液
処理用粒子が存在しない空間が存在すると体液処理用粒
子粒子が容易に移動して粒子同士の接触などが起こり、
粒子の壊れや微粒子の発生などが懸念される。微粒子が
血液とともに患者の血管内に戻された場合には毛細血管
を詰まらせる危険性がある。そのため、微粒子に関して
は輸液等に対して水不溶性の異物として基準がある。例
えば日本薬局方においては内容量100ml以上の輸液
について、1ml中の数に換算して、10μm以上が5
0個以下、25μm以上が5個以下の規格が、Brit
ish Pharmacopeia(1993)では、
100ml以上の大容量注射剤を対象として、1ml中
の数に換算して、5μm以上が100個以下、10μm
以上が50個以下の規格が示されている。
Further, when subjected to vibrations such as transportation, if there is a space where the body fluid processing particles do not exist, the body fluid processing particles easily move and contact between the particles occurs.
There is a concern that the particles may be broken or fine particles may be generated. If the particulates are returned with the blood into the patient's blood vessels, there is a risk of clogging the capillaries. For this reason, there is a standard for fine particles as a water-insoluble foreign substance in an infusion solution or the like. For example, according to the Japanese Pharmacopoeia, for an infusion with an internal volume of 100 ml or more, 5 μm
The standard of 0 or less and 5 or less of 25 μm or more is Brit.
In ish Pharmacopeia (1993),
For large volume injections of 100 ml or more, 5 μm or more and 100 or less, 10 μm
The above shows 50 or less standards.

【0011】体外循環治療の場合も血液を患者に戻すこ
とから、吸着器から流出する微粒子に対して同様な考え
方が適用できる。そこで、微粒子流出の懸念を少なくす
る意味からも、血液処理器内での微粒子発生を抑えるこ
とが重要であり、血液処理器内で粒子が自由に移動でき
る空間をなくし粒子をしっかり固定することが好まし
い。しかし、粒子をしっかり固定するため体液処理器内
に体液処理用粒子を充填した後、強く圧縮して固定しよ
うとすると、粒子間が狭くなって血液が流れ難くなった
り、圧縮により粒子が破壊して微粒子が発生するなどの
懸念があった。特に実用化においては、充填する際の精
度も考慮にいれると、どの程度の体液処理用粒子の充填
が好ましいかの検討が必要であった。
In the case of extracorporeal circulation treatment, blood is returned to the patient, so the same concept can be applied to fine particles flowing out of the adsorber. Therefore, it is important to suppress the generation of fine particles in the blood processor from the viewpoint of reducing concerns about the outflow of fine particles, and it is necessary to eliminate the space where the particles can freely move in the blood processor and fix the particles firmly. preferable. However, if the body fluid treatment device is filled with particles for body fluid treatment in order to firmly fix the particles, then if you try to compress and fix it strongly, the space between the particles will be narrowed, making it difficult for blood to flow, or the particles will be destroyed by compression. There is a concern that fine particles may be generated. In particular, in practical use, it is necessary to consider how much the particles for body fluid treatment should be filled, taking into account the accuracy of the filling.

【0012】容器の中に粒子をしっかり固定し、無駄な
空間を極力小さくして液体と接触させるものとしては、
HPLCカラム(高速液体クロマトグラフカラム;Hi
ghPerformance Liquid chlo
matographicColumn)が広く用いられ
ている。粒子がメッシュによりしっかり固定され、また
気泡が混入しないようにして使われている。この場合は
固形分の無い液体を流し、効率のよい分析を行うため、
平均粒径10μm前後でカラムの圧損も10kg/cm
2以上で操作することが一般的である。本発明のように
固形分を含む血液を流し、また圧損も血液細胞が破壊さ
れないことも考慮して数100mmHg程度以下で操作
する直接血液灌流の場合はHPLCと技術的に相違する
点が多い。すなわち、直接血液灌流の場合は、血液を取
り扱うことによる技術的困難さがあり、HPLCカラム
の技術からは好ましい体液処理器を類推することは難し
い。
In order to fix particles in a container firmly and minimize wasteful space to make contact with liquid,
HPLC column (High performance liquid chromatography column; Hi
ghPerformance Liquid chlo
matographic Column) is widely used. The particles are firmly fixed by the mesh and used to prevent air bubbles from entering. In this case, in order to run a liquid without solid content and perform efficient analysis,
The average particle size is around 10μm and the column pressure drop is also 10kg / cm
It is common to operate in two or more. In the case of direct blood perfusion in which blood containing a solid content is flowed and the operation is performed at about several hundred mmHg or less in consideration of pressure loss and blood cell destruction as in the present invention, there are many technical differences from HPLC. That is, in the case of direct blood perfusion, there is a technical difficulty in handling blood, and it is difficult to analogize a preferable body fluid processor from the technique of the HPLC column.

【0013】以上のように、従来体外循環血液量を増大
させるような無駄な空間が無く、体液処理用粒子をしっ
かり保持しており、しかも本来の目的である安定的に血
液を流すことができる体液処理器について充分な検討が
なされていなかった。
As described above, there is no useless space which conventionally increases the amount of extracorporeal blood, the particles for body fluid treatment are held firmly, and the blood, which is the original purpose, can be stably flowed. The body fluid treatment device has not been sufficiently studied.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上記課題に
対して、体液処理用粒子を保持する空間には無駄な空間
が無く、体液処理粒子をしっかり固定した状態で、かつ
確実に通血できる直接血液灌流用の体液処理器を提供す
るものである。
SUMMARY OF THE INVENTION In accordance with the present invention, the space for holding the bodily fluid treatment particles has no useless space, the body fluid treatment particles are firmly fixed, and blood is reliably passed. It is intended to provide a body fluid processor for direct blood perfusion that can be performed.

【0015】[0015]

【課題を解決するための手段】本発明者らは、充填の状
態と通血性、微粒子流出の関連について鋭意研究を行っ
た結果、体液処理用粒子を保持する空間の体液処理用粒
子の充填率を所定の値にすることにより、通血に優れ、
微粒子の流出の危険性もほとんど無い実用に供すること
ができる体液処理器を得られることを見出し、本発明の
完成に至った。すなわち、本発明は「流入口と流出口を
有し、流入口側および流出口側にそれぞれメッシュが設
置された容器において、両メッシュ間に形成される容器
内空間に体液処理用粒子が充填されてなる体液処理器で
あって、充填率が100%以上かつ110%未満である
直接血液灌流用体液処理器」である。
Means for Solving the Problems The present inventors have conducted intensive studies on the relationship between the state of filling, blood permeability, and outflow of fine particles. As a result, the filling rate of the body fluid processing particles in the space holding the body fluid processing particles has been found. By setting to a predetermined value, blood circulation is excellent,
The present inventors have found that a bodily fluid treatment device which can be put to practical use with almost no risk of outflow of fine particles can be obtained, and the present invention has been completed. That is, the present invention provides a container having an inflow port and an outflow port, in which a mesh is provided on each of the inflow port side and the outflow port side, and the space in the container formed between the meshes is filled with the bodily fluid treatment particles. A body fluid processor for direct blood perfusion, wherein the filling rate is 100% or more and less than 110%. "

【0016】[0016]

【発明の実施の形態】本発明に用いる体液処理用粒子の
形状は概ね球状である。粒径分布については、どの粒子
も同じ粒径である均一粒径の場合も、種々の粒径のもの
が混在する、いわゆる粒径分布のある場合のいずれでも
かまわない。均一粒径の場合は、個々の粒子の粒径と平
均粒径は同じになる。
BEST MODE FOR CARRYING OUT THE INVENTION The particles for treating body fluid used in the present invention have a substantially spherical shape. Regarding the particle size distribution, either case where all the particles have the same particle size or a case where there is a so-called particle size distribution in which various types of particles are mixed may be used. In the case of a uniform particle size, the particle size of each particle is the same as the average particle size.

【0017】粒径分布がある場合は、個々の粒子の粒径
を求め、その値をもとに平均粒径を求めることができ
る。平均粒径には体積平均、面積平均、個数平均、対数
平均など種々の定義がある。例えば個数平均の場合は、
N個の個々の粒子の粒径diを測定し、個々の粒子の粒
径diを合計した値を個数Nで割ることにより平均粒径
を求めることができる。以後、この個数平均の粒径を単
に平均粒径と呼ぶ。なお、粒径分布が小さくなるほど、
他の定義の平均粒径との値の差は小さくなり、均一粒径
の場合はいずれの定義でも同じ値になる。
If there is a particle size distribution, the particle size of each particle is determined, and the average particle size can be determined based on the value. The average particle size has various definitions such as volume average, area average, number average, and log average. For example, in the case of the number average,
The average particle diameter can be determined by measuring the particle diameters di of the N individual particles and dividing the sum of the particle diameters di of the individual particles by the number N. Hereinafter, this number average particle size is simply referred to as an average particle size. In addition, as the particle size distribution becomes smaller,
The difference between the average particle size and other definitions is small, and in the case of a uniform particle size, the same value is obtained in any definition.

【0018】個々の粒子の粒径の測定方法としては、光
学顕微鏡を用いて拡大して写真を撮影し、写真上の粒径
を求め、拡大した比率で割って実際の粒径を求めること
ができる。また、一般に市販されている粉体などの粒径
測定用の装置を利用して平均粒径を測定することもでき
る。例えば、水溶液中での電気抵抗の変化を利用して測
定するコールターカウンター(ベックマン・コールター
(株)社製)を用いる場合には、対象の粒子における同
装置での測定値と実際の粒径との換算係数を予め求めて
おき、同装置で平均粒径を測定し、換算係数により実際
の平均粒径を求める事もできる。
As a method of measuring the particle size of each particle, a photograph is taken by enlarging using an optical microscope, the particle size on the photograph is obtained, and the actual particle size is obtained by dividing by the enlarged ratio. it can. The average particle size can also be measured using a commercially available apparatus for measuring the particle size of a powder or the like. For example, when using a Coulter counter (manufactured by Beckman Coulter Co., Ltd.) that measures the change in electric resistance in an aqueous solution, the measured value of the target particles with the same device and the actual particle size are used. Can be obtained in advance, the average particle diameter is measured by the same apparatus, and the actual average particle diameter can be obtained from the conversion coefficient.

【0019】本発明の体液処理器に用いられる粒子につ
いては平均粒径は80μm以上が必要である。平均粒径
が小さすぎると粒子間の空隙が狭くなり血液が通り難く
なる。平均粒径の上限についてはクリティカルな値は無
いが、平均粒径が大きくなるに従い体液処理用粒子の表
面積が小さくなり、吸着速度が低下するため、概ね50
0μmより小さいことが望ましい。好ましくは150μ
m以上、300μm未満である。
The particles used in the body fluid treatment device of the present invention must have an average particle size of 80 μm or more. If the average particle size is too small, the gap between the particles will be narrowed, making it difficult for blood to pass through. Although there is no critical value for the upper limit of the average particle diameter, as the average particle diameter increases, the surface area of the body fluid treatment particles decreases and the adsorption rate decreases.
Desirably, it is smaller than 0 μm. Preferably 150μ
m or more and less than 300 μm.

【0020】粒径分布については、均一粒径である必要
は無いが、あまり粒径分布が広すぎると平均粒径が同じ
でも小さい粒子が多く存在するため粒子間の狭いところ
ができ血液が通り難くなる。
The particle size distribution does not need to be uniform, but if the particle size distribution is too wide, many small particles are present even if the average particle size is the same. Become.

【0021】体液処理用粒子の強度に関しては、あまり
柔らかいもの、容易に壊れるものは好ましくない。通血
した場合に、圧密化が生じると充分な血液流量が得られ
なくなり処置時間の延長さらに処置続行不可能となりう
るので、吸着体の圧密を防ぐためには、吸着体は充分な
機械的強度を有するもの(硬質)であることが好まし
い。ここでいう硬質とは、デキストラン、アガロース等
の軟質な担体に比較し、溶媒による膨潤が少なく、また
圧力により変形し難い担体のことをいう。硬質な担体と
軟質な担体とは次の方法により区別することができる。
すなわち担体を円筒状カラムに均一に充填し、水溶液を
流した際の圧力損失と流量の関係が、硬質担体ではほぼ
直線となるのに対し、軟質な担体では圧力がある点を越
えると担体が変形し圧密化して流量が増加しなくなる。
本発明では、少なくとも0.3Kg/cm2まで上記直
線関係にあるものを硬質と称する。
Regarding the strength of the body fluid treating particles, it is not preferable that the particles are too soft or easily broken. When blood is passed, if consolidation occurs, sufficient blood flow cannot be obtained, and treatment time may be prolonged and treatment may not be continued.Therefore, in order to prevent consolidation of the adsorbent, the adsorbent must have sufficient mechanical strength. (Hard). The term “hard” as used herein refers to a carrier that swells less with a solvent and is less likely to be deformed by pressure, as compared to a soft carrier such as dextran or agarose. Hard carriers and soft carriers can be distinguished by the following method.
That is, the relationship between the pressure loss and the flow rate when the carrier is uniformly packed in a cylindrical column and the aqueous solution flows is almost linear for a hard carrier, while the pressure is exceeded for a soft carrier when the pressure exceeds a certain point. Deformation and consolidation prevent the flow rate from increasing.
In the present invention, a material having the above linear relationship up to at least 0.3 kg / cm 2 is referred to as hard.

【0022】本発明に用いる体液処理の例を挙げる。ま
ず、血液中の除去される原因物質の例として、ビリルビ
ン、クレアチニン、アミノ酸、その他の中分子量の物
質、薬物、毒物、低比重リポ蛋白質、免疫複合体等を挙
げることができる。
Examples of body fluid treatment used in the present invention will be described. First, examples of causative substances removed from blood include bilirubin, creatinine, amino acids, other medium-molecular-weight substances, drugs, toxicants, low-density lipoproteins, and immune complexes.

【0023】次に体液処理用粒子担体に固定化され、血
液中の原因物質を吸着するリガンドの例として、例えば
低比重リポ蛋白質に対してはデキストラン硫酸、ポリア
クリル酸などが挙げられ、β−2−ミクログロブリンに
対しては疎水性のアルキル化合物、ポリアミノ酸やκ−
カラギ−ナンなどを例として挙げることができる。
Next, examples of ligands immobilized on the body fluid treatment particle carrier and adsorbing the causative substance in blood include, for example, dextran sulfate and polyacrylic acid for low-density lipoprotein, and β- For 2-microglobulin, hydrophobic alkyl compounds, polyamino acids and κ-
Carrageenan and the like can be mentioned as examples.

【0024】リガンドを固定化する担体としてはセルロ
ースやデキストランなどの多糖類、ポリスチレンやポリ
ビニルアルコールなどの合成高分子などを例として挙げ
ることができる。一般的に蛋白質の非特異吸着が少ない
点では親水性のものが好ましいが、蛋白に結合した薬剤
を吸着する場合などは非特異的に蛋白質ごと吸着するた
めに疎水性の担体も用いられることもある。
Examples of the carrier for immobilizing the ligand include polysaccharides such as cellulose and dextran, and synthetic polymers such as polystyrene and polyvinyl alcohol. Generally, hydrophilic ones are preferable in that non-specific adsorption of proteins is small, but hydrophobic carriers may be used for non-specific adsorption of whole proteins, such as when a drug bound to a protein is adsorbed. is there.

【0025】体液処理用粒子の担体は、原因物質などの
除去対象が入ることが可能な細孔を有する、いわゆる多
孔質構造であることが好ましい。この構造により粒子の
外表面だけでなく粒子の内部も吸着に関与でき、吸着量
を大きくすることが出来る。
It is preferable that the carrier of the body fluid treatment particles has a so-called porous structure having pores into which a target substance or the like can be removed. With this structure, not only the outer surface of the particles but also the inside of the particles can participate in the adsorption, and the amount of adsorption can be increased.

【0026】またリガンドを担体に固定化した後、さら
に種々の物質を固定するなどの修飾を施してもよい。例
えば、目的以外の物質の吸着を抑制するための化学修飾
や吸着体から微粒子の発生を少なくするために表面コー
ティングなどが挙げられる。
After the ligand is immobilized on the carrier, further modifications such as immobilization of various substances may be performed. For example, chemical modification for suppressing the adsorption of a substance other than the target, and surface coating for reducing the generation of fine particles from the adsorbent may be mentioned.

【0027】血漿灌流に使用している吸着体を平均粒径
を大きくするなどして直接血液灌流用に改良し利用する
ことができる場合もあある。
In some cases, the adsorbent used for plasma perfusion can be directly improved and used for blood perfusion by, for example, increasing the average particle size.

【0028】本発明に用いる体液処理器の容器は、該容
器に流入口と流出口があり、流入口側および流出口側に
メッシュがあるものである。このメッシュは体液処理用
粒子が体液処理器から漏洩しないように保持でき、かつ
血液を通過させることができる必要がある。メッシュの
形態としては糸を交差させたり、編んだもの、平板に多
数の孔が開いたもの、線状のワイヤーを並べたものなど
いずれでもよい。血液が流れるメッシュの開口部分を目
開きと呼ぶが、この目開きの値として、開口部分の形が
円形の場合は直径を用いることができる。四角径の場合
は面積が同じになる相当円の直径を用いることができ
る。開口部がすだれ状、例えば線状のワイヤーを並べた
ものなど、では間隔の短い側の長さを用いることができ
る。
The container of the body fluid treatment device used in the present invention has an inlet and an outlet, and the inlet and the outlet have meshes. The mesh needs to be able to hold the body fluid treatment particles so as not to leak from the body fluid treatment device and to allow blood to pass through. The mesh may be in any form such as a crossed or knitted yarn, a flat plate having a large number of holes, or a line of linear wires. The opening of the mesh through which blood flows is called an aperture, and the value of the aperture can be a diameter when the shape of the opening is circular. In the case of a square diameter, a diameter of an equivalent circle having the same area can be used. In the case where the openings are interdigital, for example, in a case where linear wires are arranged, the length of the side with a shorter interval can be used.

【0029】血液を通すためには、メッシュの目開きは
20μm以上が必要であり、これ以下になると血球がメ
ッシュにトラップされやすくなる。また、粒子を保持す
るためには、メッシュの目開きは平均粒径の50%未満
が好ましい。特に、粒径分布がある場合、平均粒径より
粒径の小さい粒子の存在も考慮し、粒径の小さい粒子が
漏洩しない目開きにする必要がある。
In order to allow blood to pass through, the mesh must have an opening of 20 μm or more. If the opening is less than 20 μm, blood cells are easily trapped in the mesh. Further, in order to retain the particles, the mesh opening is preferably less than 50% of the average particle size. In particular, when there is a particle size distribution, it is necessary to consider the existence of particles having a particle size smaller than the average particle size, and to make the openings such that the particles having a small particle size do not leak.

【0030】本発明の体液処理器は、体液処理用粒子の
充填率が100%以上かつ110%未満である直接血液
灌流用体液処理器である。本発明で用いる体液処理用粒
子の充填率は、体液処理器の容積に対する充填した体液
処理用粒子の体積の割合で定義し、下式に示す。
The body fluid processor of the present invention is a body fluid processor for direct blood perfusion in which the filling rate of the particles for body fluid treatment is 100% or more and less than 110%. The filling rate of the body fluid treatment particles used in the present invention is defined by the ratio of the volume of the filled body fluid treatment particles to the volume of the body fluid treatment device, and is represented by the following equation.

【0031】充填率[%]=100×充填液中での体液
処理用粒子の体積/体液処理器の容積 充填した状態では容器内は水溶液が充填されている。充
填液としては、水、生理食塩液、pHを一定に保つため
の緩衝液、酸化防止剤を溶解した溶液など、体液処理用
粒子の特性に応じて選択することができる。但し、体液
処理用粒子の体積変化が無い範囲において充填液の代わ
りに水、生理食塩液などを用いて体液処理用粒子の体積
を測定してもよい。
Filling rate [%] = 100 × volume of particles for treating body fluid in filling solution / volume of body fluid treatment device In the filled state, the container is filled with an aqueous solution. The filling liquid can be selected according to the characteristics of the body fluid treatment particles, such as water, physiological saline, a buffer for keeping the pH constant, and a solution in which an antioxidant is dissolved. However, the volume of the body fluid processing particles may be measured using water, physiological saline, or the like instead of the filling liquid in a range where the volume of the body fluid processing particles does not change.

【0032】本発明における体液処理器の容積とは、体
液処理用粒子が充填される体液処理器の流入口側および
流出口側のメッシュで囲まれた体液処理用粒子が充填さ
れる空間の容積を指す。この容積は、図面より計算して
求めることができし、実際に測定して求めることもでき
る。
The volume of the body fluid treatment device in the present invention is the volume of the space filled with the body fluid treatment particles surrounded by the meshes on the inlet and outlet sides of the body fluid treatment device filled with the body fluid treatment particles. Point to. This volume can be obtained by calculation from the drawings, or can be obtained by actual measurement.

【0033】本発明における体液処理用粒子の体積は、
メスシリンダーなどのように上部において体液処理用粒
子に荷重のかからない容器に体液処理用粒子が水溶液中
に分散されたスラリー溶液を入れ、体液処理用粒子を沈
降させ、適度の衝撃を加え、沈降した体液処理用粒子部
分の占有する体積が変化しなくなった段階で求めること
ができる。適度な衝撃を加えずに、すなわちきわめて疎
な沈降状態で測定を行うと、体液処理用粒子部分の占有
する体積が衝撃により容易に変化し確実な測定ができな
い。ここで適度な衝撃とは、保管や輸送、治療、その他
の扱いの際に受ける程度の衝撃である。仮に、きわめて
疎な状態で体液処理器に充填されていたとすると、保管
や輸送、治療、その他の扱いの際に受ける衝撃により体
液処理用粒子部分の占有する体積が容易に変化し、製造
時と使用時で充填の状態が変化し好ましくない。なお、
体液処理用粒子の量を再現性のある別法で測定し、その
測定量から上記で説明した体液処理用粒子の体積の測定
方法による値に換算しても良い。この方法で体液処理用
粒子の体積を求める場合、その体液処理用粒子の量の測
定の際には体液処理用粒子は乾燥状態にあっても、湿潤
状態にあってもかまわない。
The volume of the body fluid treating particles in the present invention is:
A slurry solution in which the body fluid treatment particles are dispersed in an aqueous solution is placed in a container such as a graduated cylinder that does not apply a load to the body fluid treatment particles at the upper portion, and the body fluid treatment particles are settled, subjected to a moderate impact, and settled. It can be obtained at the stage when the volume occupied by the body fluid treatment particle portion does not change. If the measurement is performed without applying an appropriate impact, that is, in a very sparse sedimentation state, the volume occupied by the body fluid treatment particle portion changes easily due to the impact, and reliable measurement cannot be performed. Here, the moderate impact is an impact received during storage, transportation, treatment, and other handling. If the body fluid treatment device is filled in a very sparse state, the volume occupied by the body fluid treatment particles will easily change due to the impact received during storage, transportation, treatment, and other handling, and it will not be as easy as during manufacturing. The state of filling changes during use, which is not preferable. In addition,
The amount of the bodily fluid treatment particles may be measured by another method having reproducibility, and the measured amount may be converted into a value obtained by the above-described method for measuring the volume of the bodily fluid treatment particles. When the volume of the body fluid treatment particles is determined by this method, the body fluid treatment particles may be in a dry state or a wet state when measuring the amount of the body fluid treatment particles.

【0034】体液処理用粒子の充填率が100%未満と
は体液処理器の容積より充填した体液処理用粒子の体積
の方が少ないことを意味し、少なくとも輸送等の衝撃に
より密にパッキングされた状態になった場合には体液処
理用粒子が充填されていない空間が容器内に存在するこ
とになる。この場合、体液処理用粒子が充填されていな
い空間があるため、無駄に体外循環量の増大になり、ま
た輸送時等の衝撃により粒子が体液処理器内部で移動し
粒子の壊れや、微粒子の発生の懸念が生じるため、好ま
しくない。
When the filling rate of the body fluid treatment particles is less than 100%, it means that the volume of the filled body fluid treatment particles is smaller than the volume of the body fluid treatment device. In the state, a space not filled with the body fluid treatment particles exists in the container. In this case, since there is a space that is not filled with the bodily fluid treatment particles, the extracorporeal circulation amount is increased unnecessarily, and the particles move inside the bodily fluid treatment device due to an impact during transportation or the like, and the particles are broken, It is not preferable because of concern about occurrence.

【0035】充填率が100%以上とは体液処理器の容
積以上に体液処理用粒子を充填したことであり、必然的
に体液処理用粒子は変形し、体液処理器容積まで圧縮さ
れていることになる。この場合、体液処理用粒子は充填
された状態で充填前の状態に比べ変形圧縮をしている
が、過度に変形圧縮を受けている場合には、粒子間が狭
くなり血球の通過性が低下して、また、大きな変形によ
り粒子の壊れや微粒子の発生の懸念が生じ、好ましくな
いと考えられる。
[0035] The filling rate of 100% or more means that the body fluid processing particles are filled to a volume larger than the volume of the body fluid processor, and the body fluid processing particles are necessarily deformed and compressed to the volume of the body fluid processor. become. In this case, the particles for body fluid treatment are deformed and compressed in the filled state as compared to the state before filling, but if excessively deformed and compressed, the gap between the particles becomes narrow and blood cell permeability is reduced. In addition, large deformation may cause breakage of particles and generation of fine particles, which is considered to be undesirable.

【0036】また、充填率が100%の状態は、体液処
理器の容積と等しい体液処理用粒子が充填された状態で
あり、体液処理用粒子が充填されていない空間は無く、
同時に体液処理用粒子の変形、圧縮も無い理想的な状態
である。
The state where the filling rate is 100% is a state in which particles for body fluid treatment equal to the volume of the body fluid treatment device are filled, and there is no space in which particles for body fluid treatment are not filled.
At the same time, it is an ideal state without deformation and compression of the body fluid treatment particles.

【0037】しかしながら実際的に体液処理器を製造す
る場合、充填率を常に100%に合わせることは不可能
であり、製造した体液処理器の充填率に幅が生じること
は避けられない。
However, when actually manufacturing a body fluid treatment device, it is impossible to always adjust the filling rate to 100%, and it is inevitable that the filling rate of the manufactured body fluid treatment device has a wide range.

【0038】そこで本発明者らは、鋭意検討の結果、充
填率は110%未満であれば直接血液灌流用体液処理器
として実用的な通血が行えることを見出した。検討にお
いては、単に溶液を流すだけでは固形分の詰まりなどの
影響が判らず、またポリマー粒子などを分散させたスラ
リーを用いても体液処理用粒子への蛋白や血球等の血液
成分の付着や活性化などの影響が把握できないこことな
どから、ウシ血液を用い、現実的な体外循環治療に近い
通血条件で適否を判断した。充填率が110%以上では
体液処理器に血液を流した場合に徐々に圧力損失が上昇
しついには血液が流せなくなった。
The inventors of the present invention have conducted intensive studies and found that if the filling rate is less than 110%, practical blood flow can be performed directly as a body fluid processor for blood perfusion. In the study, the effect of clogging of solids was not known simply by flowing the solution, and even if a slurry in which polymer particles were dispersed was used, adhesion of blood components such as proteins and blood cells to Based on the fact that the effects of activation and the like could not be grasped, the propriety was determined using bovine blood under blood transit conditions close to realistic extracorporeal circulation treatment. When the filling rate was 110% or more, the pressure loss gradually increased when blood was flowed into the body fluid treatment device, and finally blood could not flow.

【0039】一方、充填率100%未満では、体液処理
器を振動した際の体液処理器内の微粒子数の増加が、充
填率100%以上に比べて著しく大きいことが判った。
On the other hand, when the filling rate was less than 100%, it was found that the increase in the number of fine particles in the body fluid treating device when the body fluid treating device was vibrated was significantly larger than when the filling rate was 100% or more.

【0040】体液処理器内の微粒子数の増加率[%]=
100×(振動後の体液処理器内の微粒子数/振動無し
場合の体液処理器内の微粒子数−1) この体液処理器内の微粒子数の増加は、振動にともなう
粒子の衝突に起因すると考えられる。そのため、充填率
が100%未満では体液処理器内に体液処理用粒子の存
在しない空間があるため、体液処理用粒子が移動しやす
いため微粒子が増加しやすい。
Increase rate [%] of the number of fine particles in the body fluid treatment device =
100 × (the number of particles in the body fluid processor after vibration / the number of particles in the body fluid processor without vibration-1) The increase in the number of particles in the body fluid processor is considered to be due to the collision of particles due to vibration. Can be Therefore, when the filling rate is less than 100%, there is a space in the body fluid treatment device where the body fluid treatment particles do not exist, and the body fluid treatment particles are likely to move, so that the number of fine particles tends to increase.

【0041】体液処理器内の微粒子は、充填液に分散し
たり、あるいは体液処理用粒子に付着して存在すると考
えられ、治療中に体液処理器から微粒子が流出する懸念
を減らすためには体液処理器内の微粒子数が少ないこと
が好ましい。体液処理器の保存中や輸送中の振動による
体液処理器内の微粒子数の増大を抑制する意味からも、
無駄な体外循環量の増大抑える意味でも充填率100%
以上が好ましい。
It is considered that the fine particles in the body fluid treatment device are dispersed in the filling solution or adhered to the body fluid treatment particles, and in order to reduce the possibility of the fine particles flowing out of the body fluid treatment device during treatment, it is necessary to use the body fluid. It is preferable that the number of fine particles in the processor is small. From the viewpoint of suppressing the increase in the number of fine particles in the body fluid processor due to vibration during storage or transportation of the body fluid processor,
Filling rate is 100% in the sense of suppressing the increase of unnecessary extracorporeal circulation
The above is preferred.

【0042】また、吸着体としての体液処理用粒子の充
填率100%以上、110%未満の体液処理器におい
て、通常の使用条件を想定して体液処理器から流出する
微粒子数を測定したところ、流出微粒子は非常に少なか
った。この点でも非常に有用な体液処理器であることが
判った。
Further, in a body fluid treatment device having a filling rate of the body fluid treatment particles of 100% or more and less than 110% as an adsorbent, the number of fine particles flowing out of the body fluid treatment device was measured under normal operating conditions. The outflowing particulates were very low. Also in this respect, it was found that the body fluid treatment device was very useful.

【0043】体液処理器の容器に粒子を充填する場合、
大きく2つの方法がある。一つの方法は流入口側あるい
は流出口側の一方のメッシュを外しておき、粒子を充填
してから外しておいたメッシュをセットし、固定する方
法である。もう一つの方法は、胴体部分に粒子導入口の
ある容器に流入口側および流出口側のメッシュを予め固
定しておき、粒子導入口から粒子を入れたあと、粒子導
入口を封止する方法である。どちらの充填方法でもかま
わないが、前者の場合は体液処理用粒子を充填した後に
体液処理用粒子容積に合わせてメッシュを移動させた
り、そのための空間を確保したり、またメッシュ固定の
ための操作が必要なのに対して、後者の場合は予めメッ
シュを固定して体液処理器容積を確定しておき、粒子充
填後、粒子導入口を封止することができるため製造上有
利である。
When filling the container of the body fluid processor with particles,
There are two main methods. One method is to remove one of the meshes on the inlet side or the outlet side, fill the particles, set the removed mesh, and fix it. Another method is to fix the mesh on the inlet side and the outlet side in advance in a container having a particle introduction port in the body part, put the particles through the particle introduction port, and then seal the particle introduction port. It is. Either filling method may be used, but in the former case, after filling the particles for body fluid treatment, the mesh is moved according to the volume of the particles for body fluid treatment, the space for that is secured, and the operation for fixing the mesh is performed. On the other hand, in the latter case, the mesh is fixed in advance to determine the volume of the body fluid treatment device, and the particle introduction port can be sealed after filling the particles, which is advantageous in production.

【0044】本発明の体液処理器は体液処理用粒子とと
もに充填液が封入され、概ね気泡を除いたものである。
長期間の保存を行う場合、気体分子が体液処理器の容器
壁や隙間を通って体液処理器内に気泡が生じることがあ
るが、少量であれば問題はない。
In the body fluid treatment device of the present invention, the filling liquid is sealed together with the body fluid treatment particles, and bubbles are generally removed.
When storing for a long period of time, gas molecules may be generated in the body fluid treatment device through the container wall or gap of the body fluid treatment device, but there is no problem if the amount is small.

【0045】本発明の体液処理器は、蒸気滅菌やガンマ
線滅菌などの滅菌処理を施された後、治療に供すること
ができる。体液処理器の滅菌は通常用いられる方法によ
り行うことができる。
The body fluid treatment device of the present invention can be subjected to a treatment after being subjected to a sterilization treatment such as steam sterilization or gamma ray sterilization. Sterilization of the body fluid treatment device can be performed by a commonly used method.

【0046】体液処理器の容積や血液流量などは、治療
目的と患者の状態に応じて適切な条件を選択すればい
い。一般的には、体液処理器の容積は100ml〜10
00ml、血液流量は200ml/min以下で行われ
る。患者の体重が大きい場合、患者の血液量は多くな
り、使用できる体液処理器の容積は大きくできる。また
除去すべき原因物質の量が多くなると体液処理器容積も
大きいものが必要になる。場合によっては、体液処理器
に原因物質を吸着除去した後、使用済みの体液処理器を
未使用の体液処理器に交換したり、使用済みの体液処理
器を賦活して吸着能力を回復した後、再度体外循環治療
を行うこともできる。血液流量について、血液透析、血
液濾過透析等では200ml/min前後、血漿灌流方
式の血液浄化の場合は100ml/min前後で行われ
ることが多いが、患者の状態などにより設定されるもの
であり、治療途中で変更することもできる。もちろん治
療上支障の無い場合には、治療目的や患者の状態によっ
て上記の範囲を外れる条件の場合もある。
Appropriate conditions may be selected for the volume of the body fluid processor, the blood flow rate, and the like according to the purpose of treatment and the condition of the patient. Generally, the volume of the body fluid processor is 100 ml to 10 ml.
The blood flow rate is set at 200 ml / min or less. If the patient's weight is large, the patient's blood volume will be large, and the volume of the body fluid processor that can be used can be large. In addition, when the amount of the causative substance to be removed increases, a body fluid treatment device having a large volume is required. In some cases, after absorbing and removing the causative substance in the body fluid processor, replace the used body fluid processor with an unused body fluid processor, or activate the used body fluid processor to restore the adsorption capacity The extracorporeal circulation treatment can be performed again. The blood flow rate is usually about 200 ml / min for hemodialysis, hemofiltration dialysis, etc., and about 100 ml / min for plasma perfusion blood purification, but is set depending on the condition of the patient and the like. It can be changed during treatment. Of course, if there is no problem in the treatment, the condition may be out of the above range depending on the purpose of treatment or the condition of the patient.

【0047】本発明における体液処理器を使用する体外
循環回路の一例を図1に示す。患者から抜き出した血液
を体液処理器に導く採血回路を体液処理器流入口に接続
し、原因物質を吸着除去した血液を患者に戻す返血回路
を体液処理器流出口に接続し、さらに、採血回路には血
液を流すためのポンプをセットする。またエアーチャン
バーは圧力計に接続され、体液処理器の流入口圧および
流出口圧を測定し体液処理器の圧損を測定することがで
きる。
FIG. 1 shows an example of an extracorporeal circuit using the body fluid treatment device according to the present invention. A blood collection circuit that leads the blood drawn from the patient to the body fluid processor is connected to the body fluid processor inlet, a blood return circuit that returns the blood from which the causative substance has been adsorbed and removed to the patient is connected to the body fluid processor outlet, and further, blood collection A pump for flowing blood is set in the circuit. The air chamber is connected to a pressure gauge, and can measure the pressure loss of the body fluid processor by measuring the inflow pressure and the outflow pressure of the body fluid processor.

【0048】体液処理器は、充填液が入っており気泡が
ほとんど無い状態であるので、新たに気泡が混入しない
ように注意して、洗浄およびプライミング液を体液処理
器に通すだけで体液処理器を使用する準備が整う。
Since the body fluid processor contains a filling liquid and contains almost no air bubbles, care must be taken to prevent the introduction of new air bubbles, and the cleaning and priming solution is simply passed through the body fluid processor. Ready to use.

【0049】治療は、患者から血液を取りだし、体液処
理器に通すことにより処理した血液を患者に戻す。
The treatment involves removing blood from the patient and returning the processed blood to the patient by passing it through a body fluid processor.

【0050】採血回路および返血回路に設置されている
エアーチャンバーは、通常の回路(チューブ部分)に比
べ断面積が大きく容積も通常10ml前後あり若干の体
外循環血液量の増大になるが、何らかの原因で回路に気
泡が混入した場合でも、気泡をトラップし、後方の体液
処理器や患者に流れていかないようにするための非常に
重要な機能を担っている。
The air chamber installed in the blood collection circuit and the blood return circuit has a larger cross-sectional area than that of a normal circuit (tube portion) and usually has a volume of about 10 ml, which slightly increases the extracorporeal blood volume. Even if air bubbles enter the circuit due to the cause, they have a very important function to trap the air bubbles and prevent them from flowing to the body fluid processor and the patient behind.

【0051】しかし回路に設置したエアーチャンバーの
断面積は通常用いられている体液処理器の断面積に比べ
れば小さく、特許第2660470号に開示されている
吸着器のように体液処理器上部に体液処理器の断面を利
用してエアーチャンバーを兼ねスペースを設置する場合
にくらべ小さい容積ですませることができるため、体外
循環血液量低減の観点からは妥当な方法である。なお、
ここで示した使用法は必要最小限な部分を説明したもの
で、他に抗凝固剤やその回路、洗浄・プライミン回路お
よび回収回路なども必要に応じ設置される。また、他の
体液処理器などと併用する場合なども考えられ、必要に
応じ変更することが可能である。
However, the cross-sectional area of the air chamber installed in the circuit is smaller than the cross-sectional area of a commonly used body fluid treatment device, and the body fluid is placed above the body fluid treatment device like the adsorber disclosed in Japanese Patent No. 2660470. This is a proper method from the viewpoint of reducing the amount of extracorporeal circulating blood because the volume can be reduced compared to the case where a space is also used as an air chamber by using the cross section of the processor. In addition,
The usage described here is for explaining the minimum necessary parts, and in addition, an anticoagulant and its circuit, a washing / priming circuit, a recovery circuit, and the like are additionally provided as necessary. In addition, a case where it is used in combination with another body fluid treatment device or the like is also conceivable, and can be changed as needed.

【0052】[0052]

【実施例】以下、本発明の方法を実施例に基づいて具体
的に説明する。
The method of the present invention will be specifically described below with reference to examples.

【0053】(作製例1)[吸着体の作製] 平均粒径195μmの多孔質セルロースビーズ(チッソ
(株)製):2000mlに水:2000ml、2N−
NaOH:1060mlおよびエピクロロヒドリン:3
60mlを加え、40℃で2hr攪拌して反応させた。
反応後ビーズを水で十分洗浄してエポキシ化セルロース
ビーズを得た。
(Preparation Example 1) [Preparation of adsorbent] Porous cellulose beads having an average particle diameter of 195 μm (manufactured by Chisso Corporation): 2000 ml, water: 2000 ml, 2N-
NaOH: 1060 ml and epichlorohydrin: 3
60 ml was added, and the mixture was stirred at 40 ° C. for 2 hours to react.
After the reaction, the beads were sufficiently washed with water to obtain epoxidized cellulose beads.

【0054】デキストラン硫酸(硫黄含量約18%):
930gを630mlの水に溶解したデキストラン硫酸
水溶液を調製し、エポキシ化セルロースビーズ:200
0mlおよび水:100mlを加えた。更に、NaOH
水溶液でpH9.5に調整した後、45℃で22hr反
応させた。反応後、ビーズを水およびNaCl水で十分
洗浄した後、モノエタノールアミン:19.6mlを加
え、45℃で2hr静置し、未反応のエポキシ基を封止
した。その後、水で十分洗浄してデキストラン硫酸固定
セルロースビーズ(吸着体)を得た。
Dextran sulfate (sulfur content about 18%):
A solution of dextran sulfate in which 930 g was dissolved in 630 ml of water was prepared, and epoxidized cellulose beads: 200
0 ml and water: 100 ml were added. Furthermore, NaOH
After adjusting the pH to 9.5 with an aqueous solution, the mixture was reacted at 45 ° C. for 22 hours. After the reaction, the beads were sufficiently washed with water and NaCl water, monoethanolamine: 19.6 ml was added, and the mixture was allowed to stand at 45 ° C for 2 hours to seal unreacted epoxy groups. Thereafter, the resultant was sufficiently washed with water to obtain dextran sulfate-immobilized cellulose beads (adsorbent).

【0055】(作製例2)[吸着体の作製] 平均粒径:195μm〜227μmの多孔質セルロース
ビーズを用いて作製例1と同様の工程によりデキストラ
ン硫酸固定セルロースビーズ(吸着体)を得た。
(Preparation Example 2) [Preparation of adsorbent] Dextran sulfate fixed cellulose beads (adsorbent) were obtained by the same process as Preparation Example 1 using porous cellulose beads having an average particle size of 195 µm to 227 µm.

【0056】(実施例1)[通血実験] 作製例1の吸着体:152mlを容積:142ml(断
面積:7.6cm2、長さ:18.8cm)の円筒形の
容器に充填し体液処理器を得た。充填液には日本薬局方
・リンゲル液を用いた。充填率は107%であった。1
300mlのクエン酸で抗凝固したウシ血液(イオン化
Ca濃度:0.35mM)を血液プールとし、体液処理
器に空塔線速:約2.5cm/minで循環通液した。
90min安定して血液を通液することができた。最終
的に体液処理器の圧損(=流入口圧力−流出口圧力)は
125mmHgであった。
(Example 1) [Blood-flow experiment] The adsorbent of Preparation Example 1 (152 ml) was filled into a cylindrical container having a volume of 142 ml (cross-sectional area: 7.6 cm 2 , length: 18.8 cm), and the body fluid was filled therein. A processor was obtained. Ringer's solution, Japanese Pharmacopoeia, was used as the filling solution. The filling factor was 107%. 1
Bovine blood (ionized Ca concentration: 0.35 mM) anticoagulated with 300 ml of citric acid was used as a blood pool, and circulated through a body fluid processor at a superficial linear velocity of about 2.5 cm / min.
Blood was able to flow stably for 90 minutes. Finally, the pressure loss (= inlet pressure-outlet pressure) of the body fluid treatment device was 125 mmHg.

【0057】(実施例2、3、4、比較例1および参考
例1)[通血実験] 作製例1および作製例2の吸着体を、長さ:18.8c
mの円筒形の容器に充填率:97%〜110%の範囲で
充填して体液処理器を得た。充填液には日本薬局方・リ
ンゲル液を用いた。この体液処理器にクエン酸で抗凝固
した牛血液を循環方式で実施例1と同様に空塔線速:約
2.5cm/minで流した。結果を表1に記載した。
(Examples 2, 3, 4, Comparative Example 1 and Reference Example 1) [Blood Passing Experiment] The adsorbents of Preparation Example 1 and Preparation Example 2 were prepared by using a length of 18.8 c.
m in a cylindrical container at a filling ratio of 97% to 110% to obtain a body fluid treatment device. Ringer's solution, Japanese Pharmacopoeia, was used as the filling solution. Bovine blood anticoagulated with citric acid was passed through the body fluid treatment device at a superficial linear velocity of about 2.5 cm / min in the same manner as in Example 1 in a circulating manner. The results are shown in Table 1.

【0058】充填率100%(実施例2)および充填率
97%(参考例1)はいずれも90min安定して流せ
た。充填率110%(比較例1)ではいずれも圧上昇が
著しく90min以内に中断した。充填率103%(実
施例3)では経時的な圧上昇があったが90minまで
通血できた。充填率107%(実施例4)では、1回は
90min安定して流せ、1回は経時的な圧上昇があっ
たが90minまで通血できた。
Both the filling rate of 100% (Example 2) and the filling rate of 97% (Reference Example 1) were able to flow stably for 90 minutes. At a filling rate of 110% (Comparative Example 1), the pressure increase was remarkably interrupted within 90 minutes. At a filling rate of 103% (Example 3), blood pressure was increased over time, but blood could be passed up to 90 minutes. At a filling rate of 107% (Example 4), the blood flow was able to be performed stably for 90 minutes at one time, and blood pressure could be passed up to 90 minutes at one time, although the pressure increased with time.

【0059】[0059]

【表1】 (実施例5)[体液処理器内の微粒子数の測定] 作製例2の吸着体を容積730mlの容器に充填率10
3%で充填し、2本の体液処理器を得た。充填液にはク
エン酸緩衝液(pH約6)を用いた。
[Table 1] (Example 5) [Measurement of the number of fine particles in the body fluid treatment device] The adsorbent of Preparation Example 2 was filled in a 730 ml container at a filling rate of 10%.
It was filled with 3% to obtain two body fluid treatment devices. A citrate buffer (pH about 6) was used as the filling solution.

【0060】1本目の体液処理器から微粒子が含まれな
い液で吸着体を洗い流しながら充填液とともに全量をス
ラリー状態で回収容器に取り出した。このスラリー溶液
を空の回収容器へ移し変える操作を5回行うことによ
り、体液処理用粒子から微粒子を離し、3分間静置させ
た後、上澄み液を2ml採取して上澄み液中の微粒子濃
度を測定した。微粒子濃度にスラリー中の液体体積を掛
けて、体液処理器内の微粒子数を求めた。
While the adsorbent was washed away from the first body fluid processor with a liquid containing no fine particles, the entire amount together with the filling liquid was taken out in a slurry state into a collection container. The slurry solution is transferred to an empty collection container five times to separate the fine particles from the bodily fluid treatment particles, and allowed to stand for 3 minutes. Then, 2 ml of the supernatant is collected and the fine particle concentration in the supernatant is reduced. It was measured. The number of fine particles in the body fluid treatment device was determined by multiplying the fine particle concentration by the volume of the liquid in the slurry.

【0061】2本目の体液処理器については、体液処理
器を箱に入れ、JIS Z0232「包装貨物及び容器
の振動試験方法」に準じ、水平及び垂直方向に各1時間
振動した後、1本目の体液処理器と同様の手順により体
液処理器内の微粒子数を求めた。
For the second bodily fluid processor, the bodily fluid processor is placed in a box, and vibrated in the horizontal and vertical directions for 1 hour each in accordance with JIS Z0232 “Vibration test method for packaged cargo and containers”. The number of fine particles in the body fluid treatment device was determined in the same procedure as in the body fluid treatment device.

【0062】結果は表2のとおりであった。振動による
体液処理器内の微粒子数の増加率は10μm以上で14
%、25μm以上で18%であった。
The results are as shown in Table 2. The rate of increase in the number of fine particles in the body fluid treatment device due to vibration was 14 μm or more.
%, And 18% at 25 μm or more.

【0063】微粒子濃度の測定には電気抵抗法によるコ
ールターカウンターを用いた。
For the measurement of the fine particle concentration, a Coulter counter by an electric resistance method was used.

【0064】なお、この測定で微粒子のサイズは10μ
m以上、80μm以下を対象とした。直接血液灌流法な
どに用いられる200μm程度の担体を治療に用いられ
るカラムに充填する場合、担体がカラムから漏れずに、
かつ血球成分をも通過することができるために使用する
メッシュの目開きを50μm程度と想定すると、不溶性
微粒子のサイズは上記の範囲で十分である。
In this measurement, the size of the fine particles was 10 μm.
m and 80 μm or less. When filling a column used for treatment with a carrier of about 200 μm used for direct blood perfusion, etc., the carrier does not leak from the column,
In addition, assuming that the mesh used to allow the passage of blood cell components is about 50 μm, the size of the insoluble fine particles in the above range is sufficient.

【0065】(比較例2)[体液処理器内の微粒子数] 作製例2で作製した吸着体を容積730mlの容器に充
填率90%で充填し、2本の体液処理器を得た。
(Comparative Example 2) [Number of Fine Particles in Body Fluid Processor] The adsorbent prepared in Preparation Example 2 was filled into a 730 ml capacity container at a filling rate of 90% to obtain two body fluid processors.

【0066】2本の体液処理器について、1本は振動を
加えず、他の1本は振動を加えた後、実施例5と同様に
それぞれ体液処理器内の微粒子数を求めた。
With respect to the two body fluid processors, one was not subjected to vibration and the other was subjected to vibration, and the number of particles in the body fluid processor was determined in the same manner as in Example 5.

【0067】結果を表2に示す。振動による体液処理器
内の微粒子数の増加率は10μm以上で75%、25μ
m以上で98%であった。
Table 2 shows the results. The increase rate of the number of fine particles in the body fluid treatment device due to vibration is 75% and 25 μm for 10 μm or more.
m and 98%.

【0068】[0068]

【表2】 (実施例6)[流出異物数] 作製例2の吸着体:754mlを容積:730mlの容
器に充填して体液処理器を得た。充填率は103%であ
る。充填液にはクエン酸緩衝液(pH約6)を用いた。
[Table 2] (Example 6) [Number of outflow foreign substances] The adsorbent of Production Example 2: 754 ml was filled in a container having a volume of 730 ml to obtain a body fluid treatment device. The filling factor is 103%. A citrate buffer (pH about 6) was used as the filling solution.

【0069】この体液処理器を高圧蒸気滅菌し、実用に
供する状態の体液処理器を作製した。滅菌後の体液処理
器を、輸送、保存などを想定し実施例5と同様に振動し
た。振動後の体液処理器を用いて、下記の方法により、
実際の使用を想定して洗浄後、体液処理器から流出した
微粒子数を測定した。
This body fluid treatment device was subjected to high-pressure steam sterilization to produce a body fluid treatment device ready for practical use. The body fluid treatment device after sterilization was vibrated in the same manner as in Example 5 assuming transportation and storage. Using the body fluid processor after vibration, by the following method,
After cleaning assuming actual use, the number of fine particles flowing out of the body fluid treatment device was measured.

【0070】体液処理器に注射用生理食塩液を100m
l/minで2hr送液し、送液直後、0.5時間、1
時間、1.5時間、2時間の体液処理器から流出した試
験液を採取した。同時に注射用生理食塩液を空試験液と
して採取した。コールターカウンターを用いて試験液お
よび空試験液の粒子数を測定し、試験液と空試験液との
粒子数の差を発生粒子数とし、積分法により0〜2時間
における総発生粒子数を求めた。流出液総量で除して平
均粒子数(個/ ml)を求めた。
100 ml of physiological saline for injection was placed in the body fluid processor.
1 / min for 2 hours
The test solution flowing out of the body fluid treatment device for 1.5 hours, 1.5 hours, and 2 hours was collected. At the same time, physiological saline for injection was collected as a blank test solution. The number of particles in the test solution and the blank test solution was measured using a Coulter counter, and the difference in the number of particles between the test solution and the blank test solution was defined as the number of generated particles, and the total number of generated particles in 0 to 2 hours was determined by the integration method. Was. The average particle number (particles / ml) was determined by dividing by the total amount of the effluent.

【0071】体液処理器から流出した粒子数は、5μm
以上が0.0個/ml、25μm以上が0.0個/ml
であった。
The number of particles flowing out of the body fluid treatment device was 5 μm
More than 0.0 / ml, more than 25μm 0.0 / ml
Met.

【0072】[0072]

【発明の効果】本発明の直接血液灌流用体液処理器は、
血液を安定して流すことができ、体液処理用粒子を充填
する空間に無駄な空間が無く、かつ振動によるカラム内
微粒子の増加も抑制できる。
The bodily fluid processor for direct blood perfusion of the present invention comprises:
Blood can flow stably, there is no useless space in the space filled with the bodily fluid treatment particles, and an increase in particles in the column due to vibration can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】体外循環回路の一例FIG. 1 shows an example of an extracorporeal circulation circuit

【符号の説明】[Explanation of symbols]

1 体液処理器 2 メッシュ 3 体液処理器流入口 4 体液処理器流出口 5 体液処理用粒子 6 採血回路 7 返血回路 8 採血口 9 返血口 10 エアーチャンバー 11 圧力計 12 ポンプ REFERENCE SIGNS LIST 1 body fluid processor 2 mesh 3 body fluid processor inlet 4 body fluid processor outlet 5 body fluid processing particles 6 blood collection circuit 7 blood return circuit 8 blood collection port 9 blood return port 10 air chamber 11 pressure gauge 12 pump

フロントページの続き (72)発明者 古吉 重雄 兵庫県神戸市須磨区東落合3−28−33 Fターム(参考) 4C077 AA09 BB02 BB03 CC04 EE01 KK11 KK15 KK30 MM04 MM06 MM07 MM10 NN07 NN18 PP02 PP08 PP09 4D017 AA11 BA03 CA14 CB01 DA01 EA03 EB02 Continued on the front page (72) Inventor Shigeo Furuyoshi 3-28-33 F-term (reference) 4C077 AA09 BB02 BB03 CC04 EE01 KK11 KK15 KK30 MM04 MM06 MM07 MM10 NN07 NN18 PP02 PP08 PP09 4D017 AA11 BA03 CA14 CB01 DA01 EA03 EB02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 流入口と流出口を有し、流入口側および
流出口側にそれぞれメッシュが設置された容器におい
て、両メッシュ間に形成される容器内空間に体液処理用
粒子が充填されてなる体液処理器であって、充填率が1
00%以上かつ110%未満である直接血液灌流用体液
処理器。
1. A container having an inflow port and an outflow port, wherein meshes are installed on the inflow side and the outflow side, respectively, wherein the container space formed between the two meshes is filled with the bodily fluid treatment particles. Fluid treatment device, wherein the filling rate is 1
A bodily fluid processor for direct blood perfusion that is at least 00% and less than 110%.
【請求項2】 体液処理用粒子の平均粒径が80μm以
上500μm未満である請求項1記載の直接血液灌流用
体液処理器。
2. The body fluid treatment device for direct blood perfusion according to claim 1, wherein the body fluid treatment particles have an average particle size of 80 μm or more and less than 500 μm.
【請求項3】 体液処理用粒子が硬質担体である請求項
1記載の直接血液灌流用体液処理器。
3. The body fluid treatment device for direct blood perfusion according to claim 1, wherein the body fluid treatment particles are hard carriers.
【請求項4】 前記メッシュの目開きが、20μm以
上、体液処理用粒子の平均粒径の1/2未満である請求
項1記載の直接血液灌流用体液処理器。
4. The body fluid treatment device for direct blood perfusion according to claim 1, wherein the mesh has an opening of 20 μm or more and less than half the average particle size of the body fluid treatment particles.
【請求項5】 体液処理用粒子が多孔質セルロースにデ
キストラン硫酸を固定化した吸着体である請求項1ない
し請求項4記載の直接血液灌流用体液処理器。
5. The body fluid treatment device for direct blood perfusion according to claim 1, wherein the body fluid treatment particles are an adsorbent obtained by immobilizing dextran sulfate on porous cellulose.
【請求項6】 体液処理器の容積が100ml以上、1
000ml以下である請求項5記載の直接血液灌流用体
液処理器。
6. The body fluid treatment device has a volume of 100 ml or more,
6. The body fluid processor for direct blood perfusion according to claim 5, wherein the volume is not more than 000 ml.
【請求項7】 血液流速200ml/min以下で操作
する請求項6記載の直接血液灌流用体液処理器。
7. The body fluid processor for direct blood perfusion according to claim 6, wherein the apparatus is operated at a blood flow rate of 200 ml / min or less.
JP2000015433A 2000-01-25 2000-01-25 Body fluid treatment device for direct blood perfusion Expired - Fee Related JP4156160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015433A JP4156160B2 (en) 2000-01-25 2000-01-25 Body fluid treatment device for direct blood perfusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015433A JP4156160B2 (en) 2000-01-25 2000-01-25 Body fluid treatment device for direct blood perfusion

Publications (2)

Publication Number Publication Date
JP2001204816A true JP2001204816A (en) 2001-07-31
JP4156160B2 JP4156160B2 (en) 2008-09-24

Family

ID=18542738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015433A Expired - Fee Related JP4156160B2 (en) 2000-01-25 2000-01-25 Body fluid treatment device for direct blood perfusion

Country Status (1)

Country Link
JP (1) JP4156160B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1356832A1 (en) * 2001-01-30 2003-10-29 Kaneka Corporation Body fluid processor enabling direct hemoperfusion
WO2006009179A1 (en) * 2004-07-23 2006-01-26 Kaneka Corporation Direct hemoperfusion adsorber packed with adsorbent having water insoluble microparticle removed therefrom, and method of obtaining direct hemoperfusion adsorbent having water insoluble microparticle removed therefrom
JP2010230575A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Method for filling chromatographic column

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103118719A (en) 2010-09-15 2013-05-22 旭化成医疗株式会社 Blood purification device and control method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1356832A1 (en) * 2001-01-30 2003-10-29 Kaneka Corporation Body fluid processor enabling direct hemoperfusion
EP1356832A4 (en) * 2001-01-30 2008-05-07 Kaneka Corp Body fluid processor enabling direct hemoperfusion
WO2006009179A1 (en) * 2004-07-23 2006-01-26 Kaneka Corporation Direct hemoperfusion adsorber packed with adsorbent having water insoluble microparticle removed therefrom, and method of obtaining direct hemoperfusion adsorbent having water insoluble microparticle removed therefrom
US8272518B2 (en) 2004-07-23 2012-09-25 Kaneka Corporation Direct hemoperfusion adsorber packed with adsorbent having water insoluble microparticle removed therefrom, and method of obtaining direct hemoperfusion adsorbent having water insoluble microparticle removed therefrom
JP2010230575A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Method for filling chromatographic column

Also Published As

Publication number Publication date
JP4156160B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4138488B2 (en) Body fluid treatment device capable of direct blood perfusion
JP4908216B2 (en) Adsorber for direct blood perfusion filled with adsorbent from which water-insoluble fine particles have been removed, and method for obtaining adsorbent for direct blood perfusion from which water-insoluble fine particles have been removed
Furuyoshi et al. New Adsorption Column (Lixelle) to Eliminate (β2‐Microglobulin for Direct Hemoperfusion
CN108371945A (en) For in removing in uremic patient body, the adsorbent of macromolecular toxins and preparation method
WO1997027889A1 (en) Adsorbent for disease-related factors in body fluids, method of elimination by adsorption, body fluid purifier, and apparatus for purifying body fluids
EP1181977B1 (en) Adsorbing and removing process and use of an adsorber for endogenous cannabinoid
JP4156160B2 (en) Body fluid treatment device for direct blood perfusion
EP1010428A2 (en) Adsorbing agent for treating humor and adsorbing device for treating humor
JPH01181875A (en) Adsorptive body of immune complex and removing device for immune complex with it
JP3251547B2 (en) Immune complex removal device
JPS6226073A (en) Method and apparatus for direct infusion and adsorption of blood
JPS59197255A (en) Removing apparatus
JP3084436B2 (en) Anti-DNA antibody removal device
JP2991721B2 (en) Anti-thyroid stimulating hormone receptor antibody adsorbent and anti-thyroid stimulating hormone receptor antibody removing device using the same
JP2754203B2 (en) Sterilization method for body fluid treatment device and sterilized body fluid treatment device
JP2726662B2 (en) Adsorbent and removal device using the same
JPH0975725A (en) Bradykinin adsorbent, adsorbing and removing method and adsorber
JPH11332981A (en) Method for removing low-density lipoprotein in blood
JP2983955B2 (en) Device for removing glomerular basement membrane adhering protein
JPH02265565A (en) Adsorbent of anti-thyroid stimulating hormone receptor antibody and removing device of anti-thyroid stimulating hormone receptor antibody using the same
JPH088928B2 (en) Device for producing plasma from which low-density lipoprotein has been removed
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
EP1293221A1 (en) Adsorbent for cardiac glycoside, and method and device for adsorbing and removing cardiac glycoside
JPH0275340A (en) Adsorbing body
JP2001218839A (en) Heparin adsorbent and removing method for heparin using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees