JP2001202604A - Magneto-resistive head and magnetic recording and reproducing device - Google Patents

Magneto-resistive head and magnetic recording and reproducing device

Info

Publication number
JP2001202604A
JP2001202604A JP2000008172A JP2000008172A JP2001202604A JP 2001202604 A JP2001202604 A JP 2001202604A JP 2000008172 A JP2000008172 A JP 2000008172A JP 2000008172 A JP2000008172 A JP 2000008172A JP 2001202604 A JP2001202604 A JP 2001202604A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
head
magnetoresistive
tmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000008172A
Other languages
Japanese (ja)
Other versions
JP3420152B2 (en
Inventor
Jun Hayakawa
純 早川
Reiko Arai
礼子 荒井
Susumu Soeya
進 添谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000008172A priority Critical patent/JP3420152B2/en
Publication of JP2001202604A publication Critical patent/JP2001202604A/en
Application granted granted Critical
Publication of JP3420152B2 publication Critical patent/JP3420152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-output ferromagnetic tunnel type magneto-resistive(TMR) head. SOLUTION: This ferromagnetic TMR head has a high deflecting electrode spin implantation layer 11 adjacently to the TMR element 1 and the high spin deflecting electrode electrons are implanted into the TMR element, by which the magneto-resistive effect may be made higher than that of the conventional TMR element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気的に記録され
た情報を再生する強磁性トンネル型磁気抵抗効果ヘッ
ド、及び磁気再生ヘッドとしてその強磁性トンネル型磁
気抵抗効果ヘッドを備えた高密度磁気記録再生装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic tunnel type magnetoresistive head for reproducing magnetically recorded information, and a high-density magnetic field provided with the ferromagnetic tunnel type magnetoresistive head as a magnetic reproducing head. The present invention relates to a recording and reproducing device.

【0002】[0002]

【従来の技術】高密度磁気記録再生装置に用いられる磁
気ヘッドの再生部には巨大磁気抵抗効果(GMR)素子
が提案されており、その一つとしてスピンバルブ膜と呼
ばれる構造が特開平4−358310号公報に記載され
ている。また、今後の更なる高密度磁気記録に対応する
磁気ヘッド再生部としては、GMR素子よりも高出力で
ある強磁性トンネル型磁気抵抗効果(TMR)素子が提
案され、特開平10−4227号公報にTMR素子を用
いた磁気ヘッドに関する記載がある。
2. Description of the Related Art A giant magnetoresistive (GMR) element has been proposed for a reproducing section of a magnetic head used in a high-density magnetic recording / reproducing apparatus. 358310. Further, as a magnetic head reproducing unit corresponding to a higher density magnetic recording in the future, a ferromagnetic tunnel type magnetoresistive (TMR) element having a higher output than a GMR element has been proposed. Describes a magnetic head using a TMR element.

【0003】しかし、従来のTMR素子においてはその
磁気抵抗効果の大きさに限界があり、さらなる高出力T
MR素子を実現するためには新規な機能を持つ磁気抵抗
効果素子が必要である。その一つの手段として、従来の
TMR素子に用いられる強磁性体よりも高スピン偏極率
を持つ材料の適用がある。ユーロフィジックス・レター
ズ誌39巻545〜549頁(EUROPHYSICS LETTERS,39
(5), pp545-549 (1997))には高スピン偏極率材料を用
いたTMR素子(La0.7Sr0.3MnO3/SrTiO3
/La0.7Sr0.3MnO3)におけるTMR比の増大に
関する記述がある。
However, in the conventional TMR element, the magnitude of the magnetoresistance effect is limited, and the higher output T
To realize the MR element, a magnetoresistive element having a new function is required. One means is to use a material having a higher spin polarization than a ferromagnetic material used in a conventional TMR element. Europhysics Letters, Vol. 39, pp. 545-549 (EUROPHYSICS LETTERS, 39
(5), pp545-549 (1997)), a TMR element (La 0.7 Sr 0.3 MnO 3 / SrTiO 3 ) using a high spin polarization material.
/ La 0.7 Sr 0.3 MnO 3 ).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のように
高スピン偏極率材料を直接TMR素子の感磁部に用いた
場合、素子の抵抗がメガオーム以上と非常に高く、磁気
ヘッドとして利用する時にノイズの原因となり不適であ
る。また、記録密度の十分に高い磁気記録再生装置を実
現するために、従来構造より高出力な強磁性トンネル型
磁気抵抗効果素子を実現する必要がある。
However, when a high spin polarization material is directly used for the magnetic sensing part of the TMR element as described above, the element has a very high resistance of megaohms or more, and is used as a magnetic head. Sometimes it causes noise and is not suitable. Further, in order to realize a magnetic recording / reproducing apparatus having a sufficiently high recording density, it is necessary to realize a ferromagnetic tunnel type magnetoresistance effect element having a higher output than the conventional structure.

【0005】本発明の目的は、従来構造より高出力な強
磁性トンネル型磁気抵抗効果素子を提供することにあ
る。本発明の他の目的は、その強磁性トンネル磁気抵抗
効果素子を用いた磁気抵抗効果型磁気ヘッド及び磁気記
録再生装置を提供することにある。
An object of the present invention is to provide a ferromagnetic tunnel type magnetoresistance effect element having a higher output than the conventional structure. Another object of the present invention is to provide a magneto-resistance effect type magnetic head and a magnetic recording / reproducing apparatus using the ferromagnetic tunnel magneto-resistance effect element.

【0006】[0006]

【課題を解決するための手段】電子のスピン偏極率
(P)は、回転(自転)方向の異なる電子(右回りと左
回りで右回りが下向きスピン、左回りが上向きスピン)
の数(状態密度)の差で一般的に理解されている。例え
ばスピン偏極率P=0.8は上向きスピンが下向きスピ
ンよりも9倍多いことを示す。また、TMR素子の磁気
抵抗効果(TMR比)は、この偏極率Pを用いて2P1
2/(1−P12)で表すことができる(P 1はTMR
素子の強磁性自由層のスピン偏極率、P2はTMR素子
の強磁性固定層のスピン偏極率)。よって、高いTMR
比を得るためには、Pの大きい高スピン偏極率材料であ
る半金属強磁性体(Fe34,CrO2等)を用いるこ
とが有効である。これらの半金属強磁性体の電気伝導を
担う電子は自由電子ではなく、エネルギー準位が分裂し
たd軌道バンドの電子であり、伝導を主に担うフェルミ
エネルギー近傍の電子の状態はどちらか一方の向きの電
子の数が多い、つまり、高スピン偏極した電子である。
[Means for Solving the Problems] Spin polarization of electrons
(P) indicates electrons with different rotation (rotation) directions (clockwise and left
(Rotate clockwise spin downward, counterclockwise spin upward)
Is generally understood as the difference in the number of states (state density). example
If the spin polarization P = 0.8, the upward spin is
9 times more than Also, the magnetic properties of the TMR element
The resistance effect (TMR ratio) is calculated as 2P using this polarization rate P.1
PTwo/ (1-P1PTwo) (P 1Is TMR
Spin polarization of the ferromagnetic free layer of the device, PTwoIs the TMR element
Spin polarization of the ferromagnetic pinned layer). Therefore, high TMR
In order to obtain the ratio, a high spin polarization material having a large P is used.
Metalloid ferromagnet (FeThreeOFour, CrOTwoEtc.)
Is valid. The electric conduction of these semimetallic ferromagnet
Carrying electrons are not free electrons, their energy levels are split
Fermi, which is an electron in the d-orbital band and is mainly responsible for conduction
The state of the electrons near the energy is the one in either direction.
An electron with a large number of electrons, that is, a highly spin-polarized electron.

【0007】本発明では、TMR素子に半金属強磁性体
層を隣接させて、半金属強磁性体層(高偏極スピン注入
層)からTMR素子側に電流を流し、高スピン偏極した
電子をTMR素子に流し込むことによって、TMR比の
定義中の強磁性自由層のスピン偏極率P1を増大させ、
磁気抵抗効果をエンハンスさせる。前記高偏極スピン注
入層には一つの電流の導入端子を備え、電流を流しTM
R素子に導入する。一方、TMR素子の磁気抵抗効果は
従来どおり強磁性自由層と強磁性固定層間の抵抗変化率
とする。このような構成を採用することにより、高偏極
スピン注入層の電気抵抗はTMR素子の電気抵抗に関与
せず、磁気ヘッド適用に関してノイズ原因となる高抵抗
化を回避することができる。
According to the present invention, a semi-metallic ferromagnetic layer is placed adjacent to a TMR element, and a current flows from the semi-metallic ferromagnetic layer (highly polarized spin injection layer) to the TMR element side, whereby electrons having a high spin polarization are formed. Into the TMR element to increase the spin polarization P 1 of the ferromagnetic free layer in the definition of the TMR ratio,
Enhances the magnetoresistance effect. The highly polarized spin injection layer is provided with one current introduction terminal,
Introduce to R element. On the other hand, the magnetoresistance effect of the TMR element is defined as the resistance change rate between the ferromagnetic free layer and the ferromagnetic fixed layer as in the related art. By adopting such a configuration, the electric resistance of the highly polarized spin injection layer does not contribute to the electric resistance of the TMR element, and it is possible to avoid the increase in the resistance that causes noise in application of the magnetic head.

【0008】すなわち、本発明による磁気抵抗効果ヘッ
ドは、磁気抵抗効果膜と前記磁気抵抗効果膜の膜厚方向
に電流を流すための電極を備えた磁気抵抗効果ヘッドに
おいて、磁気抵抗効果膜は強磁性自由層、絶縁障壁層、
強磁性固定層及び反強磁性層を含む強磁性トンネル型磁
気抵抗効果膜であり、高偏極スピン注入層が強磁性自由
層に隣接して設けられていることを特徴とする。
That is, a magnetoresistive head according to the present invention comprises a magnetoresistive film and electrodes for flowing a current in the thickness direction of the magnetoresistive film. Magnetic free layer, insulating barrier layer,
A ferromagnetic tunnel type magnetoresistive film including a ferromagnetic pinned layer and an antiferromagnetic layer, wherein a highly polarized spin injection layer is provided adjacent to the ferromagnetic free layer.

【0009】本発明による磁気抵抗効果ヘッドは、ま
た、磁気抵抗効果膜と前記磁気抵抗効果膜の膜厚方向に
電流を流すための電極を備えた磁気抵抗効果ヘッドにお
いて、磁気抵抗効果膜は強磁性自由層、絶縁障壁層、強
磁性固定層及び反強磁性層を含む強磁性トンネル型磁気
抵抗効果膜であり、高偏極スピン注入層が強磁性自由層
に絶縁層を介して隣接して設けられていることを特徴と
する。
A magnetoresistive head according to the present invention comprises a magnetoresistive film and an electrode for flowing a current in the thickness direction of the magnetoresistive film. A ferromagnetic tunneling magnetoresistive film including a magnetic free layer, an insulating barrier layer, a ferromagnetic pinned layer, and an antiferromagnetic layer, wherein a highly polarized spin injection layer is adjacent to the ferromagnetic free layer via an insulating layer. It is characterized by being provided.

【0010】本発明による磁気抵抗効果ヘッドは、ま
た、磁気抵抗効果膜と前記磁気抵抗効果膜の膜厚方向に
電流を流すための電極を備えた磁気抵抗効果ヘッドにお
いて、磁気抵抗効果膜は強磁性自由層、絶縁障壁層、強
磁性固定層及び反強磁性層を含む強磁性トンネル型磁気
抵抗効果膜であり、高偏極スピン注入層が強磁性自由層
に絶縁層及び非磁性中間層を介して隣接して設けられて
いることを特徴とする。絶縁層と非磁性中間層は、絶縁
層を高偏極スピン注入層側設けてもよいし、非磁性中間
層を高偏極スピン注入層側に設けてもよい。あるいは、
2層の非磁性中間層で絶縁層を挟むようにして絶縁層と
非磁性中間層を設けてもよい。
A magnetoresistive head according to the present invention comprises a magnetoresistive film and an electrode for flowing a current in the thickness direction of the magnetoresistive film. A ferromagnetic tunneling type magnetoresistive film including a magnetic free layer, an insulating barrier layer, a ferromagnetic pinned layer, and an antiferromagnetic layer. A highly polarized spin injection layer includes an insulating layer and a nonmagnetic intermediate layer as a ferromagnetic free layer. It is characterized in that it is provided adjacently with an interposition therebetween. Regarding the insulating layer and the non-magnetic intermediate layer, the insulating layer may be provided on the side of the highly polarized spin injection layer, or the non-magnetic intermediate layer may be provided on the side of the highly polarized spin injection layer. Or,
The insulating layer and the nonmagnetic intermediate layer may be provided so as to sandwich the insulating layer between two nonmagnetic intermediate layers.

【0011】高偏極スピン注入層は配向制御膜上に形成
するのが好ましい。ここで、高偏極スピン注入層はF
e,CoあるいはMnを含む酸化物あるいは化合物とす
ることができる。絶縁層はAl,Mg,Ti,Ta,H
f,Nb,Mo,Cr,GaあるいはAsの少なくとも
一つを含む酸化物あるいは化合物で構成することができ
る。また、配向制御膜はNi,Zr,Zn,Al,M
g,Ti,Ta,Hf,Nb,Mo,CrあるいはCo
の少なくとも一つを含む酸化物あるいは化合物とするこ
とができる。
The highly polarized spin injection layer is preferably formed on the orientation control film. Here, the highly polarized spin injection layer is F
An oxide or compound containing e, Co or Mn can be used. The insulating layer is made of Al, Mg, Ti, Ta, H
It can be composed of an oxide or a compound containing at least one of f, Nb, Mo, Cr, Ga and As. The orientation control film is made of Ni, Zr, Zn, Al, M
g, Ti, Ta, Hf, Nb, Mo, Cr or Co
Or an oxide containing at least one of the following.

【0012】本発明による磁気記録再生装置は、磁気記
録媒体と、磁気記録媒体を駆動する記録媒体駆動手段
と、記録部と再生部とを備える磁気ヘッドと、磁気ヘッ
ドを駆動する磁気ヘッド駆動手段とを含む磁気記録再生
装置において、磁気ヘッドの再生部として前述の磁気抵
抗効果ヘッドを用いたことを特徴とする。
A magnetic recording / reproducing apparatus according to the present invention comprises: a magnetic recording medium; a recording medium driving unit for driving the magnetic recording medium; a magnetic head including a recording unit and a reproducing unit; and a magnetic head driving unit for driving the magnetic head. In the magnetic recording / reproducing apparatus including the above, the above-described magnetoresistive head is used as a reproducing section of the magnetic head.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 [実施の形態1]図1は、本発明による強磁性トンネル
型磁気抵抗効果素子の第一の構成例を示す断面模式図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a schematic sectional view showing a first configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【0014】基体50上に高偏極スピン注入層11が形
成されており、それに隣接して強磁性トンネル型磁気抵
抗効果(TMR)素子1が配置されている。TMR素子
1は基体側から順に強磁性自由層12、絶縁障壁層1
3、強磁性固定層14、反強磁性層15を積層してな
り、強磁性自由層12と強磁性固定層14の面内磁化は
外部磁界が印加されていない状態で相互に約90°傾い
た方向に向けられている。外部磁界(H)により強磁性
自由層12の磁化は自由に回転し、その回転角に応じて
膜面垂直方向の電気抵抗が変化し磁気抵抗効果が発生す
る。TMR素子1の端部には、強磁性自由層12と強磁
性固定層14の間の電気的なリークを阻止するために層
間絶縁層25が形成されている。
A highly polarized spin injection layer 11 is formed on a substrate 50, and a ferromagnetic tunnel type magnetoresistive (TMR) element 1 is arranged adjacent to the spin injection layer. The TMR element 1 has a ferromagnetic free layer 12, an insulating barrier layer 1
3. The ferromagnetic fixed layer 14 and the antiferromagnetic layer 15 are laminated, and the in-plane magnetizations of the ferromagnetic free layer 12 and the ferromagnetic fixed layer 14 are tilted by about 90 ° with each other in a state where no external magnetic field is applied. Is oriented in the right direction. The magnetization of the ferromagnetic free layer 12 is freely rotated by the external magnetic field (H), and the electrical resistance in the direction perpendicular to the film surface changes according to the rotation angle, thereby generating a magnetoresistance effect. At the end of the TMR element 1, an interlayer insulating layer 25 is formed to prevent electrical leakage between the ferromagnetic free layer 12 and the ferromagnetic fixed layer 14.

【0015】電極21は反強磁性層15上、電極22は
強磁性自由層12上、電極24は高偏極スピン注入層1
1上にそれぞれ配置され、電極21、22間に電流を流
し、その間の抵抗変化率をTMR素子1の出力とする。
また、それとは別に電極24から電極21に電流を流す
ことで、高偏極スピン注入層11からその高スピン偏極
した伝導電子がTMR素子1へ流れ込む。
The electrode 21 is on the antiferromagnetic layer 15, the electrode 22 is on the ferromagnetic free layer 12, and the electrode 24 is on the highly polarized spin injection layer 1.
The current is applied between the electrodes 21 and 22 and the rate of change in resistance between the electrodes 21 and 22 is used as the output of the TMR element 1.
Separately, by passing a current from the electrode 24 to the electrode 21, the highly spin-polarized conduction electrons flow from the highly polarized spin injection layer 11 into the TMR element 1.

【0016】次に、上記磁気抵抗効果センサーの作製方
法と各種材料について説明する。Si基体50上に、高
偏極スピン注入層11であるFe34を50nmの厚さ
にrfスパッタリングにより形成し、所定の形状にパタ
ーニングする。次に、フォトレジストを塗布し、フォト
リソグラフィーを用いて規定の形状にリフトオフパター
ンを形成した後、強磁性自由層12であるCoFeを5
nm、絶縁障壁層13を形成するためのAlを1nm形
成する。この金属Alを10Torrの酸素雰囲気中で
20分間自然酸化させた。その後、強磁性固定層14の
CoFeを2nm、反強磁性層15のIrMnを8n
m、保護膜23であるTaを5nmの厚さにrfスパッ
タリングにより順次積層し、リフトオフする。その後、
フォトリソグラフィー、イオンミリングを用いて強磁性
自由層12まで接合部のパターニングを行う。作製した
接合部の面積は5×5(μm2)である。次に、層間絶
縁層25であるSiO2を15nm形成し、レジストを
リフトオフする。その後、電極22、24であるAuを
フォトリソグラフィーとイオンミリングにより配置する
ためのフォトレジストパターンを形成後、電極Auを5
nm厚にrfスパッタリングにより形成し、電極21を
所定の形状に、電極22は強磁性自由層12上に電極2
4は高偏極スピン注入層11上に配置するように加工し
て、磁気抵抗効果センサーを作製する。
Next, a method of manufacturing the above-described magnetoresistive effect sensor and various materials will be described. On the Si substrate 50, Fe 3 O 4 as the highly polarized spin injection layer 11 is formed to a thickness of 50 nm by rf sputtering and patterned into a predetermined shape. Next, a photoresist is applied, and a lift-off pattern is formed in a prescribed shape using photolithography.
1 nm of Al for forming the insulating barrier layer 13 is formed. This metal Al was naturally oxidized in an oxygen atmosphere of 10 Torr for 20 minutes. Thereafter, CoFe of the ferromagnetic fixed layer 14 was 2 nm, and IrMn of the antiferromagnetic layer 15 was 8 n.
m, Ta, which is the protective film 23, is sequentially laminated to a thickness of 5 nm by rf sputtering, and lift-off is performed. afterwards,
The junction is patterned up to the ferromagnetic free layer 12 using photolithography and ion milling. The area of the fabricated joint is 5 × 5 (μm 2 ). Next, 15 nm of SiO 2 as the interlayer insulating layer 25 is formed, and the resist is lifted off. Then, after forming a photoresist pattern for disposing Au as the electrodes 22 and 24 by photolithography and ion milling, the electrode Au is
The electrode 21 is formed in a predetermined shape by rf sputtering, and the electrode 22 is formed on the ferromagnetic free layer 12 by the rf sputtering.
4 is processed so as to be disposed on the highly polarized spin injection layer 11 to produce a magnetoresistive sensor.

【0017】ここで、上記高偏極スピン注入層を備えた
TMR素子において得られた結果を述べる。上記TMR
素子1に流す電流、つまり電極22から電極21の間に
流す電流をITMR(A)、高偏極スピン注入層11から
TMR素子1に流す電流、つまり電極24から電極21
に流す電流をIinj(A)とすると、ITMR/Iinj=1
のときTMR素子1の抵抗変化率を測定したところ、室
温において最大55%のTMR比が観測された。
Here, the results obtained in the TMR element having the above-mentioned highly polarized spin injection layer will be described. The above TMR
The current flowing through the element 1, that is, the current flowing between the electrode 22 and the electrode 21 is I TMR (A), and the current flowing from the highly polarized spin injection layer 11 to the TMR element 1, that is, the electrode 24 through the electrode 21
Let I inj (A) be the current flowing through I TMR / I inj = 1
When the resistance change rate of the TMR element 1 was measured at this time, a maximum TMR ratio of 55% was observed at room temperature.

【0018】強磁性トンネル型磁気抵抗効果のMR比
は、強磁性自由層12のスピン偏極率(P1)、強磁性
固定層14のスピン偏極率(P2)を用いて次の〔数
1〕で与えられる。
The MR ratio of the ferromagnetic tunnel magnetoresistive effect, spin polarization of the ferromagnetic free layer 12 (P 1), the following using the spin polarization of the ferromagnetic pinned layer 14 (P 2) [ Equation 1].

【0019】[0019]

【数1】 (Equation 1)

【0020】強磁性自由層12及び強磁性固定層にCo
Feを用いたときCoFeのスピン偏極率はP1=P2
0.34であるから、TMR比は26%である。つま
り、高偏極スピン注入層11が無い場合のTMR比は2
6%である。よって、本実施の形態のように、高偏極ス
ピン注入層11からTMR素子1に高スピン偏極電子を
注入することにより、TMR比を2倍以上増大させるこ
とができる。
Co is used as the ferromagnetic free layer 12 and the ferromagnetic pinned layer.
When Fe is used, the spin polarization of CoFe is P 1 = P 2 =
Since it is 0.34, the TMR ratio is 26%. That is, the TMR ratio without the highly polarized spin injection layer 11 is 2
6%. Therefore, by injecting highly spin-polarized electrons from the highly polarized spin injection layer 11 into the TMR element 1 as in the present embodiment, the TMR ratio can be increased by a factor of two or more.

【0021】本実施の形態ではTMR素子1の強磁性自
由層12及び強磁性固定層14にCoFeを用いたが、
NiFeあるいはCoFeとNiFeの多層膜(CoF
e/NiFe)あるいはCoFe/Ru/CoFeを用
いてもよい。また、本実施の形態では絶縁障壁層13に
Alの自然酸化膜を用いたが、Alの酸化方法はプラズ
マ強制酸化あるいはAl23の直接堆積でも構わない。
また、絶縁障壁層13の材料はMgO,SrTiO3
HfO2,TaO,NbO,MoOであってもよい。
In this embodiment, CoFe is used for the ferromagnetic free layer 12 and the ferromagnetic fixed layer 14 of the TMR element 1.
NiFe or a multilayer film of CoFe and NiFe (CoF
e / NiFe) or CoFe / Ru / CoFe may be used. In the present embodiment, a natural oxide film of Al is used for the insulating barrier layer 13, but the method of oxidizing Al may be plasma forced oxidation or direct deposition of Al 2 O 3 .
The material of the insulating barrier layer 13 is MgO, SrTiO 3 ,
HfO 2 , TaO, NbO, MoO may be used.

【0022】さらに、上記高偏極スピン注入層として、
Sr2FeMoO7,La0.7Sr0.3MnO3,MnS
b,CrO2を用いてほぼ同様の結果が得られ、それぞ
れの材料を用いたときのTMR比は53%,51%,4
5%,55%であった。
Further, as the highly polarized spin injection layer,
Sr 2 FeMoO 7 , La 0.7 Sr 0.3 MnO 3 , MnS
Almost the same results were obtained using b and CrO 2, and the TMR ratio when using each material was 53%, 51%, 4%.
5% and 55%.

【0023】[実施の形態2]図2は、本発明による強
磁性トンネル型磁気抵抗効果素子の第2の構成例を示す
断面模式図である。図2に示す構成は、図1の構成にお
いて高偏極スピン注入層11と強磁性自由層12の間に
絶縁層111を備えたものに相当する。
[Embodiment 2] FIG. 2 is a schematic sectional view showing a second example of the structure of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 2 corresponds to the configuration shown in FIG. 1 in which an insulating layer 111 is provided between the highly polarized spin injection layer 11 and the ferromagnetic free layer 12.

【0024】絶縁層111にはMgOを用い、その膜厚
は2nmとした。素子作製工程は実施の形態1と同様で
あり、電極の配置及び抵抗変化率の測定方法も実施の形
態1と同様である。
The insulating layer 111 is made of MgO and has a thickness of 2 nm. The element manufacturing process is the same as in Embodiment 1, and the arrangement of the electrodes and the method of measuring the rate of change in resistance are also the same as in Embodiment 1.

【0025】高偏極スピン注入層11からTMR素子1
への高スピン偏極電子の注入は、絶縁層111の障壁エ
ネルギーを超えてトンネル伝導による。前記手段により
フェルミエネルギー近傍の電子のみTMR素子側へ流れ
込み、つまりは注入されるスピンの向きの選択できる。
その結果、TMRに寄与しない電子の数を減らすことが
でき、TMRの効率を上げることができる。注入される
スピンの向きは、強磁性層12のCoFeの多数スピン
と同方向の上向きスピンである。このことにより、上向
きの状態をもつ電子の数が増大し、TMRに寄与する電
子のスピン偏極率が増大する。
From the highly polarized spin injection layer 11 to the TMR element 1
The high spin-polarized electrons are injected into the insulating layer 111 by tunnel conduction exceeding the barrier energy of the insulating layer 111. By the above means, only electrons near the Fermi energy flow into the TMR element side, that is, the direction of the injected spin can be selected.
As a result, the number of electrons that do not contribute to TMR can be reduced, and the efficiency of TMR can be increased. The direction of the injected spin is an upward spin in the same direction as the majority spin of CoFe in the ferromagnetic layer 12. As a result, the number of electrons having an upward state increases, and the spin polarization of electrons contributing to TMR increases.

【0026】図14は、本実施の形態の素子において、
電極22から電極21に流す電流をITMR、電極24か
ら電極21に流す電流をIinjとし、その比Iinj/I
TMRに対してTMR比をプロットした図である。本実施
の形態において得られたTMR比は60%(Iinj/I
TMR=1)であり、実施の形態1に比べ増大した。
FIG. 14 shows a device according to this embodiment.
The current flowing from the electrode 22 to the electrode 21 is I TMR , the current flowing from the electrode 24 to the electrode 21 is I inj , and the ratio I inj / I
It is a plot of TMR ratio to TMR. The TMR ratio obtained in the present embodiment is 60% (I inj / I
TMR = 1), which is larger than in the first embodiment.

【0027】[実施の形態3]図3は、本発明による強
磁性トンネル型磁気抵抗効果素子の第3の構成例を示す
断面模式図である。図3に示した構成は、図2の構成に
おいて絶縁層111と強磁性自由層12の間に非磁性中
間層112を備えたものに相当する。
[Embodiment 3] FIG. 3 is a schematic sectional view showing a third configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 3 corresponds to the configuration shown in FIG. 2 in which a nonmagnetic intermediate layer 112 is provided between the insulating layer 111 and the ferromagnetic free layer 12.

【0028】非磁性中間層112にはCuを用い、その
膜厚は2nmとした。非磁性中間層112は電子のスピ
ン拡散長を有効に拡張でき、高偏極スピン電子の散乱を
抑える機能をもつと同時に絶縁層111からTMR素子
1への酸素の拡散を防ぎ高偏極スピン注入効果の低減を
抑制することができ、TMR比を増大させることができ
る。
The non-magnetic intermediate layer 112 was made of Cu and had a thickness of 2 nm. The nonmagnetic intermediate layer 112 can effectively extend the electron spin diffusion length, and has a function of suppressing scattering of highly polarized spin electrons, and at the same time, prevents diffusion of oxygen from the insulating layer 111 to the TMR element 1 and highly polarized spin injection. Reduction of the effect can be suppressed, and the TMR ratio can be increased.

【0029】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は52%であった。同様の効果は、非磁性中間層11
2としてCuの代わりに伝導率の高いAu,Pd,A
g,Alを用いた場合においても観測された。
The device fabrication process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the rate of change in resistance are also the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was 52%. A similar effect can be obtained with the nonmagnetic intermediate layer 11.
Au, Pd, A with high conductivity instead of Cu
g and Al were also observed.

【0030】[実施の形態4]図4は、本発明による強
磁性トンネル型磁気抵抗効果素子の第4の構成例を示す
断面模式図である。図4に示した構成は、図2の構成に
おいて絶縁層111と高偏極スピン注入層11の間に非
磁性中間層112を備えたものに相当する。
[Fourth Embodiment] FIG. 4 is a schematic sectional view showing a fourth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 4 corresponds to the configuration shown in FIG. 2 in which a non-magnetic intermediate layer 112 is provided between the insulating layer 111 and the highly polarized spin injection layer 11.

【0031】非磁性中間層112にはCuを用い、その
膜厚は2nmとした。非磁性中間層112は電子のスピ
ン拡散長を有効に拡張でき、高偏極スピン電子の散乱を
抑える機能をもつと同時に絶縁層111から高偏極スピ
ン注入層11への酸素の拡散を防ぎ高偏極スピン注入効
果の低減を抑制することができ、TMR比を増大させる
ことができる。
The non-magnetic intermediate layer 112 was made of Cu and had a thickness of 2 nm. The nonmagnetic intermediate layer 112 can effectively extend the spin diffusion length of electrons, and has a function of suppressing the scattering of highly polarized spin electrons, and at the same time, prevents diffusion of oxygen from the insulating layer 111 to the highly polarized spin injection layer 11 to prevent the diffusion. It is possible to suppress the reduction of the polarized spin injection effect and increase the TMR ratio.

【0032】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は50%であった。同様の効果は、非磁性中間層11
2としてCuの代わりに伝導率の高いAu,Pd,A
g,Alを用いた場合においても観測された。
The device manufacturing process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the rate of change in resistance are also the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was 50%. A similar effect can be obtained with the nonmagnetic intermediate layer 11.
Au, Pd, A with high conductivity instead of Cu
g and Al were also observed.

【0033】[実施の形態5]図5は、本発明による強
磁性トンネル型磁気抵抗効果素子の第5の構成例を示す
断面模式図である。図5に示した構成は、図2の構成に
おいて強磁性自由層12と絶縁層111の間に非磁性中
間層112を、さらに絶縁層111と高偏極スピン注入
層11の間に非磁性中間層114を備えたものに相当す
る。
[Fifth Embodiment] FIG. 5 is a schematic sectional view showing a fifth configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 5 is different from the configuration shown in FIG. 2 in that a nonmagnetic intermediate layer 112 is provided between the ferromagnetic free layer 12 and the insulating layer 111 and a nonmagnetic intermediate layer 112 is provided between the insulating layer 111 and the highly polarized spin injection layer 11. It corresponds to the one provided with the layer 114.

【0034】非磁性中間層112にはCuを用い、その
膜厚は2nmとした。非磁性中間層112は電子のスピ
ン拡散長を有効に拡張でき、高偏極スピン電子の散乱を
抑える機能をもつと同時に絶縁層111からTMR素子
1と高偏極スピン注入層11への酸素の拡散を防ぎ高偏
極スピン注入効果の低減を抑制することができ、TMR
比を増大させることができる。
The nonmagnetic intermediate layer 112 was made of Cu and had a thickness of 2 nm. The non-magnetic intermediate layer 112 can effectively extend the electron spin diffusion length and suppress the scattering of highly polarized spin electrons, and at the same time, transfer oxygen from the insulating layer 111 to the TMR element 1 and the highly polarized spin injection layer 11. Diffusion can be prevented and the reduction of the highly polarized spin injection effect can be suppressed.
The ratio can be increased.

【0035】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は同様51%であった。同様の効果は、非磁性中間層
112としてCuの代わりに伝導率の高いAu,Pd,
Ag,Alにおいても観測された。
The device manufacturing process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the resistance change rate are the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was also 51%. A similar effect is obtained by using Au, Pd, or the like having high conductivity instead of Cu as the nonmagnetic intermediate layer 112.
Ag and Al were also observed.

【0036】[実施の形態6]図6は、本発明による強
磁性トンネル型磁気抵抗効果素子の第6の構成例を示す
断面模式図である。図6に示した構成は、図1の構成に
おいて基体50と高偏極スピン注入層の間に配向制御膜
20を備えたものに相当する。
[Embodiment 6] FIG. 6 is a schematic sectional view showing a sixth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 6 corresponds to the configuration shown in FIG. 1 in which the orientation control film 20 is provided between the base 50 and the highly polarized spin injection layer.

【0037】配向制御膜20には、NiOを用いてその
膜厚は50nmとした。配向制御膜20は、高偏極スピ
ン注入層11の膜を配向させることによって磁気的な異
方性をもたせ磁区制御させ、磁気特性を向上させる。ま
た、高偏極スピン注入層11のある特定のフェルミ面を
強磁性層12との界面に出すことにより、上向きスピン
の数の多い高偏極した電子がTMR素子側に流れるよう
にすることができる。
The orientation control film 20 was made of NiO and had a thickness of 50 nm. The orientation control film 20 imparts magnetic anisotropy by controlling the orientation of the film of the highly polarized spin injection layer 11 to control magnetic domains, thereby improving magnetic properties. Also, by setting a specific Fermi surface of the highly polarized spin injection layer 11 at the interface with the ferromagnetic layer 12, highly polarized electrons having a large number of upward spins can flow toward the TMR element. it can.

【0038】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は62%であった。
The element manufacturing process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the resistance change rate are the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was 62%.

【0039】[実施の形態7]図7は、本発明による強
磁性トンネル型磁気抵抗効果素子の第7の構成例を示す
断面模式図である。図7に示した構成は、図2の構成に
おいて基体50と高偏極スピン注入層の間に配向制御膜
20を備えたものに相当する。
[Embodiment 7] FIG. 7 is a schematic sectional view showing a seventh configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 7 corresponds to the configuration shown in FIG. 2 in which the orientation control film 20 is provided between the base 50 and the highly polarized spin injection layer.

【0040】配向制御膜20には、NiOを用いてその
膜厚は50nmとした。配向制御膜20は、高偏極スピ
ン注入層11の膜を配向させることによって磁気的な異
方性をもたせ磁区制御させ、磁気特性を向上させる。ま
た、高偏極スピン注入層11のある特定のフェルミ面を
強磁性層12との界面に出すことにより、上向きスピン
の数の多い高偏極した電子がTMR素子側に流れるよう
にすることができる。
The orientation control film 20 was made of NiO and had a thickness of 50 nm. The orientation control film 20 imparts magnetic anisotropy by controlling the orientation of the film of the highly polarized spin injection layer 11 to control magnetic domains, thereby improving magnetic properties. Also, by setting a specific Fermi surface of the highly polarized spin injection layer 11 at the interface with the ferromagnetic layer 12, highly polarized electrons having a large number of upward spins can flow toward the TMR element. it can.

【0041】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。図15は、本実施の形態の素子におい
て、電極22から電極21に流す電流をITMR、電極2
4から電極21に流す電流をIinjとし、その比Iinj
TMRに対してTMR比をプロットした図である。本実
施の形態において得られたTMR比は65%(Iinj
TMR=1)であり、実施の形態1に比べ増大した。
The device fabrication process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the resistance change rate are the same as in the first embodiment. FIG. 15 shows that the current flowing from the electrode 22 to the electrode 21 is I TMR ,
The current flowing from 4 to the electrode 21 is defined as I inj , and the ratio I inj /
It is the figure which plotted the TMR ratio with respect to I TMR . The TMR ratio obtained in the present embodiment is 65% (I inj /
I TMR = 1), which is larger than in the first embodiment.

【0042】[実施の形態8]図8は、本発明による強
磁性トンネル型磁気抵抗効果素子の第8の構成例を示す
断面模式図である。図8に示した構成は、図3の構成に
おいて基体50と高偏極スピン注入層の間に配向制御膜
20を備えたものに相当する。
[Eighth Embodiment] FIG. 8 is a schematic sectional view showing an eighth configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 8 corresponds to the configuration shown in FIG. 3 in which the orientation control film 20 is provided between the base 50 and the highly polarized spin injection layer.

【0043】配向制御膜20には、NiOを用いてその
膜厚は50nmとした。配向制御膜20は、高偏極スピ
ン注入層11の膜を配向させることによって磁気的な異
方性をもたせ磁区制御させ、磁気特性を向上させる。ま
た、高偏極スピン注入層11のある特定のフェルミ面を
強磁性層12との界面に出すことにより、上向きスピン
の数の多い高偏極した電子がTMR素子側に流れるよう
にすることができる。
The orientation control film 20 was made of NiO and had a thickness of 50 nm. The orientation control film 20 imparts magnetic anisotropy by controlling the orientation of the film of the highly polarized spin injection layer 11 to control magnetic domains, thereby improving magnetic properties. Also, by setting a specific Fermi surface of the highly polarized spin injection layer 11 at the interface with the ferromagnetic layer 12, highly polarized electrons having a large number of upward spins can flow toward the TMR element. it can.

【0044】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は55%であった。
The element manufacturing process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the resistance change rate are the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was 55%.

【0045】[実施の形態9]図9は、本発明による強
磁性トンネル型磁気抵抗効果素子の第9の構成例を示す
断面模式図である。図9に示した構成は、図4の構成に
おいて基体50と高偏極スピン注入層11の間に配向制
御膜20を備えたものに相当する。
[Ninth Embodiment] FIG. 9 is a schematic sectional view showing a ninth configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG. 9 corresponds to the configuration shown in FIG. 4 in which the orientation control film 20 is provided between the base 50 and the highly polarized spin injection layer 11.

【0046】配向制御膜20には、NiOを用いてその
膜厚は50nmとした。配向制御膜20は、高偏極スピ
ン注入層11の膜を配向させることによって磁気的な異
方性をもたせ磁区制御させ、磁気特性を向上させる。ま
た、高偏極スピン注入層11のある特定のフェルミ面を
強磁性層12との界面に出すことにより、上向きスピン
の数の多い高偏極した電子がTMR素子側に流れるよう
にすることができる。
The orientation control film 20 was made of NiO and had a thickness of 50 nm. The orientation control film 20 imparts magnetic anisotropy by controlling the orientation of the film of the highly polarized spin injection layer 11 to control magnetic domains, thereby improving magnetic properties. Also, by setting a specific Fermi surface of the highly polarized spin injection layer 11 at the interface with the ferromagnetic layer 12, highly polarized electrons having a large number of upward spins can flow toward the TMR element. it can.

【0047】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は56%であった。
The element manufacturing process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the resistance change rate are the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was 56%.

【0048】[実施の形態10]図10は、本発明によ
る強磁性トンネル型磁気抵抗効果素子の第10の構成例
を示す断面模式図である。図10に示した構成は、図5
の構成において基体50と高偏極スピン注入層の間に配
向制御膜20を備えたものに相当する。
[Embodiment 10] FIG. 10 is a schematic sectional view showing a tenth configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention. The configuration shown in FIG.
Corresponds to the configuration in which the orientation control film 20 is provided between the base 50 and the highly polarized spin injection layer.

【0049】配向制御膜20には、NiOを用いてその
膜厚は50nmとした。配向制御膜20は、高偏極スピ
ン注入層11の膜を配向させることによって磁気的な異
方性をもたせ磁区制御させ、磁気特性を向上させる。ま
た、高偏極スピン注入層11のある特定のフェルミ面を
強磁性層12との界面に出すことにより、上向きスピン
の数の多い高偏極した電子がTMR素子側に流れるよう
にすることができる。
The orientation control film 20 was made of NiO and had a thickness of 50 nm. The orientation control film 20 imparts magnetic anisotropy by controlling the orientation of the film of the highly polarized spin injection layer 11 to control magnetic domains, thereby improving magnetic properties. Also, by setting a specific Fermi surface of the highly polarized spin injection layer 11 at the interface with the ferromagnetic layer 12, highly polarized electrons having a large number of upward spins can flow toward the TMR element. it can.

【0050】素子作製工程は実施の形態1と同様であ
り、電極の配置及び抵抗変化率の測定方法も実施の形態
1と同様である。本実施の形態において得られたTMR
比は55%であった。
The device fabrication process is the same as in the first embodiment, and the arrangement of the electrodes and the method of measuring the rate of change in resistance are also the same as in the first embodiment. TMR obtained in the present embodiment
The ratio was 55%.

【0051】[実施の形態11]図11は、本発明の高
偏極スピン注入TMR素子を備える磁気センサーを搭載
した磁気ヘッドの概念図である。基体50上に高偏極ス
ピン注入TMR素子10、電極(Au)40、下部シー
ルド(NiFe)35を100nm、上部シールド兼下
部コア(NiFe)36を1μm、コイル42、上部コ
ア(CoNiFe)83を形成してなり、対向面63を
形成してなる。
[Embodiment 11] FIG. 11 is a conceptual diagram of a magnetic head equipped with a magnetic sensor having a highly polarized spin injection TMR element of the present invention. A highly polarized spin injection TMR element 10, an electrode (Au) 40, a lower shield (NiFe) 35 of 100 nm, an upper shield / lower core (NiFe) 36 of 1 μm, a coil 42, and an upper core (CoNiFe) 83 are formed on a substrate 50. And the opposing surface 63 is formed.

【0052】図12は、本発明の磁気ヘッドを用いた磁
気記録再生装置の、磁気ヘッドと磁気記録媒体の近傍の
概念図である。ヘッドスライダー90を兼ねる基体50
上に高偏極スピン注入TMR素子10、電極40を形成
し、これらからなる磁気ヘッドを磁気記録媒体91の記
録トラック44上に位置決めして再生を行う。ヘッドス
ライダー90は記録媒体91上を、対向面63を対向し
て0.1μm以下の高さに浮上、もしくは接触して相対
運動する。この機構により、磁気抵抗効果積層膜10は
記録媒体91に記録された磁気的信号を、記録媒体91
の漏れ磁界64から読み取ることができる。
FIG. 12 is a conceptual diagram of the vicinity of a magnetic head and a magnetic recording medium in a magnetic recording and reproducing apparatus using the magnetic head of the present invention. Base 50 also serving as head slider 90
A highly polarized spin injection TMR element 10 and an electrode 40 are formed thereon, and a magnetic head composed of these elements is positioned on a recording track 44 of a magnetic recording medium 91 to perform reproduction. The head slider 90 floats on the recording medium 91 to a height of 0.1 μm or less, facing the opposing surface 63, or makes a relative movement by contacting. With this mechanism, the magnetoresistive effect laminated film 10 transfers the magnetic signal recorded on the recording medium 91 to the recording medium 91.
Can be read from the leakage magnetic field 64.

【0053】図13は、本発明による磁気記録再生装置
の構成例を示す概略図である。磁気的に情報を記録する
記録媒体91をスピンドルモーター93にて回転させ、
アクチュエーター92によってヘッドスライダー90を
記録媒体91のトラック上に誘導する。即ち、磁気ディ
スク装置においてはヘッドスライダー90上に形成した
再生ヘッド、及び記録ヘッドがこの機構によって記録媒
体91上の所定の記録位置に近接して相対運動し、信号
を順次書き込み、及び読み取るのである。
FIG. 13 is a schematic diagram showing a configuration example of a magnetic recording / reproducing apparatus according to the present invention. A recording medium 91 for magnetically recording information is rotated by a spindle motor 93,
The head slider 90 is guided on the track of the recording medium 91 by the actuator 92. That is, in the magnetic disk device, the reproducing head and the recording head formed on the head slider 90 relatively move close to a predetermined recording position on the recording medium 91 by this mechanism, and write and read signals sequentially. .

【0054】アクチュエーター92はロータリーアクチ
ュエーターであるのがよい。記録信号は信号処理系94
を通じて記録ヘッドにて媒体上に記録し、再生ヘッドの
出力を信号処理系94を経て信号を得る。さらに再生ヘ
ッドを所望の記録トラック上へ移動せしめるに際して、
本再生ヘッドからの高感度な出力を用いてトラック上の
位置を検出し、アクチュエーターを制御して、ヘッドス
ライダーの位置決めを行うことができる。
The actuator 92 is preferably a rotary actuator. The recording signal is sent to the signal processing system 94.
The recording is performed on a medium by a recording head, and a signal is obtained from the output of the reproducing head via a signal processing system 94. Further, when moving the reproducing head to a desired recording track,
The position on the track is detected by using the high-sensitivity output from the reproducing head, and the actuator can be controlled to position the head slider.

【0055】本図ではヘッドスライダー90、記録媒体
91を各1個示したが、これらは複数であっても構わな
い。また、記録媒体91は両面に記録媒体を有して情報
を記録してもよい。情報の記録がディスク画面の場合ヘ
ッドスライダー90はディスクの両面に配置する。
In this figure, one head slider 90 and one recording medium 91 are shown, but a plurality of them may be used. The recording medium 91 may have a recording medium on both sides to record information. When information is recorded on a disc screen, head sliders 90 are arranged on both sides of the disc.

【0056】上記高偏極スピン注入層を備えた強磁性ト
ンネル型磁気抵抗効果センサーを搭載した磁気記録再生
装置において従来構造のセンサーを搭載した磁気記録再
生装置に比べて、高密度に対応する良好な特性を示し
た。
The magnetic recording / reproducing apparatus equipped with the ferromagnetic tunnel type magnetoresistive sensor having the above-mentioned highly polarized spin injection layer has a higher density than the magnetic recording / reproducing apparatus equipped with the conventional sensor. Characteristics.

【0057】[0057]

【発明の効果】本発明によると、TMR素子に高偏極ス
ピン注入層を隣接させ、TMR素子に高スピン偏極電子
を注入することにより、従来構造のTMR素子より高出
力の得られる強磁性トンネル型磁気抵抗効果素子を提供
できる。ひいては、良好な再生出力と安定性を有する磁
気ヘッド及び高密度磁気記録再生装置を得ることができ
る。
According to the present invention, by providing a highly polarized spin injection layer adjacent to a TMR element and injecting highly spin-polarized electrons into the TMR element, a ferromagnetic material having a higher output than that of a conventional TMR element can be obtained. A tunnel type magnetoresistive element can be provided. As a result, it is possible to obtain a magnetic head and a high-density magnetic recording / reproducing apparatus having good reproduction output and stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による強磁性トンネル型磁気抵抗効果素
子の第1の構成例を示す断面模式図。
FIG. 1 is a schematic cross-sectional view showing a first configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図2】本発明による強磁性トンネル型磁気抵抗効果素
子の第2の構成例を示す断面模式図。
FIG. 2 is a schematic sectional view showing a second configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図3】本発明による強磁性トンネル型磁気抵抗効果素
子の第3の構成例を示す断面模式図。
FIG. 3 is a schematic sectional view showing a third configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図4】本発明による強磁性トンネル型磁気抵抗効果素
子の第4の構成例を示す断面模式図。
FIG. 4 is a schematic cross-sectional view showing a fourth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図5】本発明による強磁性トンネル型磁気抵抗効果素
子の第5の構成例を示す断面模式図。
FIG. 5 is a schematic sectional view showing a fifth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図6】本発明による強磁性トンネル型磁気抵抗効果素
子の第6の構成例を示す断面模式図。
FIG. 6 is a schematic sectional view showing a sixth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図7】本発明による強磁性トンネル型磁気抵抗効果素
子の第7の構成例を示す断面模式図。
FIG. 7 is a schematic sectional view showing a seventh configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図8】本発明による強磁性トンネル型磁気抵抗効果素
子の第8の構成例を示す断面模式図。
FIG. 8 is a schematic sectional view showing an eighth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図9】本発明による強磁性トンネル型磁気抵抗効果素
子の第9の構成例を示す断面模式図。
FIG. 9 is a schematic sectional view showing a ninth configuration example of the ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図10】本発明による強磁性トンネル型磁気抵抗効果
素子の第10の構成例を示す断面模式図。
FIG. 10 is a schematic sectional view showing a tenth configuration example of a ferromagnetic tunnel type magnetoresistance effect element according to the present invention.

【図11】本発明の強磁性トンネル型磁気抵抗効果素子
を用いた記録再生ヘッドの一例を示す概念斜視図。
FIG. 11 is a conceptual perspective view showing an example of a recording / reproducing head using the ferromagnetic tunnel type magnetoresistance effect element of the present invention.

【図12】本発明の磁気ヘッドを用いた磁気記録再生装
置の、磁気ヘッドと磁気記録媒体の近傍の概念図。
FIG. 12 is a conceptual diagram showing the vicinity of a magnetic head and a magnetic recording medium in a magnetic recording / reproducing apparatus using the magnetic head of the present invention.

【図13】本発明による磁気記録再生装置の構成例を示
す図。
FIG. 13 is a diagram showing a configuration example of a magnetic recording / reproducing apparatus according to the present invention.

【図14】電流比Iinj/ITMRに対してTMR比をプロ
ットした図。
FIG. 14 is a diagram plotting the TMR ratio with respect to the current ratio I inj / I TMR.

【図15】電流比Iinj/ITMRに対してTMR比をプロ
ットした図。
FIG. 15 is a diagram plotting the TMR ratio with respect to the current ratio I inj / I TMR.

【符号の説明】[Explanation of symbols]

1…強磁性トンネル型磁気抵抗効果(TMR)素子、1
0…高偏極スピン注入TMR素子、11…高偏極スピン
注入層、12…強磁性自由層、13…絶縁障壁層、14
…強磁性固定層、15…反強磁性層、20…配向制御
膜、21…電極、22…電極、23…保護膜、24…電
極、25…層間絶縁層、50…基体、111…絶縁層、
112…非磁性中間層、114…非磁性中間層、35…
下部シールド、36…上部シールド兼下部コア、40…
電気端子、41…コイル、50…基体、63…対向面、
64…記録媒体からの漏れ磁界、83…上部コア、90
…スライダー、91…記録媒体、92…アクチュエータ
ー、93…スピンドルモーター、94…信号処理回路
1: Ferromagnetic tunneling magnetoresistance (TMR) element, 1
0: Highly polarized spin injection TMR element, 11: Highly polarized spin injection layer, 12: Ferromagnetic free layer, 13: Insulation barrier layer, 14
... ferromagnetic fixed layer, 15 ... antiferromagnetic layer, 20 ... orientation control film, 21 ... electrode, 22 ... electrode, 23 ... protective film, 24 ... electrode, 25 ... interlayer insulating layer, 50 ... base, 111 ... insulating layer ,
112 non-magnetic intermediate layer, 114 non-magnetic intermediate layer, 35
Lower shield, 36 ... Upper shield and lower core, 40 ...
Electrical terminals, 41: coil, 50: base, 63: facing surface,
64: leakage magnetic field from the recording medium, 83: upper core, 90
... Slider, 91 ... Recording medium, 92 ... Actuator, 93 ... Spindle motor, 94 ... Signal processing circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 添谷 進 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5D034 BA05 BA08 BA21 CA00  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Susumu Suedani 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5D034 BA05 BA08 BA21 CA00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果膜と前記磁気抵抗効果膜の
膜厚方向に電流を流すための電極を備えた磁気抵抗効果
ヘッドにおいて、 前記磁気抵抗効果膜は強磁性自由層、絶縁障壁層、強磁
性固定層及び反強磁性層を含む強磁性トンネル型磁気抵
抗効果膜であり、高偏極スピン注入層が前記強磁性自由
層に隣接して設けられていることを特徴とする磁気抵抗
効果ヘッド。
1. A magnetoresistive head comprising a magnetoresistive film and an electrode for flowing a current in a thickness direction of the magnetoresistive film, wherein the magnetoresistive film is a ferromagnetic free layer, an insulating barrier layer, A ferromagnetic tunnel type magnetoresistive film including a ferromagnetic fixed layer and an antiferromagnetic layer, wherein a highly polarized spin injection layer is provided adjacent to the ferromagnetic free layer. head.
【請求項2】 磁気抵抗効果膜と前記磁気抵抗効果膜の
膜厚方向に電流を流すための電極を備えた磁気抵抗効果
ヘッドにおいて、 前記磁気抵抗効果膜は強磁性自由層、絶縁障壁層、強磁
性固定層及び反強磁性層を含む強磁性トンネル型磁気抵
抗効果膜であり、高偏極スピン注入層が前記強磁性自由
層に絶縁層を介して隣接して設けられていることを特徴
とする磁気抵抗効果ヘッド。
2. A magnetoresistive head comprising a magnetoresistive film and an electrode for flowing a current in the thickness direction of the magnetoresistive film, wherein the magnetoresistive film is a ferromagnetic free layer, an insulating barrier layer, A ferromagnetic tunneling magnetoresistive film including a ferromagnetic fixed layer and an antiferromagnetic layer, wherein a highly polarized spin injection layer is provided adjacent to the ferromagnetic free layer via an insulating layer. Magnetoresistive effect head.
【請求項3】 磁気抵抗効果膜と前記磁気抵抗効果膜の
膜厚方向に電流を流すための電極を備えた磁気抵抗効果
ヘッドにおいて、 前記磁気抵抗効果膜は強磁性自由層、絶縁障壁層、強磁
性固定層及び反強磁性層を含む強磁性トンネル型磁気抵
抗効果膜であり、高偏極スピン注入層が前記強磁性自由
層に絶縁層及び非磁性中間層を介して隣接して設けられ
ていることを特徴とする磁気抵抗効果ヘッド。
3. A magnetoresistive head comprising a magnetoresistive film and an electrode for flowing a current in a thickness direction of the magnetoresistive film, wherein the magnetoresistive film is a ferromagnetic free layer, an insulating barrier layer, A ferromagnetic tunnel type magnetoresistive film including a ferromagnetic fixed layer and an antiferromagnetic layer, wherein a highly polarized spin injection layer is provided adjacent to the ferromagnetic free layer via an insulating layer and a nonmagnetic intermediate layer. A magnetoresistive head.
【請求項4】 請求項1,2又は3記載の磁気抵抗効果
ヘッドにおいて、前記高偏極スピン注入層は配向制御膜
上に形成されていることを特徴とする磁気抵抗効果ヘッ
ド。
4. The magnetoresistive head according to claim 1, wherein said highly polarized spin injection layer is formed on an orientation control film.
【請求項5】 磁気記録媒体と、前記磁気記録媒体を駆
動する記録媒体駆動手段と、記録部と再生部とを備える
磁気ヘッドと、前記磁気ヘッドを駆動する磁気ヘッド駆
動手段とを含む磁気記録再生装置において、 前記磁気ヘッドの再生部として請求項1〜4のいずれか
1項記載の磁気抵抗効果ヘッドを用いたことを特徴とす
る磁気記録再生装置。
5. A magnetic recording apparatus comprising: a magnetic recording medium; a recording medium driving unit for driving the magnetic recording medium; a magnetic head including a recording unit and a reproducing unit; and a magnetic head driving unit for driving the magnetic head. 5. A magnetic recording / reproducing apparatus, wherein the magneto-resistance effect head according to claim 1 is used as a reproducing section of the magnetic head.
JP2000008172A 2000-01-17 2000-01-17 Magnetoresistive head and magnetic recording / reproducing device Expired - Fee Related JP3420152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008172A JP3420152B2 (en) 2000-01-17 2000-01-17 Magnetoresistive head and magnetic recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008172A JP3420152B2 (en) 2000-01-17 2000-01-17 Magnetoresistive head and magnetic recording / reproducing device

Publications (2)

Publication Number Publication Date
JP2001202604A true JP2001202604A (en) 2001-07-27
JP3420152B2 JP3420152B2 (en) 2003-06-23

Family

ID=18536486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008172A Expired - Fee Related JP3420152B2 (en) 2000-01-17 2000-01-17 Magnetoresistive head and magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3420152B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261352A (en) * 2000-12-07 2002-09-13 Commiss Energ Atom Magnetic spin magnetization device and magnetization rotating device having storage function, and writing method using the device
US6781801B2 (en) * 2001-08-10 2004-08-24 Seagate Technology Llc Tunneling magnetoresistive sensor with spin polarized current injection
JP2005019561A (en) * 2003-06-24 2005-01-20 Japan Science & Technology Agency Spin injection device and magnetic device using the same
JP2005109200A (en) * 2003-09-30 2005-04-21 Fujitsu Ltd Magnetroresistive effect element, magnetic memory cell and magnetic random access memory device
JP2005116923A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Nonvolatile magnetic memory cell using spin torque and magnetic random access memory using same
US7016161B2 (en) 2002-03-25 2006-03-21 Hitachi Global Storage Technologies Japan, Ltd. Magnetic head, magnetic head gimbal assembly, magnetic recording and reproducing apparatus, and magnetic memory
JP2008047566A (en) * 2006-08-10 2008-02-28 Japan Science & Technology Agency Magnetoresistive effect element and non-volatile random access magnetic memory
TWI401680B (en) * 2006-12-12 2013-07-11 Sony Corp Storage element and memory

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261352A (en) * 2000-12-07 2002-09-13 Commiss Energ Atom Magnetic spin magnetization device and magnetization rotating device having storage function, and writing method using the device
JP4492780B2 (en) * 2000-12-07 2010-06-30 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Magnetic spin polarization and magnetization rotation device with memory function and writing method using the device
US6781801B2 (en) * 2001-08-10 2004-08-24 Seagate Technology Llc Tunneling magnetoresistive sensor with spin polarized current injection
US7378699B2 (en) 2002-03-25 2008-05-27 Hitachi Global Storage Technologies Japan, Ltd. Magnetic head having a magnetoresistive element and highly polarized spin injection layer
US7016161B2 (en) 2002-03-25 2006-03-21 Hitachi Global Storage Technologies Japan, Ltd. Magnetic head, magnetic head gimbal assembly, magnetic recording and reproducing apparatus, and magnetic memory
JP2005019561A (en) * 2003-06-24 2005-01-20 Japan Science & Technology Agency Spin injection device and magnetic device using the same
JP2005109200A (en) * 2003-09-30 2005-04-21 Fujitsu Ltd Magnetroresistive effect element, magnetic memory cell and magnetic random access memory device
JP2005116923A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Nonvolatile magnetic memory cell using spin torque and magnetic random access memory using same
JP2008047566A (en) * 2006-08-10 2008-02-28 Japan Science & Technology Agency Magnetoresistive effect element and non-volatile random access magnetic memory
TWI401680B (en) * 2006-12-12 2013-07-11 Sony Corp Storage element and memory
US9172029B2 (en) 2006-12-12 2015-10-27 Sony Corporation Storage element and memory
US9728715B2 (en) 2006-12-12 2017-08-08 Sony Corporation Storage element and memory
US10121963B2 (en) 2006-12-12 2018-11-06 Sony Corporation Storage element and memory
US10475989B2 (en) 2006-12-12 2019-11-12 Sony Corporation Storage element and memory
US10862024B2 (en) 2006-12-12 2020-12-08 Sony Corporation Storage element and memory
US11349067B2 (en) 2006-12-12 2022-05-31 Sony Corporation Storage element and memory

Also Published As

Publication number Publication date
JP3420152B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
US6710984B1 (en) Magnetoresistive effect device utilizing a magnetization-coupling layer which couples adjacent ferromagnetic layers perpendicularly
JP4487472B2 (en) Magnetoresistive element, magnetic head including the same, magnetic recording apparatus, and magnetic memory
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
JP3590006B2 (en) Magnetoresistive element, magnetic head, and magnetic reproducing device
JP4082274B2 (en) Magnetic sensor and magnetic head including the same
US8373948B2 (en) Tunnel magnetoresistance (TMR) structures with MGO barrier and methods of making same
US6804089B2 (en) Yoke-type magnetic head and magnetic recording/reproducing device
JPH11296823A (en) Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system
KR20000023047A (en) Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system
JP2003281705A (en) Magnetic head, magnetic head gimbal assembly, magnetic recording/reproducing device and magnetic memory
JP2004214234A (en) Magnetoresistance effect element, magnetoresistance effect-type head, and magnetic recording and reproducing device
JP2006073875A (en) Magnetoresistance effect element, magnetic head, magnetic recording/reproducing device, and magnetic memory
US20070048485A1 (en) Magnetoresistive effect element, magnetic head, magnetic storage device and magnetic memory device
US6934133B2 (en) Three terminal magnetic head having a magnetic semiconductor and a tunnel magnetoresistive film and magnetic recording apparatus including the head
JP3697369B2 (en) Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
JP3836294B2 (en) Magnetic head and magnetic recording / reproducing apparatus using the same
JP3817399B2 (en) Magnetoresistive sensor
JP2001308413A (en) Magneto-resistance effect thin film, magneto-resistance effect element and magneto-resistance effect type magnetic head
JP3420152B2 (en) Magnetoresistive head and magnetic recording / reproducing device
JP4469570B2 (en) Magnetoresistive element, magnetic head, and magnetic recording / reproducing apparatus
JP2008124288A (en) Magnetoresistive element, its manufacturing method, as well as thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device
US20080080097A1 (en) Magnetoresistive element, method of manufacturing the same, and magnetic storage unit
JP3137288B2 (en) Exchange coupling film, magnetoresistive element, magnetoresistive head, and method of manufacturing magnetoresistive element
JP2002092824A (en) Ferromagnetic tunnel type magneto-resistance effect head having small bias dependency of magnetic resistance ratio
JP3243092B2 (en) Thin film magnetic head

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees