JP2001201278A - Steam-heating equipment - Google Patents

Steam-heating equipment

Info

Publication number
JP2001201278A
JP2001201278A JP2000005458A JP2000005458A JP2001201278A JP 2001201278 A JP2001201278 A JP 2001201278A JP 2000005458 A JP2000005458 A JP 2000005458A JP 2000005458 A JP2000005458 A JP 2000005458A JP 2001201278 A JP2001201278 A JP 2001201278A
Authority
JP
Japan
Prior art keywords
steam
ejector
heating
valve
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000005458A
Other languages
Japanese (ja)
Inventor
Tadaaki Kumamoto
匡章 隈元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2000005458A priority Critical patent/JP2001201278A/en
Publication of JP2001201278A publication Critical patent/JP2001201278A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain steam-heating equipment which can heat an object to be heated with steam of about 100 deg.C in temperature with accurate temperature, without being affected adversely by the air. SOLUTION: The steam-heating equipment is constituted, in such a way that a steam supply pipe 35 for supplying steam is connected to the jacket section 4 of a reaction furnace 3. Then a condensate recovery device 1 is connected to the lower part of the jacket section 4. In addition, the high pressure- operated fluid introducing port 9 of the device 1 is branched, and an ejector 11 is connected to one branched port 19. Moreover, the suction chamber 14 of the ejector 11 is connected to the jacket section 4 via a pipeline 37 and a thermally operated valve 43. Whenever high-voltage steam is supplied to the ejector 11, a suction force is generated in the suction chamber 14 of the ejector 11, and the air in the jacket section 4 is sucked into the ejector 11 and is discharged to the outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱交換器内の被加熱
物を蒸気で加熱するものに関し、特にその加熱温度が1
00度C程度の比較的低温の場合に適した蒸気加熱装置
に関する。具体的には重合反応等に用いられる各種反応
釜や食品の蒸溜装置、濃縮装置、あるいは殺菌装置等の
蒸気加熱に用いるものである。これらの場合の被加熱物
は、少しの温度変化によって熱損傷や熱劣化を生じてし
まう場合が多く、加熱温度を精度良く維持する必要があ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for heating an object to be heated in a heat exchanger with steam.
The present invention relates to a steam heating apparatus suitable for a relatively low temperature of about 00 ° C. Specifically, it is used for steam heating of various reaction vessels used for a polymerization reaction or the like, a distilling apparatus, a concentrating apparatus, or a sterilizing apparatus for food. In these cases, the object to be heated often causes thermal damage or thermal degradation due to a slight change in temperature, and it is necessary to accurately maintain the heating temperature.

【0002】[0002]

【従来の技術】従来の蒸気加熱装置としては、例えば特
開平7−328423号公報に示すようなものが用いら
れていた。これは、蒸気供給管17をノズル18と接続
し、ノズル18の外周に形成した吸引室44に2つの通
路45,46を設けて、一方の通路45をジャケット部
16と接続すると共に、他方の通路46に弁手段47を
接続したものである。
2. Description of the Related Art As a conventional steam heating device, for example, a device as disclosed in Japanese Patent Application Laid-Open No. 7-328423 has been used. This is achieved by connecting the steam supply pipe 17 to the nozzle 18, providing two passages 45 and 46 in a suction chamber 44 formed on the outer periphery of the nozzle 18, connecting one passage 45 to the jacket 16, and connecting the other passage 45 to the jacket 16. The valve means 47 is connected to the passage 46.

【0003】弁手段47を開弁することにより、ジャケ
ット部16内の残留空気を吸引室44に吸引して、ジャ
ケット部16内を減圧状態とした後、弁手段47を閉弁
してジャケット部16内に低圧蒸気を供給して100度
C以下の低温蒸気で被加熱物を加熱することができるも
のである。
[0003] By opening the valve means 47, the residual air in the jacket portion 16 is sucked into the suction chamber 44, and the inside of the jacket portion 16 is depressurized. Then, the valve means 47 is closed to open the jacket portion. A low-pressure steam is supplied into the heater 16 so that the object to be heated can be heated with a low-temperature steam of 100 ° C. or less.

【0004】[0004]

【発明が解決しようとする課題】上記従来の蒸気加熱装
置では、加熱初期の段階で残留している空気を吸引排除
して蒸気加熱を行なうことはできるが、加熱操作中に徐
々に溜まる空気を排除することができずに、加熱温度を
精度良く維持することができない問題があった。加熱装
置を減圧状態とすることにより、装置の各接続部から大
気を吸引してしまい、加熱部内部に空気が溜まると共
に、供給される加熱用の蒸気に空気が混入している場合
もあり、加熱初期のみならず、加熱操作中でも加熱部に
空気が溜まってしまうのである。
In the above-described conventional steam heating apparatus, it is possible to perform steam heating by sucking out and removing air remaining in the initial stage of heating. However, air that gradually accumulates during the heating operation is removed. There was a problem that the heating temperature could not be accurately maintained because it could not be eliminated. By setting the heating device in a reduced pressure state, the atmosphere is sucked from each connection portion of the device, and air is accumulated inside the heating portion, and air may be mixed in the supplied heating steam, Air accumulates in the heating section not only at the beginning of heating but also during the heating operation.

【0005】従って本発明の課題は、加熱初期のみなら
ず、加熱操作中においても溜まった空気を排除すること
により、精度良く加熱温度を調節することのできる蒸気
加熱装置を得ることである。
Accordingly, an object of the present invention is to provide a steam heating apparatus capable of adjusting a heating temperature with high accuracy by removing accumulated air not only at the beginning of heating but also during a heating operation.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに講じた本発明の手段は、熱交換器に加熱部を形成し
て加熱用の蒸気供給管を接続すると共に、加熱によって
生じた復水を高圧操作流体による圧送により回収する復
水回収装置を接続したものにおいて、復水回収装置の高
圧操作流体導入口を分岐して、分岐した一方の導入口を
復水回収装置の内部と連通し、分岐した他方の導入口に
エゼクタを接続して、当該エゼクタの吸引室と熱交換器
の加熱部を弁手段を介して接続したものである。
In order to solve the above-mentioned problems, the present invention has been made to solve the above-mentioned problems by forming a heating section in a heat exchanger, connecting a steam supply pipe for heating, and generating the heating section. When a condensate recovery device that recovers condensate by pumping with high-pressure operation fluid is connected, the high-pressure operation fluid inlet of the condensate recovery device is branched, and one of the branched inlets is connected to the inside of the condensate recovery device. An ejector is connected to the other of the communicating and branched inlets, and a suction chamber of the ejector and a heating unit of the heat exchanger are connected via valve means.

【0007】[0007]

【発明の実施の形態】分岐した高圧操作流体導入口の一
方にエゼクタを接続して、エゼクタの吸引室と加熱部を
弁手段を介して接続したことにより、高圧操作流体導入
口の一方に高圧流体が供給されると、エゼクタの吸引室
で吸引力を生じて、加熱部に溜まっている空気を弁手段
を介して吸引して外部に排除することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An ejector is connected to one of the branched high-pressure operating fluid inlets, and a suction chamber of the ejector and a heating section are connected via a valve means. When the fluid is supplied, a suction force is generated in the suction chamber of the ejector, and the air stored in the heating unit can be suctioned through the valve means and discharged to the outside.

【0008】加熱初期でもまた加熱操作中でも、高圧操
作流体導入口の一方に高圧流体が供給される毎にエゼク
タで吸引力を生じて、加熱部に溜まっている空気を吸引
排除することができる。
[0008] Either during the initial stage of heating or during the heating operation, a suction force is generated by the ejector each time the high-pressure fluid is supplied to one of the high-pressure operation fluid inlets, and the air accumulated in the heating section can be removed by suction.

【0009】[0009]

【実施例】本実施例においては図1に示すように熱交換
器として反応釜3を用いた例を説明する。反応釜3の外
周に加熱部としてのジャケット部4を形成して蒸気供給
管35と接続する。蒸気供給管35は管路10を介して
復水回収装置1の高圧操作流体導入口9と接続する。高
圧操作流体導入口9の分岐口19に管路20を介してエ
ゼクタ11を配置して、エゼクタ11の吸引室14とジ
ャケット部4を管路37を介して接続する。
EXAMPLE In this example, an example in which a reactor 3 is used as a heat exchanger as shown in FIG. 1 will be described. A jacket section 4 as a heating section is formed on the outer periphery of the reaction vessel 3 and connected to a steam supply pipe 35. The steam supply pipe 35 is connected to the high-pressure operating fluid introduction port 9 of the condensate recovery device 1 via the pipe 10. The ejector 11 is disposed at a branch port 19 of the high-pressure operating fluid inlet 9 via a pipe 20, and the suction chamber 14 of the ejector 11 and the jacket section 4 are connected via a pipe 37.

【0010】蒸気供給管35には圧力調節弁38と開閉
弁39を取り付けてジャケット部4と接続する。圧力調
節弁38はジャケット部4へ供給する蒸気圧力即ち温度
が所定値となるように設定する。
A pressure control valve 38 and an on-off valve 39 are attached to the steam supply pipe 35 and connected to the jacket 4. The pressure control valve 38 is set so that the steam pressure, that is, the temperature supplied to the jacket portion 4 becomes a predetermined value.

【0011】ジャケット部4の下部と復水回収装置1の
復水流入口2とを管路40によりバルブ41と逆止弁5
を介して接続する。逆止弁5はジャケット部4から復水
回収装置1方向のみの流体の通過を許容するもので、逆
方向の流体の通過は許容しないものである。復水回収装
置1の復水還元口6にも逆止弁8を介して復水圧送管路
7を取り付ける。この逆止弁8は復水回収装置1から復
水圧送管路7側の外部方向へのみ流体を通過させるもの
である。
The lower part of the jacket part 4 and the condensate inlet 2 of the condensate recovery device 1 are connected by a pipe 40 to a valve 41 and a check valve 5.
Connect through. The check valve 5 permits the passage of the fluid only from the jacket portion 4 to the condensate recovery device 1 but does not permit the passage of the fluid in the reverse direction. A condensate feed line 7 is also attached to the condensate return port 6 of the condensate recovery device 1 via a check valve 8. The check valve 8 allows the fluid to pass only from the condensate recovery device 1 to the outside on the condensate pressure feed line 7 side.

【0012】エゼクタ11の吸引室14とジャケット部
4を、開閉弁42と温度応動弁43を介した管路37に
より連通する。本実施例においては、開閉弁42と温度
応動弁43とで弁手段を構成する。
The suction chamber 14 of the ejector 11 and the jacket section 4 are communicated by a pipe 37 via an on-off valve 42 and a temperature responsive valve 43. In this embodiment, valve means is constituted by the on-off valve 42 and the temperature responsive valve 43.

【0013】温度応動弁43は、本実施例においては自
力式の温度調整弁を用いた例を示し、ジャケット部4の
上方の空気が溜まり易い箇所に取り付けた感温筒44
を、温度応動弁43のアクチュエータ部45と、フレキ
シブルチューブ46を介して接続したものである。感温
筒44によりジャケット部4内部の温度低下が検知さ
れ、その温度低下が内部の感温流体の容積減少となりフ
レキシブルチューブ46内を伝達してアクチュエータ部
45に伝わり、温度応動弁43を開弁する。反対にジャ
ケット部4内の温度が上昇すると、感温筒44で検知し
て温度応動弁43を閉弁する。
In the present embodiment, the temperature responsive valve 43 is an example in which a self-operated temperature control valve is used, and a temperature-sensitive cylinder 44 attached to a location above the jacket portion 4 where air easily accumulates.
Are connected to an actuator section 45 of the temperature responsive valve 43 via a flexible tube 46. The temperature-sensitive cylinder 44 detects a temperature drop inside the jacket portion 4, and the temperature drop causes a volume decrease of the temperature-sensitive fluid inside, which is transmitted through the flexible tube 46 to the actuator portion 45, and the temperature-responsive valve 43 is opened. I do. Conversely, when the temperature in the jacket portion 4 rises, the temperature is detected by the temperature sensing cylinder 44 and the temperature responsive valve 43 is closed.

【0014】復水回収装置1の上部の高圧操作流体導入
口9の分岐口19の側方には、高圧操作流体の排出循環
口13を設けて管路47と接続する。管路47は、ジャ
ケット部4と同圧状態の図示しないヘッダーや、あるい
は、別途のジャケット部4よりも低圧状態箇所と接続す
る。
On the side of the branch port 19 of the high-pressure operation fluid inlet 9 at the upper part of the condensate recovery device 1, a discharge and circulation port 13 for the high-pressure operation fluid is provided and connected to a pipe line 47. The pipe line 47 is connected to a header (not shown) in the same pressure state as the jacket portion 4 or a portion in a lower pressure state than the separate jacket portion 4.

【0015】復水回収装置1は図2に詳細構造を示すよ
うに、本体15に蓋体16を図示しないボルトで取り付
けて内部に流体室17を形成する。本体15の下部に流
体室17に連通する復水流入口2を形成し、同じく蓋体
16の下部に復水還元口6を形成する。蓋体16に高圧
操作流体としての蒸気の導入口9と排出循環口13を形
成する。
As shown in FIG. 2, the condensate recovery device 1 has a lid 16 attached to a main body 15 with bolts (not shown) to form a fluid chamber 17 therein. A condensate inlet 2 communicating with the fluid chamber 17 is formed at a lower portion of the main body 15, and a condensate return port 6 is formed at a lower portion of the lid 16. The inlet 16 and the discharge circulation port 13 for the steam as the high-pressure operating fluid are formed in the lid 16.

【0016】導入口9は分岐して、一方の開口18を流
体室17と接続すると共に他方の開口19は通路20を
介してエゼクタ11のノズル部12と接続する。両開口
18,19の間に導入口弁21を配置する。導入口弁2
1は下方に連設棒22を取り付けて、後述するフロート
手段23と連設する。図2に示す状態は、フロート手段
23が下端に位置し導入口弁21に関与せず、導入口弁
21が開口18を閉じ、開口19は開いているもので、
高圧操作流体としての蒸気が導入口9から開口19と通
路20を経てエゼクタ11のノズル部12に流下して、
吸引室14で吸引力を生じている状態を示す。
The inlet 9 is branched, and one opening 18 is connected to the fluid chamber 17, and the other opening 19 is connected to the nozzle 12 of the ejector 11 via the passage 20. An inlet valve 21 is arranged between the openings 18 and 19. Inlet valve 2
Reference numeral 1 designates a connecting rod 22 attached below and connected to a float means 23 described later. In the state shown in FIG. 2, the float means 23 is located at the lower end and is not involved in the inlet valve 21, the inlet valve 21 closes the opening 18, and the opening 19 is open.
Steam as a high-pressure operating fluid flows down from the inlet 9 through the opening 19 and the passage 20 to the nozzle portion 12 of the ejector 11,
The state where a suction force is generated in the suction chamber 14 is shown.

【0017】排出循環口13は排気弁24を介して流体
室17と連通する。排気弁24に開閉棒26を一体に取
り付けて、排気弁24が上方へ移動すると排出循環口1
3の連通が絶たれると共に、開閉棒26により導入口弁
21も上方へ移動して開口19を閉じ、開口18を開い
て導入口9と流体室17を連通するものである。
The discharge circulation port 13 communicates with the fluid chamber 17 via an exhaust valve 24. An open / close rod 26 is integrally attached to the exhaust valve 24, and when the exhaust valve 24 moves upward, the exhaust circulation port 1
3, the opening valve 19 is also moved upward by the opening / closing rod 26, the opening 19 is closed, the opening 18 is opened, and the introducing port 9 and the fluid chamber 17 are communicated.

【0018】流体室17内のフロート手段23は、球形
の中空フロート27とフロートアーム28とフロートレ
バー29と圧縮コイルバネ30と補助レバー31とで構
成すると共に、それぞれを回動自在にピン結合する。補
助レバー31の端部にピン34を介して排気弁24の下
端を取り付ける。フロートアーム28が蓋体16に取り
付けたフロート手段取り付け板32の回転ピン33を中
心にしてフロート27の上昇降下に応じて回転すること
により、圧縮コイルバネ30と補助レバー31がスナッ
プ移動して排気弁24も上下にスナップ移動するもので
ある。ここでスナップ移動とは、圧縮コイルバネ30の
中心軸と補助レバー31の中心軸とが一致した後、急速
にその位置を離す方向へ変位することを言う。
The float means 23 in the fluid chamber 17 comprises a spherical hollow float 27, a float arm 28, a float lever 29, a compression coil spring 30, and an auxiliary lever 31, and each is rotatably pin-connected. The lower end of the exhaust valve 24 is attached to the end of the auxiliary lever 31 via a pin 34. When the float arm 28 rotates about the rotation pin 33 of the float means mounting plate 32 mounted on the lid 16 in accordance with the rise and fall of the float 27, the compression coil spring 30 and the auxiliary lever 31 snap and move to the exhaust valve. Reference numeral 24 also moves vertically. Here, the snap movement means that after the center axis of the compression coil spring 30 and the center axis of the auxiliary lever 31 coincide with each other, the spring is rapidly displaced in a direction to release the position.

【0019】流体室17内の液位が低く図2に示すよう
にフロート27が降下している場合、導入口弁21が開
口19を開き蒸気がエゼクタ11に供給されて吸引力を
生じ、図1に示すジャケット部4から空気を吸引するも
のである。この場合、ジャケット部4の復水は管路40
を通って復水回収装置1の流体室17内に流入する。
When the liquid level in the fluid chamber 17 is low and the float 27 is lowered as shown in FIG. 2, the inlet valve 21 opens the opening 19 and steam is supplied to the ejector 11 to generate a suction force. Air is sucked from the jacket portion 4 shown in FIG. In this case, the condensate of the jacket part 4 is
And flows into the fluid chamber 17 of the condensate recovery device 1.

【0020】流体室17内に復水が溜まってフロート2
7がスナップ移動して上方に位置すると、排出循環口1
3及び高圧操作流体導入口9の開口19が閉口され、反
対に高圧操作流体導入口9の開口18が連通されて、高
圧操作流体として蒸気供給管35からの高圧蒸気が復水
回収装置1内に流入して、内部の復水を還元口6と逆止
弁8と管路7を経て復水回収先へ圧送し回収するもので
ある。
Condensed water accumulates in the fluid chamber 17 and the float 2
7 is snapped and positioned upward, the discharge circulation port 1
3 and the opening 19 of the high-pressure operating fluid inlet 9 are closed, and conversely, the opening 18 of the high-pressure operating fluid inlet 9 is communicated, and the high-pressure steam from the steam supply pipe 35 as the high-pressure operating fluid is collected in the condensate recovery device 1. Then, the condensate inside is returned to the condensate collection destination through the return port 6, the check valve 8 and the pipe 7, and collected.

【0021】このように管路7から復水が圧送される場
合は、エゼクタ11に蒸気が供給されることがないため
に、吸引室14では吸引力を生じない。
When the condensed water is fed under pressure from the pipe 7 in this manner, no suction force is generated in the suction chamber 14 because steam is not supplied to the ejector 11.

【0022】復水が回収されて復水回収装置1内の水位
が低下すると、再度、高圧操作流体導入口9の開口18
が遮断され、排出循環口13が開口されることにより、
復水流入口2から復水が回収装置1内へ流下してくる。
このような作動サイクルを繰り返すことにより、復水回
収装置1は、ジャケット部4で発生した復水を回収する
ものである。
When the condensate is recovered and the water level in the condensate recovery device 1 drops, the opening 18 of the high-pressure operating fluid inlet 9 is again opened.
Is shut off and the discharge circulation port 13 is opened,
Condensate flows down into the recovery device 1 from the condensate inlet 2.
By repeating such an operation cycle, the condensate recovery device 1 recovers the condensate generated in the jacket portion 4.

【0023】図1において反応釜3内の被加熱物を加熱
する場合、まず圧力調節弁38から蒸気をジャケット部
4へ供給する。本実施例においては、管路37に分岐管
48と開閉弁49を取り付けて、ジャケット部4内の初
期の残留空気を開閉弁49を開弁して排出することがで
きるものである。即ち、圧力調節弁38からジャケット
部4へ蒸気を供給すると共に、開閉弁49を開弁してジ
ャケット部4内の残留空気を蒸気によって追い出し排出
するものである。
In FIG. 1, when heating an object to be heated in the reactor 3, first, steam is supplied from the pressure regulating valve 38 to the jacket portion 4. In this embodiment, a branch pipe 48 and an on-off valve 49 are attached to the conduit 37 so that the initial residual air in the jacket portion 4 can be discharged by opening the on-off valve 49. That is, while the steam is supplied from the pressure regulating valve 38 to the jacket portion 4, the on-off valve 49 is opened to expel and discharge the residual air in the jacket portion 4 by the steam.

【0024】また、ジャケット部4内に残留空気が存在
している場合は、ジャケット部4内の温度が低下してい
るために、温度応動弁43が開弁して、エゼクタ11の
吸引室14で吸引力が生じる度にその残留空気を吸引し
て外部に排出することもできる。ジャケット部4内部が
所定温度になると、温度応動弁43は閉弁して吸引は停
止される。
When residual air is present in the jacket portion 4, the temperature in the jacket portion 4 has dropped, and the temperature responsive valve 43 is opened, and the suction chamber 14 of the ejector 11 is opened. Each time a suction force is generated, the residual air can be sucked and discharged to the outside. When the inside of the jacket 4 reaches a predetermined temperature, the temperature responsive valve 43 closes and the suction is stopped.

【0025】反応釜3を加熱した蒸気は凝縮して復水と
なり、管路40を経て復水回収装置1内へ流下する。ま
た、空気の排除されたジャケット部4内へ所定圧力即ち
温度の加熱蒸気を供給することにより、反応釜3は所定
温度の蒸気でもって加熱される。例えば圧力調節弁38
から大気圧以下の60度Cの蒸気を供給すると反応釜3
は60度Cで加熱される。
The steam heated in the reactor 3 is condensed and condensed, and flows down into the condensate recovery device 1 through the pipe 40. Further, by supplying heated steam at a predetermined pressure, that is, temperature, into the jacket portion 4 from which air has been removed, the reactor 3 is heated with the steam at the predetermined temperature. For example, the pressure control valve 38
When the steam of 60 ° C below atmospheric pressure is supplied from the
Is heated at 60 degrees C.

【0026】ジャケット部4内を大気圧以下の圧力状態
とした場合に、ジャケット部4の各接続部から大気圧が
加わり、一部の空気がジャケット部4内に混入したり、
あるいは、供給される蒸気に混入している空気により、
ジャケット部4内に空気が溜まると、その温度は放熱に
より低下することによって、感温筒44で検知されて温
度応動弁43を開弁して吸引室14に吸引され排出され
る。このように本実施例においては、蒸気加熱装置の初
期のみならず、加熱操作中に溜まった空気をも、エゼク
タ11で吸引力を生じる度に吸引し外部に排出すること
ができる。
When the inside of the jacket portion 4 is set at a pressure lower than the atmospheric pressure, the atmospheric pressure is applied from each connection portion of the jacket portion 4, and a part of the air enters the jacket portion 4,
Alternatively, due to air entrained in the supplied steam,
When the air accumulates in the jacket portion 4, the temperature of the air is reduced by heat radiation, so that the temperature is detected by the temperature sensing cylinder 44, the temperature responsive valve 43 is opened, and the air is sucked into the suction chamber 14 and discharged. As described above, in this embodiment, not only the initial stage of the steam heating device but also the air accumulated during the heating operation can be sucked and discharged to the outside each time the suction force is generated by the ejector 11.

【0027】反応釜3を加熱した蒸気は凝縮して復水と
なることにより、ジャケット部4内は初期の圧力状態に
維持される。一方、凝縮した復水は復水回収装置1内へ
流下して、上記した作動の繰り返しにより復水回収先へ
圧送される。
The steam heated in the reactor 3 is condensed and condensed, so that the inside of the jacket 4 is maintained at the initial pressure state. On the other hand, the condensed condensate flows down into the condensate recovery device 1 and is fed to the condensate recovery destination by repeating the above-described operation.

【0028】本実施例においては、弁手段として開閉弁
42と温度応動弁43を用いた例を示したが、弁手段と
しては、開閉弁だけを用いることもできるし、また、ジ
ャケット部4から吸引室14方向への流体の通過のみを
許容して、反対側の流体の通過は阻止する逆止弁を用い
ることもできる。
In this embodiment, an example in which the opening / closing valve 42 and the temperature responsive valve 43 are used as the valve means has been described. However, only the opening / closing valve may be used as the valve means. A check valve that allows only the passage of the fluid in the direction of the suction chamber 14 and blocks the passage of the fluid on the opposite side may be used.

【0029】[0029]

【発明の効果】上記のように本発明によれば、分岐した
高圧操作流体導入口の一方にエゼクタを接続して、エゼ
クタの吸引室と加熱部を弁手段を介して接続したことに
より、高圧操作流体導入口の一方に高圧流体が供給され
ると、エゼクタの吸引室で吸引力を生じて、加熱部に溜
まっている空気を弁手段を介して吸引して外部に排除す
ることによって、空気による悪影響がなく温度精度良く
被加熱物を加熱することができる。
As described above, according to the present invention, the ejector is connected to one of the branched high-pressure operating fluid inlets, and the suction chamber of the ejector and the heating section are connected via the valve means. When a high-pressure fluid is supplied to one of the operation fluid introduction ports, a suction force is generated in the suction chamber of the ejector, and the air stored in the heating unit is suctioned through the valve means to be removed to the outside, thereby removing the air. The object to be heated can be heated with high temperature accuracy without any adverse effect due to the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の蒸気加熱装置の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of a steam heating device of the present invention.

【図2】本発明の蒸気加熱装置に用いる復水回収装置の
断面図。
FIG. 2 is a sectional view of a condensate recovery device used in the steam heating device of the present invention.

【符号の説明】[Explanation of symbols]

1 復水回収装置 2 復水流入口 3 反応釜 4 ジャケット部 6 復水還元口 9 高圧操作流体導入口 11 エゼクタ 14 吸引室 18、19 開口 35 蒸気供給管 43 温度応動弁 44 感温筒 DESCRIPTION OF SYMBOLS 1 Condensate collection | recovery apparatus 2 Condensate inflow port 3 Reaction tank 4 Jacket part 6 Condensate reduction port 9 High-pressure operation fluid introduction port 11 Ejector 14 Suction chamber 18, 19 opening 35 Steam supply pipe 43 Temperature-responsive valve 44 Thermosensitive cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱交換器に加熱部を形成して加熱用の蒸
気供給管を接続すると共に、加熱によって生じた復水を
高圧操作流体による圧送により回収する復水回収装置を
接続したものにおいて、復水回収装置の高圧操作流体導
入口を分岐して、分岐した一方の導入口を復水回収装置
の内部と連通し、分岐した他方の導入口にエゼクタを接
続して、当該エゼクタの吸引室と熱交換器の加熱部を弁
手段を介して接続したことを特徴とする蒸気加熱装置。
1. A method in which a heating section is formed in a heat exchanger, a steam supply pipe for heating is connected, and a condensate collection device for collecting condensate generated by heating by pressure feeding with a high-pressure operating fluid is connected. , The high-pressure operation fluid inlet of the condensate recovery device is branched, one of the branched inlets communicates with the inside of the condensate recovery device, and the other branch is connected to an ejector, and the ejector is sucked. A steam heating device, wherein the chamber and the heating section of the heat exchanger are connected via valve means.
JP2000005458A 2000-01-14 2000-01-14 Steam-heating equipment Pending JP2001201278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005458A JP2001201278A (en) 2000-01-14 2000-01-14 Steam-heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005458A JP2001201278A (en) 2000-01-14 2000-01-14 Steam-heating equipment

Publications (1)

Publication Number Publication Date
JP2001201278A true JP2001201278A (en) 2001-07-27

Family

ID=18534124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005458A Pending JP2001201278A (en) 2000-01-14 2000-01-14 Steam-heating equipment

Country Status (1)

Country Link
JP (1) JP2001201278A (en)

Similar Documents

Publication Publication Date Title
US7415942B2 (en) Steam-heating apparatus
JPH09250887A (en) Steam heating device
JP2001201278A (en) Steam-heating equipment
JP3281999B2 (en) Steam heating device
JP2001201274A (en) Steam-heating equipment
JP3281998B2 (en) Steam heating device
JP4583610B2 (en) Steam heating device
JP2001201273A (en) Steam-heating equipment
JP3282000B2 (en) Steam heating evaporative cooling system
JP4472103B2 (en) Steam heating device
JP2001201277A (en) Steam-heating equipment
JP3507866B2 (en) Steam heating device
CA2602524C (en) Steam-heating apparatus
JP4472102B2 (en) Steam heating device
JP4330730B2 (en) Steam heating device
JP2001321660A (en) Steam heating device
JP2003024769A (en) Steam heating device
JP2001296089A (en) Vapor heating apparatus
JP3394929B2 (en) Steam heating device
JP4409715B2 (en) Steam heating device
JP3463152B2 (en) Steam heating device
JPH02272202A (en) Vacuum evaporator