JP2001199718A - Alpha-alumina superfine particle and method for producing the same - Google Patents

Alpha-alumina superfine particle and method for producing the same

Info

Publication number
JP2001199718A
JP2001199718A JP2000007716A JP2000007716A JP2001199718A JP 2001199718 A JP2001199718 A JP 2001199718A JP 2000007716 A JP2000007716 A JP 2000007716A JP 2000007716 A JP2000007716 A JP 2000007716A JP 2001199718 A JP2001199718 A JP 2001199718A
Authority
JP
Japan
Prior art keywords
alumina
average particle
phase
particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000007716A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Nakayama
和良 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CI Kasei Co Ltd
Original Assignee
CI Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CI Kasei Co Ltd filed Critical CI Kasei Co Ltd
Priority to JP2000007716A priority Critical patent/JP2001199718A/en
Publication of JP2001199718A publication Critical patent/JP2001199718A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain high purity α-alumina superfine-particle powder having an average particle diameter of <=0.1 μm and containing very little of impurities such as metallic oxides except alumina. SOLUTION: A method for producing α-alumina superfine particles features firing γ-alumina superfine particles produced by a gas phase method up to substantial transformation into α-alumina superfine particles. This α-alumina superfine-particle powder substantially composed of the α-alumina phase and having an average particle diameter of <100 nm is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平均粒径が数10
nmオーダーであり、アルミナ以外の金属酸化物等の不
純物を殆ど含まない高純度のα−アルミナ超微粒子粉末
及びその製造方法に関するものである。
[0001] The present invention relates to a method for producing a polymer having an average particle size of several tens.
The present invention relates to a high-purity α-alumina ultrafine particle powder having a nanometer order and containing almost no impurities such as metal oxides other than alumina, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、α−アルミナ粉末の製造方法とし
ては、明ばん熱分解法、有機金属加水分解法、エチレン
クロルヒドリン法、火花放電法、アンモニウムアルミニ
ウム炭酸塩熱分解法、改良バイヤー法等が知られている
が、いずれの方法でも平均粒径が0.1μm以下のα−
アルミナ粉末は得られていない。特許第2944839
号において、ベーマイト粒子の表面にシリカ等のバリア
ー層を形成して焼成する方法が提案されているが、バリ
アー物質が不純物として残存し、又、一次粒子の凝集体
として生成されるので、微粒子に粉砕する必要がある。
2. Description of the Related Art Conventionally, methods for producing α-alumina powder include alum pyrolysis, organometallic hydrolysis, ethylene chlorohydrin, spark discharge, ammonium aluminum carbonate pyrolysis, and improved Bayer's method. It is known that the average particle size is 0.1 μm or less α-
Alumina powder was not obtained. Patent No. 2944839
In No. 2, a method is proposed in which a barrier layer such as silica is formed on the surface of boehmite particles and firing is performed.However, since the barrier substance remains as an impurity and is generated as an aggregate of primary particles, Need to be crushed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、平均粒径が
0.1μm以下であり、アルミナ以外の金属酸化物等の
不純物を殆ど含まない高純度のα−アルミナ超微粒子粉
末を効率よく得ることを目的としてなされたものであ
る。
According to the present invention, high-purity α-alumina ultrafine particles having an average particle size of 0.1 μm or less and containing almost no impurities such as metal oxides other than alumina are efficiently obtained. It is done for the purpose of.

【0004】[0004]

【課題を解決するための手段】本発明者は、気相法で生
成されたγ−アルミナ超微粒子を原料として使用し、こ
れを焼成してα化する際、焼成条件をコントロールする
ことにより平均粒径が0.1μm未満のα−アルミナ超
微粒子が効率的に生成されることを見出し、この知見に
基づいて本発明を完成するに至った。
Means for Solving the Problems The present inventor uses γ-alumina ultrafine particles produced by a gas phase method as a raw material, and when firing the γ-alumina to obtain an α-alumina, the average particle size is controlled by controlling the calcination conditions. It has been found that α-alumina ultrafine particles having a particle size of less than 0.1 μm are efficiently produced, and the present invention has been completed based on this finding.

【0005】すなわち、本発明は、気相法で生成された
γ−アルミナ超微粒子を実質的にα−アルミナ相に転移
するまで焼成することを特徴とするα−アルミナ超微粒
子の製造方法、及び実質的にα−アルミナ相からなる平
均粒径が100nm未満のα−アルミナ超微粒子粉末を
提供するものである。なお、「実質的にα−アルミナ相
に転移する」あるいは「実質的にα−アルミナ相からな
る」とは、全アルミナ相中のα−アルミナ相の重量%が
70%以上、好ましくは85%以上、さらに好ましくは
95%以上であることをいう。
That is, the present invention provides a method for producing α-alumina ultrafine particles, which comprises firing the γ-alumina ultrafine particles produced by a gas phase method until the particles are substantially converted to an α-alumina phase. An object of the present invention is to provide α-alumina ultrafine particle powder substantially comprising an α-alumina phase and having an average particle size of less than 100 nm. In addition, “substantially transform into α-alumina phase” or “consisting substantially of α-alumina phase” means that the weight percentage of α-alumina phase in all alumina phases is 70% or more, preferably 85%. As mentioned above, more preferably, it is 95% or more.

【0006】[0006]

【発明の実施の形態】本発明方法では、原料として、電
気炉法、化学炎法、プラズマ法等の反応気相法や酸化ア
ルミニウムを加熱蒸発させるプラズマ加熱法(溶融プー
ル蒸発法)等の気相法で製造されたγ−アルミナ粒子が
用いられるが、直流プラズマ法又は高周波誘導プラズマ
法によって生じたアルミニウム蒸気を酸化する方法又は
溶融プール蒸発法による球形、無孔質で高純度のγ−ア
ルミナ超微粒子が好ましい。本発明方法で原料として用
いられるγ−アルミナ粒子は、平均粒径が50nm以下
のものが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, as a raw material, a gas phase such as a reaction gas phase method such as an electric furnace method, a chemical flame method or a plasma method, or a plasma heating method for heating and evaporating aluminum oxide (molten pool evaporation method) is used. Γ-alumina particles produced by the phase method are used, but a method of oxidizing aluminum vapor generated by a direct current plasma method or a high frequency induction plasma method or a spherical, non-porous and high-purity γ-alumina by a molten pool evaporation method Ultrafine particles are preferred. The γ-alumina particles used as a raw material in the method of the present invention preferably have an average particle diameter of 50 nm or less.

【0007】γ−アルミナを1200℃以上の高温で焼
成するとδ相、θ相を経てα相に転移して熱的に安定化
するとともに、硬度が高くなるが、生成したα−アルミ
ナ粒子が焼結して粒径が増大する。なお、本発明におい
ては、γ−アルミナとは厳密な意味でγ−アルミナのみ
を指すのではなく、δ−アルミナやθ−アルミナ等のα
−アルミナ以外の変態も含む広義のγ−アルミナを指
す。本発明方法では、ロータリーキルン等を用いて球形
のγ−アルミナ粒子を流動状態で焼成するとともに、1
200℃以上1300℃以下(好ましくは1250℃以
下)、5分間以上30分間以下(好ましくは20分以
下)の範囲内で、α相への転移に必要かつ十分な焼成温
度と焼成時間をコントロールする。
When γ-alumina is fired at a high temperature of 1200 ° C. or more, it is transformed into an α phase via a δ phase and a θ phase to be thermally stabilized and has a high hardness. This increases the particle size. In the present invention, the term γ-alumina does not mean only γ-alumina in a strict sense, but refers to α-alumina, α-alumina or other such α-alumina.
-Refers to γ-alumina in a broad sense including transformations other than alumina. In the method of the present invention, spherical γ-alumina particles are calcined in a fluidized state using a rotary kiln or the like, and
In the range of 200 ° C. to 1300 ° C. (preferably 1250 ° C. or less) and 5 minutes to 30 minutes (preferably 20 minutes or less), the firing temperature and time necessary and sufficient for the transition to the α phase are controlled. .

【0008】焼成温度が1200℃未満ではα相への転
移が不完全であり、焼成温度が1300℃を超えるとα
−アルミナ粒子の粒径が増大して好ましくない。
If the firing temperature is less than 1200 ° C., the transition to the α phase is incomplete, and if the firing temperature exceeds 1300 ° C.,
-It is not preferable because the particle size of the alumina particles increases.

【0009】[0009]

【実施例】次に、実施例によって本発明を説明する。Next, the present invention will be described by way of examples.

【0010】試料粒子について、以下の方法により、測
定し、解析した。 (1)平均粒径 比表面積測定装置ASAP−2010(島津製作所社
製)を用いてBET法により比表面積〔m2 /g〕測定
し、比表面積及び密度〔g/cm3 〕を用い次式により
算出した。 平均粒径(nm)=6×103 /(密度×比表面積) (2)結晶系(α相への転移の度合い) X線回折装置MINIFLEX(理学電機社製)を用い
て結晶ピークの強度を解析し、α相への転移の度合いを
算出した。
The sample particles were measured and analyzed by the following methods. (1) Average particle size The specific surface area [m 2 / g] was measured by the BET method using a specific surface area measuring device ASAP-2010 (manufactured by Shimadzu Corporation), and the following equation was obtained using the specific surface area and density [g / cm 3 ]. Was calculated by Average particle size (nm) = 6 × 10 3 / (density × specific surface area) (2) Crystal system (degree of transition to α phase) Intensity of crystal peak using X-ray diffractometer MINIFLEX (manufactured by Rigaku Corporation) Was analyzed, and the degree of transition to the α phase was calculated.

【0011】実施例1 アーク放電式プラズマ発生装置を用い、アーク放電によ
り生じたプラズマフレームでアノードとしてチャンバー
内に設置したアルミニウム金属棒を蒸発させ、発生した
アルミニウム蒸気を酸化して、γ−アルミナが95%以
上、比表面積53m2 /g、平均粒径31nm,かさ比
重0.28、アルミナ純度99.9%以上の球形のγ−
アルミナ粒子粉末を得た。次いで、内径100mm×長
さ1.2m(加熱ゾーン1.0m)の反応管(炉心管)
を有するロータリーキルンを用いて、上記のγ−アルミ
ナ粒子粉末を1250℃の温度で20分間(反応管内滞
留時間)焼成した。キルンの設定条件は、キルン斜度4
度、キルン回転数1.6rpm、フィーダースクリュー
回転数2.0rpmとした。焼成後のアルミナ粒子は、
透過型電子顕微鏡による観察で真球形状の超微粒子状態
を維持していることを確認した。また、γ−アルミナ粒
子は95%以上α−アルミナ粒子(Corundom、
六方晶系)に相転移しており、平均粒径が96nm、ア
ルミナ純度99.9%以上の超微粒子であった。 実施例2、比較例 焼成温度及び焼成時間を表1のように変えた以外は実施
例1と同様にして微粒子を得た。各実施例の微粒子の結
晶型はα−アルミナ主体の構造に相転移しており、平均
粒径が100nm未満の超微粒子であった。これに対
し、比較例の微粒子の結晶型は実質的にγ−アルミナの
構造をそのまま保持していた。
Example 1 Using an arc discharge type plasma generator, an aluminum metal rod installed in a chamber as an anode was evaporated by a plasma flame generated by arc discharge, and the generated aluminum vapor was oxidized to form γ-alumina. 95% or more, specific surface area 53 m 2 / g, average particle diameter 31 nm, bulk specific gravity 0.28, alumina purity 99.9% or more, spherical γ-
An alumina particle powder was obtained. Next, a reaction tube (core tube) having an inner diameter of 100 mm and a length of 1.2 m (heating zone of 1.0 m).
Γ-alumina particles were fired at a temperature of 1250 ° C. for 20 minutes (residence time in a reaction tube) using a rotary kiln having The kiln setting condition is kiln gradient 4
The kiln rotation speed was 1.6 rpm and the feeder screw rotation speed was 2.0 rpm. The alumina particles after firing are
Observation with a transmission electron microscope confirmed that a true spherical ultrafine particle state was maintained. Further, γ-alumina particles are 95% or more α-alumina particles (Corundom,
(Hexagonal system), and were ultrafine particles having an average particle size of 96 nm and an alumina purity of 99.9% or more. Example 2, Comparative Example Fine particles were obtained in the same manner as in Example 1 except that the firing temperature and the firing time were changed as shown in Table 1. The crystal form of the fine particles in each of the examples was in a phase transition to a structure mainly composed of α-alumina, and was ultrafine particles having an average particle diameter of less than 100 nm. On the other hand, the crystal form of the fine particles of the comparative example substantially maintained the structure of γ-alumina as it was.

【0012】以上の各例の微粒子について求めた諸物性
も表1に示す。
Table 1 also shows various physical properties obtained for the fine particles of each of the above examples.

【表1】 [Table 1]

【0013】以上の結果より、気相法で生成されたγ−
アルミナ超微粒子を原料として使用し、焼成温度を比較
的低温にコントロールして焼成することにより、平均粒
径が0.1μm未満のα−アルミナ超微粒子が効率的に
生成されることが分かる。
From the above results, it can be seen that γ-
It is understood that α-alumina ultrafine particles having an average particle diameter of less than 0.1 μm can be efficiently produced by using alumina ultrafine particles as a raw material and firing at a relatively low firing temperature.

【0014】[0014]

【発明の効果】本発明のα−アルミナ超微粒子粉末は、
従来は工業的に得られなかった平均粒径が数十nmオー
ダーの超微粒子であり、かつ、実質的にα−アルミナ相
のみからなる高純度のものであり、硬度と耐熱性が高
く、比表面積が大きいので、研磨材、高温燃焼触媒担
体、セラミックス成形体等の用途に利用されることが期
待できる。また、本発明方法によれば、気相法で生成さ
れたγ−アルミナ超微粒子を原料として使用し、焼成条
件をコントロールすることにより、従来工業的に生産で
きなかった平均粒径を0.1μm未満、50nm以下ま
で微細化した高純度のα−アルミナ超微粒子粉末を効率
的に生産することができる。さらに、連続生産が可能で
ある。
The α-alumina ultrafine particle powder of the present invention comprises:
Ultrafine particles having an average particle size of several tens of nanometers, which have not been conventionally obtained industrially, are of high purity consisting essentially of an α-alumina phase, and have high hardness and heat resistance. Because of its large surface area, it can be expected to be used for applications such as abrasives, high-temperature combustion catalyst carriers, and ceramic molded bodies. Further, according to the method of the present invention, by using γ-alumina ultrafine particles produced by a gas phase method as a raw material and controlling the calcination conditions, the average particle size which could not be conventionally produced industrially is 0.1 μm. It is possible to efficiently produce ultra-fine α-alumina fine particles having a fineness of less than 50 nm or less. In addition, continuous production is possible.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気相法で生成されたγ−アルミナ超微粒
子を実質的にα−アルミナ相に転移するまで焼成するこ
とを特徴とするα−アルミナ超微粒子の製造方法。
1. A method for producing ultrafine α-alumina particles, which comprises firing ultrafine γ-alumina particles produced by a gas phase method until they are substantially transformed into an α-alumina phase.
【請求項2】 球形のγ−アルミナ超微粒子を流動状態
で焼成する請求項1記載の方法。
2. The method according to claim 1, wherein the spherical ultrafine γ-alumina particles are calcined in a fluidized state.
【請求項3】 焼成温度を1200℃以上1300℃以
下に、焼成時間を5分間以上30分間以下にそれぞれコ
ントロールする請求項1又は2記載の方法。
3. The method according to claim 1, wherein the firing temperature is controlled to be 1200 ° C. or more and 1300 ° C. or less, and the firing time is controlled to be 5 minutes or more and 30 minutes or less.
【請求項4】 実質的にα−アルミナ相からなる平均粒
径が100nm未満のα−アルミナ超微粒子粉末。
4. Ultrafine α-alumina powder having an average particle diameter of substantially less than 100 nm and consisting essentially of an α-alumina phase.
【請求項5】 平均粒径が50nm以下である請求項4
記載の粉末。
5. An average particle size of 50 nm or less.
The powder described.
JP2000007716A 2000-01-17 2000-01-17 Alpha-alumina superfine particle and method for producing the same Pending JP2001199718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007716A JP2001199718A (en) 2000-01-17 2000-01-17 Alpha-alumina superfine particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007716A JP2001199718A (en) 2000-01-17 2000-01-17 Alpha-alumina superfine particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001199718A true JP2001199718A (en) 2001-07-24

Family

ID=18536082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007716A Pending JP2001199718A (en) 2000-01-17 2000-01-17 Alpha-alumina superfine particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001199718A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197479A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Alumina fine particle for toner external additive, toner, image forming method and image forming apparatus
JP2010197480A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Alumina fine particle for toner external additive, toner, image forming method and image forming apparatus
JP2010204237A (en) * 2009-03-02 2010-09-16 Seiko Epson Corp Method for producing alumina fine particle for external additive for toner and method for producing toner
JP2014052646A (en) * 2013-10-16 2014-03-20 Seiko Epson Corp Alumina fine particle for toner external additive, toner, image forming method and image forming apparatus
JP2016124763A (en) * 2015-01-06 2016-07-11 ▲蒋▼世傑 High-frequency plasma synthesis method
JP2017507882A (en) * 2014-02-10 2017-03-23 エルケム アクシエセルスカプ Method for producing aluminum oxide particles
JP2017190267A (en) * 2016-04-14 2017-10-19 株式会社アドマテックス Alumina particle material and production method of the same
JP2020073457A (en) * 2020-02-21 2020-05-14 株式会社アドマテックス Alumina particle material and production method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197479A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Alumina fine particle for toner external additive, toner, image forming method and image forming apparatus
JP2010197480A (en) * 2009-02-23 2010-09-09 Seiko Epson Corp Alumina fine particle for toner external additive, toner, image forming method and image forming apparatus
JP2010204237A (en) * 2009-03-02 2010-09-16 Seiko Epson Corp Method for producing alumina fine particle for external additive for toner and method for producing toner
JP2014052646A (en) * 2013-10-16 2014-03-20 Seiko Epson Corp Alumina fine particle for toner external additive, toner, image forming method and image forming apparatus
JP2017507882A (en) * 2014-02-10 2017-03-23 エルケム アクシエセルスカプ Method for producing aluminum oxide particles
JP2016124763A (en) * 2015-01-06 2016-07-11 ▲蒋▼世傑 High-frequency plasma synthesis method
JP2017190267A (en) * 2016-04-14 2017-10-19 株式会社アドマテックス Alumina particle material and production method of the same
JP2020073457A (en) * 2020-02-21 2020-05-14 株式会社アドマテックス Alumina particle material and production method of the same

Similar Documents

Publication Publication Date Title
US7993445B2 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
US20090041656A1 (en) Nanoparticles of alumina and oxides of elements of main groups I and II of the periodic table, and their preparation
Baranwal et al. Flame spray pyrolysis of precursors as a route to nano‐mullite powder: powder characterization and sintering behavior
Kong et al. Barium titanate derived from mechanochemically activated powders
Branch Preparation of nano-scale α-Al2O3 powder by the sol-gel method
US20090098365A1 (en) Nanocrystalline sintered bodies made from alpha aluminum oxide method for production and use thereof
Obeid Crystallization of synthetic wollastonite prepared from local raw materials
JPS6272522A (en) Composite powders of alumina-titania and its production
Yu et al. Thermal characteristic difference between α-Al2O3 and cristobalite powders during mullite synthesis induced by size reduction
JP4281943B2 (en) Method for producing plate-like alumina particles
TW201134766A (en) α -alumina for producing single crystal sapphire
JP2001199718A (en) Alpha-alumina superfine particle and method for producing the same
JP5248054B2 (en) Method for producing spherical alumina particles
Sarath Chandra et al. Preparation of YAG nanopowder by different routes and evaluation of their characteristics including transparency after sintering
TW200427631A (en) Method for producing α-alumina powder
KR101202625B1 (en) METHOD FOR PRODUCING a-ALUMINA PARTICULATE
Salomão et al. Synthesis, dehydroxylation and sintering of porous Mg (OH) 2-MgO clusters: evolution of microstructure and physical properties
JPH07309618A (en) Method for manufacture of aluminium oxide powder, aluminium oxide powder manufactured by said method and use thereof
Brewster et al. Generation of unagglomerated, Dense, BaTiO3 particles by flame‐spray pyrolysis
KR20210144777A (en) spinel powder
JP6966445B2 (en) Alumina and a method for manufacturing an automobile catalyst using it
WO2009051249A1 (en) Method for producing alkali titanate compound
Zhuk et al. Synthesis of high-purity aluminum oxide from hydrothermally produced boehmite by high temperature vacuum treatment
JP3389642B2 (en) Method for producing low soda alumina
CN106495194B (en) A kind of method of low temperature preparation alpha-type aluminum oxide superfine powder