JP2001197592A - Ultrasonic wave transmitter-receiver - Google Patents

Ultrasonic wave transmitter-receiver

Info

Publication number
JP2001197592A
JP2001197592A JP2000005213A JP2000005213A JP2001197592A JP 2001197592 A JP2001197592 A JP 2001197592A JP 2000005213 A JP2000005213 A JP 2000005213A JP 2000005213 A JP2000005213 A JP 2000005213A JP 2001197592 A JP2001197592 A JP 2001197592A
Authority
JP
Japan
Prior art keywords
cylindrical case
ultrasonic transducer
bottomed cylindrical
elastic body
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000005213A
Other languages
Japanese (ja)
Inventor
Shinji Amaike
信二 天池
Junji Ota
順司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000005213A priority Critical patent/JP2001197592A/en
Publication of JP2001197592A publication Critical patent/JP2001197592A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic wave transmitter-receiver that is used under a corrosive gas atmosphere, adopts a structure where corrosive gas is hardly be intruded in a cylindrical case with bottom and whose characteristic is not degraded even if used at a low temperature. SOLUTION: In the ultrasonic wave transmitter-receiver consisting of a cylindrical case with bottom having an opening, a piezoelectric vibrator placed on the bottom of the cylindrical case with bottom, and an elastic body sealing the opening of the cylindrical case with bottom, a sealing material made of a silicon material with high gas barrier performance is place in duplicate onto an exposed face of the elastic body exposed to the outside of the cylindrical case with bottom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波送受波器に
関し、特に排気ガス等の腐食性ガスの多い環境下で使用
される防滴型の超音波送受波器の密閉構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic transducer, and more particularly, to a sealed structure of a drip-proof ultrasonic transducer used in an environment containing a large amount of corrosive gas such as exhaust gas.

【0002】[0002]

【従来の技術】超音波送受波器は超音波による物体検
知、距離探知等に使用でき、例えば自動車のバックソナ
ー等の用途に主として用いられている。このような用途
で使用される超音波送受波器は、屋外での使用が前提と
なっており、超音波送受波器自体が風雨等の外部環境に
直接さらされることになる。このため、このような用途
においては、超音波の送波/受波に用いられる圧電振動
子がケース内に密閉された構造の、いわゆる防滴型超音
波送受波器が用いられている。
2. Description of the Related Art Ultrasonic transducers can be used for object detection, distance detection, and the like using ultrasonic waves, and are mainly used for applications such as back sonar for automobiles. The ultrasonic transducer used in such an application is assumed to be used outdoors, and the ultrasonic transducer itself is directly exposed to an external environment such as wind and rain. For this reason, in such applications, a so-called drip-proof ultrasonic transducer having a structure in which a piezoelectric vibrator used for transmitting / receiving ultrasonic waves is sealed in a case is used.

【0003】ここで、従来の防滴型超音波送受波器の概
略構造図を図3に示す。図3は、超音波送受波器31を
示す断面図であって、図中、32はアルミニウム等の導
電体からなる有底筒状ケース、33は有底筒状ケース3
2の底部に配置された圧電振動子、34は有底筒状ケー
ス32内部に挿入され圧電振動子33の振動を抑制しな
いように配置されたフェルト等の綿状体、35は綿状体
34上に充填され有底筒状ケース32の開口部を封止す
るシリコンゴム等からなる弾性体、36は弾性体35中
に埋設された中継基板、37は圧電振動子33に形成さ
れた電極と後述の外部接続端子38とを電気的に接続す
るリード線、38は圧電振動子33の信号の入出力を行
う外部接続端子、をそれぞれ示している。なお、外部接
続端子38は中継基板36に固定されており、中継基板
部分でリード線37と電気的に接続されている。
FIG. 3 is a schematic structural view of a conventional drip-proof ultrasonic transducer. FIG. 3 is a cross-sectional view showing the ultrasonic transducer 31 in which 32 is a bottomed cylindrical case made of a conductor such as aluminum, and 33 is a bottomed cylindrical case 3.
2, a piezoelectric vibrator 34 disposed at the bottom portion, a cotton-like body such as felt inserted into the bottomed cylindrical case 32 and arranged so as not to suppress the vibration of the piezoelectric vibrator 33, and 35 a cotton-like body 34 An elastic body made of silicon rubber or the like filled on the top and sealing the opening of the bottomed cylindrical case 32, 36 is a relay board embedded in the elastic body 35, and 37 is an electrode formed on the piezoelectric vibrator 33. A lead wire for electrically connecting to an external connection terminal 38 described later, and an external connection terminal 38 for inputting and outputting a signal of the piezoelectric vibrator 33 are shown. The external connection terminals 38 are fixed to the relay board 36, and are electrically connected to the lead wires 37 at the relay board portion.

【0004】上述の構造の超音波送受波器31は、次の
ように動作する。まず、外部接続端子を介して圧電振動
子33に電気信号が印加されると、圧電振動子33は機
械的な振動を起こし有底筒状ケース32の底面から超音
波が発せられる。所定時間経過後に検出対象物から反射
してきた反射超音波が圧電振動子33を介して再び電気
信号に変換され、該電気信号が外部接続端子38から外
部に導出される。ここで、最初の電気信号の印加時から
反射超音波の受信時までの時間差に基づいて、超音波送
受波器31から検出対象物までの距離が測定されること
になる。
[0004] The ultrasonic transducer 31 having the above-described structure operates as follows. First, when an electric signal is applied to the piezoelectric vibrator 33 via an external connection terminal, the piezoelectric vibrator 33 causes mechanical vibration and emits ultrasonic waves from the bottom surface of the bottomed cylindrical case 32. After a lapse of a predetermined time, the reflected ultrasonic wave reflected from the detection target is converted again into an electric signal via the piezoelectric vibrator 33, and the electric signal is led out from the external connection terminal 38 to the outside. Here, the distance from the ultrasonic transducer 31 to the object to be detected is measured based on the time difference from when the first electric signal is applied to when the reflected ultrasonic wave is received.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
図3に示した従来構造の超音波送受波器31は以下に記
す問題点を有していた。すなわち、本構造の超音波送受
波器はしばしば自動車のバックソナー等の用途に用いら
れるが、この場合、使用環境中にはイオウ等の腐食性ガ
スが多く存在する(排気ガス中などに多く含まれてい
る)。このため、この腐食性ガスが有底筒状ケース32
の内部に侵入し、圧電振動子33に形成された電極やリ
ード線37を腐食させ、部品を使用不可能な状態にして
しまう。より具体的には、イオウ成分と銀電極とが反応
して絶縁性の硫化銀となり、電極表面が絶縁化され電気
を通さなくなってしまう。
However, the ultrasonic transducer 31 of the conventional structure shown in FIG. 3 has the following problems. That is, the ultrasonic transducer of the present structure is often used for applications such as back sonar of automobiles. In this case, a corrosive gas such as sulfur is present in a use environment in a large amount (a large amount is contained in exhaust gas and the like). Is). Therefore, this corrosive gas is transferred to the bottomed cylindrical case 32.
Of the piezoelectric vibrator 33 and the electrodes and the lead wires 37 are corroded, and the components become unusable. More specifically, the sulfur component reacts with the silver electrode to form insulating silver sulfide, and the surface of the electrode is insulated and the electricity does not pass.

【0006】この点、有底筒状ケース32の開口部は弾
性体35によって密封されている。しかしながら、この
弾性体35には、高い弾力性を確保するために比較的分
子密度の低いシリコンゴムが用いられている。分子密度
が低いことに起因してガス透過性も必然的に高くなって
しまい、結果的に上述の腐食性ガスによる部品の劣化が
生じるものである。
In this regard, the opening of the bottomed cylindrical case 32 is sealed by an elastic body 35. However, silicon rubber having a relatively low molecular density is used for the elastic body 35 in order to ensure high elasticity. Due to the low molecular density, gas permeability is inevitably increased, and as a result, the above-mentioned corrosive gas causes deterioration of components.

【0007】上述の問題を解消する方法として、例えば
特開昭61−94496号公報中には、分子密度の高い
ウレタン系ゴムからなる接着剤および封止材を用いて有
底筒状ケースの開口部を封止することにより、腐食性ガ
スの有底筒状ケース内への侵入を防止する構造が開示さ
れている。しかしながら上述のウレタン系ゴムは、分子
密度が高くガスバリア性は高いものの、その物性上温度
変化に対して弱いという欠点を有している。具体的に
は、ウレタン系ゴムは低温環境下では硬化してしまい、
その弾力性が劣化する。この結果、有底筒状ケースの振
動を効率的に抑制することができなくなり、超音波送受
波器の残響特性の劣化を引き起こすことになる。これ
は、自動車のバックソナーのように、厳しい温度変化に
さらされる環境下で用いられる超音波送受波器にとって
は、特に重大な問題としてクローズアップされることに
なる。
As a method for solving the above-mentioned problem, for example, Japanese Patent Application Laid-Open No. 61-94496 discloses a method of opening a bottomed cylindrical case using an adhesive and a sealing material made of urethane rubber having a high molecular density. There is disclosed a structure in which a portion is sealed to prevent corrosive gas from entering a bottomed cylindrical case. However, the above-mentioned urethane rubber has a high molecular density and a high gas barrier property, but has a drawback that it is weak against a change in temperature due to its physical properties. Specifically, urethane rubber hardens in a low temperature environment,
Its elasticity deteriorates. As a result, the vibration of the bottomed cylindrical case cannot be efficiently suppressed, and the reverberation characteristics of the ultrasonic transducer are deteriorated. This becomes a particularly serious problem for ultrasonic transducers used in environments subject to severe temperature changes, such as automobile back sonars.

【0008】従って本発明の目的は、上述の技術的問題
点を解決するためになされたものであって、腐食性ガス
雰囲気中で使用される超音波送受波器において、有底筒
状ケース内に腐食性ガスが侵入しにくい構造を有し、か
つ低温使用時においても特性の劣化することのない超音
波送受波器を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned technical problems, and it is an object of the present invention to provide an ultrasonic transducer used in a corrosive gas atmosphere in a cylindrical case having a bottom. It is an object of the present invention to provide an ultrasonic transducer having a structure in which a corrosive gas hardly penetrates into the apparatus and whose characteristics are not deteriorated even when used at a low temperature.

【0009】[0009]

【課題を解決するための手段】上述の技術的課題を解決
するために本発明の超音波送受波器は、開口部を有する
有底筒状ケースと、有底筒状ケースの底部に配置される
圧電振動子と、有底筒状ケースの開口部を封止する弾性
体とを有してなる超音波送受波器において、前記弾性体
の有底筒状ケース外部に露出する露出面上に、さらにガ
スバリア性の高いシリコン材からなる封止材を重ねて設
けたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned technical problems, an ultrasonic transducer according to the present invention is provided with a bottomed cylindrical case having an opening and a bottom of the bottomed cylindrical case. A piezoelectric vibrator, and an ultrasonic transducer having an elastic body that seals the opening of the bottomed cylindrical case, on an exposed surface of the elastic body exposed to the outside of the bottomed cylindrical case. Further, a sealing material made of a silicon material having a high gas barrier property is provided in an overlapping manner.

【0010】このようにガスバリア性の高いシリコン材
を封止材として重ねて設けることにより、腐食性ガスの
有底筒状ケース内への侵入を防止することができる。加
えて、シリコン材はウレタン材と比較して温度変化に対
して弾力性がほとんど変化することがない。従って、温
度変化が激しく低温環境下でも使用される超音波送受波
器においても、その残響特性を十分なレベルに維持する
ことができる。封止材として用いられるシリコン材とし
ては、具体的にはその分子密度が1.0〜1.5Åの範
囲にあるシリコン材を用いることが好ましい。
[0010] By thus providing a silicon material having a high gas barrier property as a sealing material, it is possible to prevent corrosive gas from entering the bottomed cylindrical case. In addition, the elasticity of the silicon material hardly changes with a temperature change as compared with the urethane material. Therefore, the reverberation characteristics can be maintained at a sufficient level even in an ultrasonic transducer that is used even in a low-temperature environment in which the temperature greatly changes. Specifically, it is preferable to use a silicon material having a molecular density in the range of 1.0 to 1.5 ° as the silicon material used as the sealing material.

【0011】[0011]

【発明の実施の形態】以下、本発明の超音波送受波器に
ついて図を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic transducer according to the present invention will be described below in detail with reference to the drawings.

【0012】まず、本発明の防滴型超音波送受波器の概
略構造図を図1に示す。図1は、超音波送受波器1を示
す断面図であって、図中、2はアルミニウム等の導電体
からなる有底筒状ケース、3は有底筒状ケース2の底部
に配置された圧電振動子、4は有底筒状ケース2内部に
挿入され圧電振動子3の振動を抑制しないように配置さ
れたフェルト等の綿状体、5は綿状体4上に充填され有
底筒状ケース2の開口部を封止するシリコンゴム等から
なる弾性体、6は弾性体5中に埋設された中継基板、7
は圧電振動子3に形成された電極と後述の外部接続端子
8とを電気的に接続するリード線、8は圧電振動子3の
信号の入出力を行う外部接続端子、をそれぞれ示してい
る。外部接続端子8は中継基板6に固定されており、中
継基板部分でリード線7と電気的に接続されている。本
実施例においては、弾性体5の有底筒状ケースの外部に
露出している露出面上に、ガスバリア性の高いシリコン
材が封止材9として重ねて設けられている点が特徴であ
る。
FIG. 1 is a schematic structural view of a drip-proof ultrasonic transducer according to the present invention. FIG. 1 is a cross-sectional view showing an ultrasonic transducer 1, wherein 2 is a bottomed cylindrical case made of a conductor such as aluminum, and 3 is disposed on the bottom of the bottomed cylindrical case 2. The piezoelectric vibrator 4 is inserted into the bottomed cylindrical case 2 and is made of a cotton-like body such as felt arranged so as not to suppress the vibration of the piezoelectric vibrator 3. An elastic body made of silicon rubber or the like for sealing the opening of the case 2; 6 a relay board embedded in the elastic body 5;
Denotes a lead wire for electrically connecting an electrode formed on the piezoelectric vibrator 3 to an external connection terminal 8 described later, and 8 denotes an external connection terminal for inputting and outputting a signal of the piezoelectric vibrator 3. The external connection terminal 8 is fixed to the relay board 6 and is electrically connected to the lead wire 7 at the relay board portion. The present embodiment is characterized in that a silicon material having a high gas barrier property is provided as an encapsulating material 9 on the exposed surface of the elastic body 5 exposed to the outside of the bottomed cylindrical case. .

【0013】次に、超音波送受波器1の作製方法につい
て説明する。まず、有底筒状ケース2を準備する。この
有底筒状ケース2はアルミニウムの削り出し等の手法で
作成する。次に、その両主面にAg等の表面電極の形成
された圧電振動子3を準備し、有底筒状ケース2の底面
に配置、固定する。次いで、圧電振動子3上面の表面電
極および有底筒状ケース2の所望の位置にそれぞれリー
ド線7を半田付け等によって接続する。リード線7の他
方端部は中継基板7に固定された外部接続端子8に接続
されている。これにより、圧電振動子3の両主面の電極
と外部接続端子8との電気的接続が図られることにな
る。この後、有底筒状ケース内部に圧電振動子3の振動
を抑制しない程度に綿状体7を挿入し、さらにこの綿状
体上に液体状のシリコン樹脂を充填、固化させ弾性体5
を構成する。このとき、中継基板6をシリコン樹脂中に
埋設しておく。最後に、弾性体5上に液体状のガスバリ
ア性の高いシリコン樹脂を充填、固化させ封止材9を構
成し、超音波送受波器1の完成体を得る。
Next, a method of manufacturing the ultrasonic transducer 1 will be described. First, the bottomed cylindrical case 2 is prepared. The bottomed cylindrical case 2 is formed by a method such as cutting aluminum. Next, a piezoelectric vibrator 3 having surface electrodes made of Ag or the like formed on both main surfaces thereof is prepared, and placed and fixed on the bottom surface of the bottomed cylindrical case 2. Next, lead wires 7 are connected to the surface electrodes on the upper surface of the piezoelectric vibrator 3 and desired positions of the bottomed cylindrical case 2 by soldering or the like. The other end of the lead wire 7 is connected to an external connection terminal 8 fixed to the relay board 7. As a result, electrical connection between the electrodes on both main surfaces of the piezoelectric vibrator 3 and the external connection terminals 8 is achieved. Thereafter, the cotton-like body 7 is inserted into the bottomed cylindrical case to such an extent that the vibration of the piezoelectric vibrator 3 is not suppressed, and the cotton-like body is filled with a liquid silicone resin and solidified to form the elastic body 5.
Is configured. At this time, the relay board 6 is buried in the silicone resin. Finally, a liquid silicone resin having a high gas barrier property is filled and solidified on the elastic body 5 to form the sealing material 9, thereby obtaining a completed ultrasonic transducer 1.

【0014】なお、本実施例の超音波送受波器1の動作
は、従来構造の超音波送受波器の動作と基本的に同一で
あるのでその説明を省略する。
The operation of the ultrasonic transducer 1 of the present embodiment is basically the same as the operation of the ultrasonic transducer of the conventional structure, and the description thereof will be omitted.

【0015】ここで、本実施例で得られた超音波送受波
器と封止材を有さない従来構造の超音波送受波器のガス
バリア性の差について、比較実験を行って検証した。実
験(実験1)は、温度40℃、湿度75%、H2S濃度
10ppmと言う環境下で硫化試験を行い、両者の圧電
振動子表面の電極が電気を通さなくなるまでの時間を測
定して比較を行った。本実験の実験結果を図2に示す。
図2から明らかなように、本実施例の超音波送受波器で
は、同一レベルの腐食となるのに、従来品の約10倍の
時間を要しており、耐腐食性が10倍以上向上している
ことが確認できる。
Here, a comparison experiment was conducted to verify the difference in the gas barrier property between the ultrasonic transducer obtained in the present embodiment and the ultrasonic transducer having a conventional structure having no sealing material. In the experiment (Experiment 1), a sulfidation test was performed in an environment of a temperature of 40 ° C., a humidity of 75%, and an H 2 S concentration of 10 ppm, and the time until the electrodes on both piezoelectric vibrator surfaces stopped conducting electricity was measured. A comparison was made. FIG. 2 shows the experimental results of this experiment.
As is clear from FIG. 2, the ultrasonic transducer according to the present embodiment requires about ten times as long as the conventional product to achieve the same level of corrosion, and the corrosion resistance is improved by 10 times or more. You can confirm that you are doing.

【0016】次に、封止材としてシリコン材を用いた場
合とウレタン材を用いた場合とで、その弾力性にどのよ
うな差が出るかについて比較実験を行って検証した。実
験は、−40℃雰囲気中に1時間放置したときのそれぞ
れの封止材の弾力性を測定して比較を行う実験(実験
2)を行った。この実験結果を、以下の表1に示す。
Next, a comparative experiment was conducted to verify the difference in elasticity between a case where a silicon material was used as a sealing material and a case where a urethane material was used. In the experiment, an experiment (Experiment 2) was performed in which the elasticity of each sealing material when left in an atmosphere of −40 ° C. for 1 hour was measured and compared. The results of this experiment are shown in Table 1 below.

【0017】[0017]

【表1】 [Table 1]

【0018】この実験結果から明らかなように、低温環
境下に放置された場合、シリコン材に比べてウレタン材
の弾力性は実験前と比べて大幅に劣化していることが確
認できる。
As is clear from the experimental results, it can be confirmed that the elasticity of the urethane material is much lower than that of the silicon material when left in a low-temperature environment compared to the silicon material.

【0019】さらに、腐食性ガスの侵入を防止する封止
材として、どの程度の分子密度を有するシリコン材が好
適であるかを検討するために、各種の分子密度を有する
シリコン材で封止材を構成し実験(実験3)を行い、そ
のガスバリア性および弾力性について検証した。実験は
前述の実験1と同一の条件で行った。この実験結果を、
以下の表2に示す。
Further, in order to study what degree of molecular density of a silicon material is suitable as a sealing material for preventing the invasion of corrosive gas, a sealing material having various molecular densities is used. And an experiment (Experiment 3) was conducted to verify the gas barrier properties and elasticity thereof. The experiment was performed under the same conditions as in Experiment 1 described above. This experimental result,
It is shown in Table 2 below.

【0020】[0020]

【表2】 [Table 2]

【0021】この実験結果から明らかなように、ガスバ
リア性の向上と弾力性とはトレードオフの関係にある
が、両ファクタについて所望の値を実現するために、封
止材の分子密度としては、1.0〜1.5Åの範囲にあ
るシリコン材を用いることが最も望ましいことが理解で
きる。
As is apparent from the experimental results, there is a trade-off between the improvement in gas barrier properties and the elasticity. However, in order to realize desired values for both factors, the molecular density of the sealing material must be as follows. It can be understood that it is most desirable to use a silicon material in the range of 1.0 to 1.5 °.

【0022】なお、本発明は本実施例の超音波送受波器
に限定されるものでないことは言うまでもない。ガスバ
リア性の高いシリコン材を用いて封止材を形成すること
により、厳しい温度環境下においても腐食性ガスの侵入
を防止しうる点が本発明の要点であり、その作用を享受
しうるものであれば、内部の吸音構造の違いや有底筒状
ケースの形状の違い等に拘わらず、本発明を適用しうる
ものである。
It goes without saying that the present invention is not limited to the ultrasonic transducer of this embodiment. By forming the sealing material using a silicon material having a high gas barrier property, the point of being able to prevent the intrusion of corrosive gas even under severe temperature environment is the gist of the present invention, and it can enjoy its function. If present, the present invention can be applied irrespective of the difference in the internal sound absorbing structure, the difference in the shape of the bottomed cylindrical case, and the like.

【0023】[0023]

【発明の効果】上述の説明からも明らかなように、本発
明の超音波送受波器は、ガスバリア性の高いシリコン材
からなる封止材を、有底筒状ケースの開口部を封止して
いる弾性体上にさらに重ねて設ける構造を有しているの
で、腐食性ガスが有底筒状ケース内に侵入するのを効果
的に防止することができ、かつ封止材にシリコンゴムを
使用しているので、超音波送受波器を温度変化の激しい
環境下で使用しても残響特性等を所望のレベルで一定に
保つことができる。
As is apparent from the above description, the ultrasonic transducer of the present invention seals the opening of the bottomed cylindrical case with a sealing material made of a silicon material having a high gas barrier property. Since it has a structure that is further provided on the elastic body, it is possible to effectively prevent corrosive gas from entering the bottomed cylindrical case, and use silicone rubber for the sealing material. Since the ultrasonic transducer is used, the reverberation characteristics and the like can be maintained at a desired level even when the ultrasonic transducer is used in an environment where the temperature changes drastically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の超音波送受波器の構造を示す概略断
面図である。
FIG. 1 is a schematic sectional view showing the structure of an ultrasonic transducer according to the present invention.

【図2】 本発明と従来例の超音波送受波器の導通状態
の経時劣化を比較した図である。
FIG. 2 is a diagram comparing the deterioration with time of the conduction state of the ultrasonic transducer of the present invention and the conventional ultrasonic transducer.

【図3】 従来例の超音波送受波器の構造を示す概略断
面図である。
FIG. 3 is a schematic sectional view showing a structure of a conventional ultrasonic transducer.

【符号の説明】[Explanation of symbols]

1 ・・・ 超音波送受波器 2 ・・・ 有底筒状ケース 3 ・・・ 圧電振動子 4 ・・・ 綿状体 5 ・・・ 弾性体 6 ・・・ 中継基板 7 ・・・ リード線 8 ・・・ 外部接続端子 9 ・・・ 封止材 DESCRIPTION OF SYMBOLS 1 ... Ultrasonic wave transmitter / receiver 2 ... Bottom cylindrical case 3 ... Piezoelectric vibrator 4 ... Cotton body 5 ... Elastic body 6 ... Relay board 7 ... Lead wire 8 ... external connection terminal 9 ... sealing material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 開口部を有する有底筒状ケースと、有底
筒状ケースの底部に配置される圧電振動子と、有底筒状
ケースの開口部を封止する弾性体とを有してなる超音波
送受波器であって、 前記弾性体の有底筒状ケース外部に露出する露出面上
に、さらにガスバリア性の高いシリコン材からなる封止
材を重ねて設けたことを特徴とする超音波送受波器。
1. A bottomed cylindrical case having an opening, a piezoelectric vibrator disposed at the bottom of the bottomed cylindrical case, and an elastic body sealing the opening of the bottomed cylindrical case. An ultrasonic transducer, comprising: a sealing member made of a silicon material having a high gas barrier property, provided on an exposed surface of the elastic body exposed to the outside of the bottomed cylindrical case. Ultrasonic transducer.
【請求項2】 前記封止材として、その分子密度が1.
0〜1.5Åの範囲にあるシリコン材を用いたことを特
徴とする請求項1に記載の超音波送受波器。
2. The sealing material having a molecular density of 1.
2. The ultrasonic transducer according to claim 1, wherein a silicon material in a range of 0 to 1.5 [deg.] Is used.
JP2000005213A 2000-01-05 2000-01-05 Ultrasonic wave transmitter-receiver Pending JP2001197592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005213A JP2001197592A (en) 2000-01-05 2000-01-05 Ultrasonic wave transmitter-receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005213A JP2001197592A (en) 2000-01-05 2000-01-05 Ultrasonic wave transmitter-receiver

Publications (1)

Publication Number Publication Date
JP2001197592A true JP2001197592A (en) 2001-07-19

Family

ID=18533896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005213A Pending JP2001197592A (en) 2000-01-05 2000-01-05 Ultrasonic wave transmitter-receiver

Country Status (1)

Country Link
JP (1) JP2001197592A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279128A (en) * 2005-03-28 2006-10-12 Fuji Electric Systems Co Ltd Ultrasonic transceiver
JP2006279113A (en) * 2005-03-28 2006-10-12 Nippon Ceramic Co Ltd Ultrasonic transceiver
JP2010063135A (en) * 2009-10-30 2010-03-18 Nippon Ceramic Co Ltd Ultrasonic wave transceiver
US7728486B2 (en) 2005-09-09 2010-06-01 Murata Manufacturing Co., Ltd. Ultrasonic sensor
US7795785B2 (en) * 2006-02-14 2010-09-14 Murata Manufacturing Co., Ltd. Ultrasonic sensor
JP2012010312A (en) * 2010-05-28 2012-01-12 Murata Mfg Co Ltd Ultrasonic sensor
JP2012160825A (en) * 2011-01-31 2012-08-23 Taiheiyo Cement Corp Support structure of ultrasonic transceiver and formation method of the same
KR101431094B1 (en) * 2012-11-16 2014-08-21 주식회사 베어링아트 Ultrasonic sensor and Manufacturing method thereof and Read side sensing device for vehicle
JP2018101924A (en) * 2016-12-21 2018-06-28 上田日本無線株式会社 Ultrasonic transducer
EP1988742B1 (en) * 2006-02-14 2021-03-24 Murata Manufacturing Co., Ltd. Ultrasonic sensor and fabrication method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279128A (en) * 2005-03-28 2006-10-12 Fuji Electric Systems Co Ltd Ultrasonic transceiver
JP2006279113A (en) * 2005-03-28 2006-10-12 Nippon Ceramic Co Ltd Ultrasonic transceiver
JP4586604B2 (en) * 2005-03-28 2010-11-24 富士電機システムズ株式会社 Ultrasonic transceiver
US7728486B2 (en) 2005-09-09 2010-06-01 Murata Manufacturing Co., Ltd. Ultrasonic sensor
US7795785B2 (en) * 2006-02-14 2010-09-14 Murata Manufacturing Co., Ltd. Ultrasonic sensor
EP1988742B1 (en) * 2006-02-14 2021-03-24 Murata Manufacturing Co., Ltd. Ultrasonic sensor and fabrication method thereof
JP2010063135A (en) * 2009-10-30 2010-03-18 Nippon Ceramic Co Ltd Ultrasonic wave transceiver
JP2012010312A (en) * 2010-05-28 2012-01-12 Murata Mfg Co Ltd Ultrasonic sensor
US9003887B2 (en) 2010-05-28 2015-04-14 Murata Manufacturing Co., Ltd. Ultrasonic sensor
JP2012160825A (en) * 2011-01-31 2012-08-23 Taiheiyo Cement Corp Support structure of ultrasonic transceiver and formation method of the same
KR101431094B1 (en) * 2012-11-16 2014-08-21 주식회사 베어링아트 Ultrasonic sensor and Manufacturing method thereof and Read side sensing device for vehicle
JP2018101924A (en) * 2016-12-21 2018-06-28 上田日本無線株式会社 Ultrasonic transducer

Similar Documents

Publication Publication Date Title
JP3238492B2 (en) Piezoelectric sensor
US8896183B2 (en) Ultrasonic vibration device
JP3721786B2 (en) Ultrasonic sensor and manufacturing method thereof
JP2001197592A (en) Ultrasonic wave transmitter-receiver
WO2007094184A1 (en) Ultrasonic sensor and fabrication method thereof
JP4297293B2 (en) Automotive harness with terminals
JP4646260B2 (en) Automotive harness with terminal
US4755975A (en) Piezoelectric transducer for transmitting or receiving ultrasonic waves
JP2004104521A (en) Ultrasonic sensor
CN101714608B (en) Method for encapsulating piezoelectric polymer thin-film sensor
JP2006279113A (en) Ultrasonic transceiver
US20090267458A1 (en) Apparatus for preventing eavesdropping using piezoelectric film
JP3113832B2 (en) Microphone holder
JP3379073B2 (en) Ultrasonic transducer
JP2014230109A (en) Ultrasonic transducer
JP2007036301A (en) Ultrasonic sensor and manufacturing method thereof
CN213209155U (en) Sensor for liquid flowmeter
JP2001128293A (en) Piezoelectric device
JP4442632B2 (en) Ultrasonic sensor
JP3796969B2 (en) Ultrasonic sensor
JP4303100B2 (en) Ultrasonic sensor
CN209841253U (en) Welded probe package
JP4228997B2 (en) Ultrasonic sensor
JP4342190B2 (en) Ultrasonic sensor and manufacturing method thereof
JPS58101600A (en) Ultrasonic wave transmitter and receiver